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Contamination with low-energy radiation leads to an increased number of

weighted residuals being larger in absolute terms than three standard

uncertainties. For a Gaussian distribution, these rare events occur only in

0.27% of all cases, which is a small number for small- to medium-sized data sets.

The correct detection of rare events – and an adequate correction procedure –

thus relies crucially on correct standard uncertainties, which are often not

available [Henn (2019), Crystallogr. Rev. 25, 83–156]. It is therefore advisable to

use additional, more robust, metrics to complement the established ones. These

metrics are developed here and applied to reference data sets from two different

publications about low-energy contamination. Other systematic errors were

found in the reference data sets. These errors compromise the correction

procedures and may lead to under- or overcompensation. This can be

demonstrated clearly with the new metrics. Empirical correction procedures

generally may be compromised or bound to fail in the presence of other

systematic errors. The following systematic errors, which were found in the

reference data sets, need to be corrected for prior to application of the low-

energy contamination correction procedure: signals of 2� contamination,

extinction, disorder, twinning, and too-large or too-low standard uncertainties

(this list may not be complete). All five reference data sets of one publication

show a common resolution-dependent systematic error of unknown origin. How

this affects the correction procedure can be stated only after elimination of this

error. The methodological improvements are verified with data published by

other authors.

1. Introduction

The identification, description and removal of systematic

errors in diffraction experiments has become increasingly

important in recent years as, with high redundancies, the

statistical error has been reduced to such an extent that

sytematic errors are now the dominant errors in diffraction

data. Consequently, there is an increased need for the detec-

tion and quantification of systematic errors, even in small-

molecule data sets. A well understood systematic error is

contamination with low-energy radiation like 3� contamina-

tion: radiation with triple the basic wavelength � emerges due

to imperfect monochromaticity. The low-energy contribution

is diffracted in the same way as the basic wavelength but at

tripled Miller indices h, k, l.

Low-energy contamination appears when Mo radiation is

combined with mirror optics, as in this combination the

reflection angles in the mirror optics support total reflection of

wavelengths with double and triple the basic wavelength

which are found in the continuous emission spectrum. Cases of

3� contamination have been discussed in the literature

(Macchi et al., 2011; Krause et al., 2015), whereas 2�
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contamination has not yet been reported. Low-energy

contamination is not expected for Cu and Ag radiation or

synchrotron radiation, or for Mo radiation experiments in

combination with other devices like a traditional graphite

monochromator. The presence of 3� radiation can be avoided

physically by blocking the low-energy radiation with thin foils,

but if this opportunity is not taken in the experiment, low-

energy contamination can still be corrected for. Correction

procedures always have their own advantages and disadvan-

tages, and it is of course advisable to avoid errors in the first

place.

Krause et al. (2015) proposed a correction procedure in

which the systematic difference between unaffected (by

low-energy contamination) and affected intensities is fitted

by a weighted least-squares procedure: F2
obsð3h; 3k; 3lÞ =

F2
unaffectedð3h; 3k; 3lÞ + k3�F2

obsðh; k; lÞ. The fit parameter k3�

quantifies the degree of 3� contamination and is used for a

correction procedure,

F2
obsð3h; 3k; 3lÞ ¼ F2

calcð3h; 3k; 3lÞ þ k3�F2
obsðh; k; lÞ; ð1Þ

in which the unknown entity F2
unaffectedð3h; 3k; 3lÞ is replaced

by the known entity F2
calcð3h; 3k; 3lÞ.

It can be expected that this approximation will hold better

the lower the overall contamination with systematic errors is.

Conversely, this approximation is invalidated in the presence

of many or strong systematic errors, as the calculated inten-

sities are more and more biased by the increasing errors.

Another correction procedure proposed by Krause et al.

(2015) treats 3� contamination as a (de)twinning problem with

a virtual twin domain, leading to similar results. In the present

work the focus is on the first correction procedure as indicated

by equation (1).

2. Traces of 3k contamination

Established traces of 3� contamination are radially smeared

out reflection spots in the frames and a transfer of intensity

from base reflections hkl to corresponding reflections 3h 3k 3l.

A consequence of this process is that specifically reflections

with Miller indices which are all multiples of three (or with

zero index), like 9 3 18, 300 or 18 9 0, contribute strongly,

disproportionately to their relative share, to the number of

large weighted residuals |�/�(Io)| = |�| > 3, provided that the

�(Io) are absolutely and relatively correct,1 and maybe also

provided that no other strong systematic error is present, as

this may obstruct or counteract the traces of 3� contamination

in the residuals. It may therefore be a good idea to work out

more consequences of low-energy contamination in order to

establish a fingerprint that does not rely on just one criterion

like the over-representation of reflections with Miller indices

being multiples of two or three in the subset of large residuals.

For the sake of simplicity, reflections with all Miller indices

being multiples of three are abbreviated by the symbol m3. In

an analogous way, reflections with all Miller indices being

multiples of two are abbreviated by m2.

In total, one would expect, as a consequence of this specific

systematic error, the following characteristics:

(1) A significant contribution of m3 to rare events |�| > 3

[provided the �(Io) are correct].

(2) A large contribution of m3 to all strong residuals [not

only to those with � > 3, independent of absolutely correct

�(Io)].

(3) An increased number of positive weighted residuals #�+

and a decreased number of negative weighted residuals #��.

Whether the number of positive residuals in excess is signifi-

cant can be quantified by dividing the difference by the square

root of the number of all residuals, (#�+ � #��)/(Nobs)
1/2. This

corresponds to the significance of the deviation from zero in a

random-walk process, where positive and negative steps have

the same probability 0.5.

(4) A positive shift of the mean value of all residuals h�i.
Instead of looking only at the mean value of the residuals, it is

more precise to monitor the significance of the deviation of

the mean value of the residuals from zero: h�i/�(h�i) with

�(h�i) = [var(�)/Nobs]
1/2.

(5) On average, stronger positive weighted residuals

compared with negative ones, h�+i > h|��|i.

(6) More strong positive outliers than negative ones,

h�2
þi> h�

2
�i.

(7) An increase in wR(F 2).

(8) An increase in goodness of fit (GoF).

The above points are not all independent of each other.

Descriptor (1) is a standard indicator which in this work is

additionally endowed with an error bar. Descriptor (2) is a

new and more robust indicator based on histograms and

ranking rather than absolute numbers, which will be explained

in greater detail below. Descriptors (3) to (5) are just more

specific consequences of 3� contamination and would apply to

2� contamination in an analogous way. Normal probability

plots (Abrahams & Keve, 1971) would clearly display points

(3)–(6) by showing more and stronger outliers on the right-

hand side, as well as a slightly right-shifted value at zero.

In consequence, a successful correction for 3� contamina-

tion reverses all the above-listed signs (1)–(8). If the effects

are not reversed, then other systematic errors are necessarily

present, the causes of which may or may not be known.

3. New detection metrics for low-energy contamination

In order to make the existing metrics additionally more

significant and impactful, it is suggested that:

(i) Multiples of two, three and six be always monitored

together.

(ii) An error bar be added to the percentage of multiples

based on Poisson statistics. This allows a judgement on

whether a deviation of the existing value from the expected

value is significant or insignificant. As an example, look at

Fig. 1(a) below, where a 3� error bar is added to the rare

events from multiples of two, m2, to the rare events from
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1 Relative correctness to each other is not sufficient, which can easily be seen
from a Gedankenexperiment in which the �(Io) are all too large by a factor of,
say, 1.5. This would eliminate all rare events immediately.



multiples of three, m3, and to the rare events from multiples of

six, m6. Only the 3� contamination signal is significant.

(iii) The important items from the list (1)–(8) above be

cross-checked for evaluation of the initial state of the data set

and the progress of the correction process. Which of the items

are important is investigated later.

3.1. Error bar based on Poisson statistics for comparing the
share of rare events from multiples with the share of
multiples from all reflections

A standard technique to detect low-energy contamination is

to compare the share of rare events from multiples with the

share of multiples from all reflections. These shares should be

equal within statistical fluctuations. If, for example, 3.54% of

all reflections Nobs = 1697 are multiples of three, then these

should contribute to approximately 3.54% of all rare events

|�| > 3. But how large are the statistical fluctuations? They are

now specified by an error bar derived from Poisson statistics.

For example, if there are in total 26 rare events |�| > 3, and 13

rare events are from multiples of three, the 1� error bar is

�131/2 = �3.61 and the share of rare events from multiples of

three to all rare events is 50% (13/26). This is much higher

than the expected 3.54%. But the absolute numbers of rare

events are also quite small, so it is not yet clear whether 50%

of the share could still be within statistical fluctuations or not.

This is decided by the error bar, which is calculated as

(3 � 131/2)/26 = 0.42, i.e. approximately 42%. A lower bound

of the statistical fluctuations is therefore 50% � 42% = 8%,

which is still larger than 3.54%. The contribution of m3 to all

rare events is therefore too large to be consistent with statis-

tical fluctuations. The numbers discussed here are from data

set 1_uncorr (see Section 4) and are visualized in the middle

part of Fig. 1(a), where the blue bar represents the fraction m3

of all reflections (3.54%), the orange bar represents the

contribution of m3 to all rare events (50%) and the error bar is

given by�42%. Some of the discussed numbers are also given

in Table 2 below.

The error bar is helpful to evaluate whether the expected

(3.54%) and found (50%) shares are possibly just within

statistical fluctuations. In this publication we adopt the

convention to use a 3� event as the criterion, i.e. if the result

deviates by three standard deviations or more, this is assumed

to be significant. There is no rigorous proof for this assump-

tion; it is simply based on convention. For the numbers just

discussed, the above-mentioned 42% represents a 3� event.

The expected 3.54% deviates from 50% by more than 3�.

3.2. Histograms of multiples in equal bins of weighted
residuals

It is known that the �(Io) are often inadequate [see e.g.

Henn (2019)] as they are designed specifically for the purpose

of making the weighted residuals independent of the resolu-

tion, with the help of the weighting scheme parameters. In

order to construct metrics that are less dependent on the

correct �(Io), it is suggested to use histograms of the multiples

in five or ten bins of the residuals or in an appropriately

chosen number of bins. Instead of analysing the largest resi-

duals |�| > 3 exclusively, like above, all residuals are analysed

and the analysis is no longer based on the numeric value of the

residual, which depends on the correct �(Io). The analysis is

further based on the ranking of residuals �, rather than the

ranking of absolute values |�| of the residuals. This is worth

mentioning, because with low-energy contamination it is

expected that specifically just the number of strong positive

residuals will increase, but not the number of strong negative

residuals. If by some exotic error just the negative residual of,

say, m3 were to become larger in absolute terms, this would be

falsely attributed to 3� contribution if the analysis were based

on |�| rather than �.

4. Application of the new metrics

The new metrics are applied to data sets known to be

contaminated by 3� radiation, used in the study reported by

Krause et al. (2015) and described in greater detail there. A

very brief characterization is given in Table 1. Each of these

five data sets, herein numbered 1–5, exists in three different

forms: the ‘uncorrected’ (for low-energy contamination) form,

the ‘corrected’ form, where the correction procedure as

described by Krause et al. (2015) is applied for an a posteriori

correction of the experimental data, and the ‘filtered’ form, in

which a thin Al foil was used during data collection to block

the low-energy radiation physically.

4.1. Application of the error bar in low-energy contamination

As an example, reference data sets 1 and 2 are now

discussed in greater detail. The results for the other reference

data sets are also briefly given. Fig. 1 displays information for

multiples of two, three and six for reference data set 1 (left-

hand column) and reference data set 2 (right-hand column).

The situation prior to the correction procedure is depicted in

the first row for each data set, the situation after application of

the correction procedure is shown in the second row, and the

‘filtered’ data sets, where a thin metal foil physically blocked

the low-energy radiation, are shown in the third row. For each

data set (1 and 2) and for each state [uncorrected (suffix

_uncorr), corrected (_corr) and filtered (_filter)] the percen-

tage fractions of multiples of two, three and six are given as

blue bars. The corresponding fractions of rare events from the

multiples of two, three and six to all rare events are given as

orange bars next to the blue ones. A 3� error bar based on

Poission statistics is attached to these.
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Table 1
Details of data sets 1 to 5 discussed in this work.

No. Formula
X-ray
source

T
(K)

Absorption
coefficient � (mm�1)

1 C28H18N2 ImS 100 0.081
2 C12H4N4 ImS 100 0.088
3 C18H17CuO6 ImS 100 1.318
4 C34H26MgN4O4 TXS 100 0.111
5 C11H10O2S ImS 293 0.294



Fig. 1(a) shows that initially there are significant (3.35�,

based on Poisson statistics) contributions from m3, but not

from m2 (1.83�) or m6 (2.32�), to the rare events in data set

1_uncorr. After application of the correction process

[Fig. 1(c)], the contributions from m3 and m6 vanish comple-

tely, whereas the contribution of m2 remains insignificant (with

0.98�).

In reference data set 2, there is also initially a 3.15�
significant signal for 3� contamination [Fig. 1(b)]. In the

corrected data set, the signal for 3� contamination is insig-

nificant [Fig. 1(d)]. Reference data set 3 shows a very signifi-

cant (4.32�) 3� contamination signal that becomes

insignificant after application of the correction procedure

(1.69�) and for the filtered data set (0.78�; for the corre-

sponding plots see the supporting information). In reference

data set 4, the initially significant 3� signal (3.79�) is also

insignificant (0.38�) after correction and for the filtered data

set (0.42�). Only in reference data set 5 is the signal for 3�
correction initially not significant (2.14�) according to a 3�
criterion. However, for the corrected data set (0.11�) and for

the filtered data set (0.04�) the signal becomes even more

insignificant than for data sets 1–4.

As all examples are known to be contaminated by 3�
radiation, the findings for data set 5 raise the question of why

the contamination remains insignificant in this data set. This is

discussed below in greater detail, but for the moment it needs
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Figure 1
Plots of 2� and 3� contamination and twinning. The left-hand column shows data set 1 and the right-hand column shows data set 2. (Left) The 3�
correction procedure reduces the contribution of multiples of three to the rare events, as indicated by the orange bar in the middle of panel (a) compared
with panel (c). The contribution from multiples of two, however, is insignificant in (a) and remains insignificant for the corrected and filtered data sets, as
indicated by the left-hand orange bar in panels (a), (c) and (e). In data set 2 (right-hand column) the 3� correction procedure also reduces the
contribution of multiples of three to the rare events, but the initially insignificant contribution of multiples of two increases to a level where it may just
become significant. This is also the case in the filtered data set.



to be kept in mind that signals with a significance less than 3�
might still reveal low-energy contamination.

4.2. Application of the histograms of multiples in bins of
increasing residuals

As an example, data sets 1 and 4 are discussed. The corre-

sponding histograms can be found in Fig. 2. Each bar in all

histograms is annotated with a Poisson-based 3� error bar.

The left-hand column describes data set 1 and the right-hand

column data set 4. Figs. 2(a) and 2(b) show that low-energy

contamination leads to an overall polarization of the residuals

with respect to occurrences of m3 in data sets 1_uncorr and

4_uncorr: the more positive the residual, the more appear-

ances of m3. The most negative 20% of residuals show a low

number of m3, with a tendency to increase for the next 20%
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Figure 2
The left-hand column shows data set 1 and the right-hand column shows data set 4. Histograms of multiples of three, m3, in approximately equally
populated bins of the weighted residuals � in increasing order (on the left the most negative, on the right the most positive residuals). The respective first
bin gives the integer number n1 of m3 for the lowest (most negative) 20% of residuals, while the respective last bin gives the integer number n5 of m3 for
the largest (most positive) residuals. The error bars mark 3� and are �(ni)

1/2 according to Poisson statistics. (Left) Initially the m3 are polarized towards
positive residuals. (a) The more positive the residual, the more m3 are in the respective bin. (c) The correction procedure overcompensates the 3� effect:
after application of the correction procedure most multiples of three are found in the bin with the most negative residuals. (e) In data set 1_filter, the
multiples of three are approximately equally distributed, with a statistically insignificant tendency to find more m3 again for the largest positive residuals
(largest bin on the far right). Data set 4 initially also shows a polarization of m3 to positive weighted residuals (b), but after correction (d) shows a
uniform distribution of m3 with respect to the weighted residuals, like for the filtered data set 4 ( f ) and in contrast to (b).



of residuals and so on up to the 20% most positive residuals

with significantly more m3 than in all other bins. After the

correction procedure, suddenly the 20% most negative

residuals display the largest population with m3 in data set

1_corr [Fig. 2(c)]. This is interpreted as an overcompensation

process.

The data set 1_filter again shows a slight but insignificant

tendency to a polarization of m3 to positive residuals, while in

data set 4_filter there is no such tendency visible [Fig. 2( f)].

The histogram in reference data set 4_corr shows a successful

correction procedure.

In reference data set 3_uncorr there is initially a peak

contribution of m3 to the 20% of largest (positive) residuals

visible. The corrected data set indicates that the most negative

20% of residuals show an increased frequency of contributions

from m3 in the corresponding histogram. Using ten bins

instead of five reveals that the most positive 10% also show an

increased number of m3 reflections. Both signals are just on

the verge of becoming significant. The interpretation of this

pattern is not clear. If the remaining contributions to the most

positive signals are interpreted as an undercompensation

process and additional contributions of m3 are interpreted as

an overcompensation process, then in this data set there would

be simultaneously signs of both under- and overcompensation,

which seems to be inconsistent. As long as the correct inter-

pretation for this signal is not found, it is marked as showing

simultaneously signs of over- and undercorrection. Due to the

small peak for the residuals close to zero in the bins in the

middle of the plot, there is also a resemblance to reference

data set 2_corr. In reference data set 5, the histograms prior to

correction also show peak distributions of m3, specifically for

the largest (most positive) residuals. After correction there are

no distinct signs of remaining errors. There are, however, two

interesting and unexplained features: The negative residuals

tend to show in total fewer reflections of m3 compared with the

positive residuals. This is particularly clearly shown when

using ten bins instead of five. The distribution should be

uniform. The reference data set 5_filter shows a strong

polarization of the m3 reflections with respect to the residuals:

the more positive the residuals, the larger the fraction of m3.

This kind of distribution is expected and consistently observed

for all uncorrected reference data sets (1_uncorr, 2_uncorr,

3_uncorr, 4_uncorr and 5_uncorr) and they all display a

corresponding 3� contamination signal. In this case the

polarized residuals occur for the filtered data set 5_filter and it

does not display a significant signal for m2, m3 or m6. This

remains a riddle at this point in the discussion.

4.3. A priori expectations of low-energy contamination

Apart from the discussed new metrics, there are the a priori

expectations for the signs of low-energy contamination (3)–(8)

as introduced above. Discussing these in detail may give hints

for successful and unsuccessful correction procedures and for

other systematic errors that may interact with the correction

procedure. A first hint of interactions was found with an

increased, albeit insignificant, 2� contamination signal in

reference data set 1 that may interact with the application of a

3� correction procedure.

5. The descriptors in detail

5.1. Rare events from m3 and contribution from m3 to 20%
of the largest residuals

In all cases, and as expected, the 3� correction procedure

reduces (i) the total number of rare events, (ii) the relative

contribution of m3 to those rare events and (iii) the contri-

bution from m3 to the 20% of largest residuals. The reduction

in rare events is, however, only very small in some cases, for

example in data set 4, where in the uncorrected data set 19 out

of a total of 69 rare events are from m3 (27.54%, see second

column in Table 2) and after correction only three rare events

are from m3. However, the total number of rare events (65)

remains close to the initial value of 69. This may be a hint that

low-energy contamination is not the dominant systematic

error in data set 4.

5.2. Shift in the significance of the mean of the residuals, as
given by hhhfiii/r(hhhfiii)

In all cases, and as expected, the significance of the devia-

tion of the mean residuals from zero decreases when 3�
correction procedures are applied. It is important to note,

however, that some mean values are different from zero with

high significance before and after the correction, as in the case

of data set 3 (before/after: 5.47/4.03) and data set 4 (6.40/5.37).

This is evidence of systematic errors in itself, as a significant

deviation from zero indicates non-random contributions to the

mean value, i.e. contamination with systematic errors. The

question of which types of systematic error lead to such large

deviations is an open research topic and cannot be answered

fully in this work, but it will be touched on again below. It is an

important question, though, as significantly large absolute

deviations of the mean value of the weighted residuals from

zero larger than three are widespread. In the 127 data sets

published by IUCrData (https://iucrdata.iucr.org/) and

discussed by Henn (2019), they appeared in 66 (52%) cases,

but remained unmentioned – and most likely undetected – in

all publications where they appeared. On average, the abso-

lute significance of the deviation of residuals from zero for the

127 data sets was 4.30.

5.3. Number of positive and negative residuals as given by
(#f+ � #f�)/(Nobs)

1/2

As pointed out above, low-energy contamination leads to

an increase in, specifically, the positive residuals. Conse-

quently, the correction procedure should reduce the number

of positive residuals further. However, the number of positive

residuals increases after correction for reference data sets 1, 2,

3 and 5, as can be seen from Table 2, where the significance of

the difference between the number of positive and negative

residuals, (#�+ � #��)/(Nobs)
1/2, is given in the fifth column.

This is clearly counterintuitive and needs an explanation. The

obvious explanation is that there are additional systematic
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errors in these data sets. Only in data set 4 does the number of

positive residuals decrease after correction. Data sets 3 and 4

(including the filtered data sets) show a significant excess of

positive residuals.

5.4. Mean of positive and negative residuals

In order to track the effect of the correction procedure, it is

also helpful to monitor the mean values of the positive and

negative weighted residuals separately, as 3� contamination is

expected to lead selectively to stronger positive residuals only.

In general, positive and negative residuals should show the

same average value when no systematic errors apply. In the

case of a Gaussian distribution, this expectation value is given

by h|��|i = (2/�)1/2� with 0 < � = (Nobs�Npar)/Nobs < 1. For the

separated samples of positive and negative residuals, the

standard deviation of their respective mean values is calcu-

lated from their respective variances by

� h��ið Þ ¼
varð��Þ

N�

� �1=2

; ð2Þ

where

varð��Þ ¼

PN�
i¼1 ��;i � h��i
� �2

N� � 1
ð3Þ

indicates the sample population variance of either the positive

or the negative residuals and N� indicates either the number

of positive or the number of negative residuals. The error bar

as given in equation (2) enables control of the consistency of
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Table 2
Characteristic numbers for low-energy contamination.

The first column gives the name of the data set, the second the percentage of multiples of three and the third the percentage of rare events from multiples of three
(which should be close to the value in column two when low-energy contamination is not present). The absolute numbers are also given. Column four gives the
absolute numbers of m3 in the class of the strongest 20% of residuals and the corresponding percentage, column five displays the significance of the shift of the
mean weighted residuals from zero, and column six the significance of the positive excess residuals according to a random walk criterion with equal probability for
positive and negative steps. Column seven shows a theoretical reference value from a Gaussian distribution for the mean values in the next two columns, which are
the separate mean value of the positive weighted residuals (column eight) and the absolute mean value of the negative weighted residuals (column nine). These
values in column eight and nine are equal within the limits of statistical fluctuations, and equal to the reference value in column seven when no systematic errors
apply. Column ten shows a theoretical reference value from a Gaussian distribution for the next two columns, which display the separate mean values of the
positive squared weighted residuals and of the negative squared weighted residuals. These two values are equal within statistical fluctuations and in accordance
with the reference value from column ten when no systematic errors apply. Squaring the residuals emphasizes outliers. Column 13 shows the weighted agreement
factor as a percentage value, column 14 gives the goodness of fit and column 15 the alternative goodness of fit. In columns eight, nine, 11 and 12, statistical
fluctuations are indicated by a 3� error bar.

Data
set

m3

(%)
|�| > 3 from m3

(%) signif†
#m3 in largest
20% of �2

h�i/
�(h�i)

(#�+ � #��)/
(Nobs)

1/2 (2/�)1/2� h�+i h|��|i �2
h�2
þi h�2

�i

wR(F2)
(%) GoF aGoF

1_uncorr 3.54 50.00 (13/26) 3.35 28/60 (46.67) 3.85 1.00 0.73 0.81
� 0.10

0.65
� 0.06

0.85 1.57
� 0.63

0.70
� 0.04

12.65 1.12 1.05

1_corr 3.54 0.00 (0/18) – 15/60 (25.00) 2.96 1.29 0.73 0.81
� 0.08

0.71
� 0.06

0.85 1.34
� 0.40

0.84
� 0.05

11.13 1.09 1.14

1_filter 3.63 8.70 (2/23) 0.82 17/62 (27.42) 2.74 1.23 0.73 0.83
� 0.08

0.74
� 0.06

0.85 1.28
� 0.27

0.93
� 0.06

11.05 1.10 1.23

2_uncorr 3.69 41.38 (12/29) 3.15 24/57 (42.11) 2.33 1.40 0.76 0.76
� 0.09

0.68
� 0.07

0.91 1.35
� 0.58

0.90
� 0.07

10.75 1.09 0.90

2_corr 3.69 0.00 (0/27) – 16/57 (28.07) 1.44 1.76 0.76 0.78
� 0.07

0.77
� 0.08

0.91 1.10
� 0.25

1.15
� 0.09

9.63 1.09 0.98

2_filter 3.75 0.00 (0/26) – 11/58 (18.97) 1.10 1.70 0.76 0.77
� 0.07

0.78
� 0.08

0.91 1.06
� 0.24

1.19
� 0.10

9.92 1.08 1.00

3_uncorr 3.78 38.33 (23/60) 4.32 66/162 (40.74) 5.47 2.69 0.74 0.78
� 0.05

0.67
� 0.04

0.86 1.32
� 0.32

0.78
� 0.03

7.04 1.07 1.11

3_corr 3.78 12.24 (6/49) 1.69 44/162 (27.16) 4.03 2.78 0.74 0.77
� 0.04

0.71
� 0.04

0.86 1.08
� 0.16

0.90
� 0.04

6.50 1.03 1.09

3_filter 3.73 6.82 (3/44) 0.78 34/158 (21.52) 2.80 3.06 0.74 0.76
� 0.04

0.75
� 0.04

0.86 1.02
� 0.15

0.96
� 0.04

6.81 1.03 0.94

4_uncorr 3.61 27.54 (19/69) 3.79 90/314 (28.66) 6.40 4.10 0.76 0.80
� 0.03

0.72
� 0.03

0.91 1.17
� 0.15

0.84
� 0.02

11.48 1.03 0.79

4_corr 3.61 4.62 (3/65) 0.38 57/314 (18.15) 5.37 3.80 0.76 0.80
� 0.03

0.75
� 0.03

0.91 1.08
� 0.10

0.88
� 0.02

10.91 1.02 0.86

4_filter 3.67 2.82 (2/71) 0.43 66/325 (20.31) 5.74 3.44 0.76 0.81
� 0.03

0.75
� 0.03

0.91 1.14
� 0.10

0.90
� 0.02

11.13 1.03 0.86

5_uncorr 3.71 19.44 (7/36) 2.14 36/91 (39.56) 2.92 2.18 0.76 0.83
� 0.06

0.77
� 0.06

0.90 1.24
� 0.22

0.99
� 0.05

6.80 1.09 1.50

5_corr 3.71 3.33 (1/30) 0.11 24/91 (26.37) 2.36 2.50 0.76 0.81
� 0.06

0.79
� 0.06

0.90 1.17
� 0.20

1.03
� 0.05

6.68 1.08 1.47

5_filter 3.71 3.57 (1/28) 0.04 19/91 (20.88) 2.58 1.27 0.76 0.85
� 0.06

0.78
� 0.06

0.90 1.27
� 0.22

1.03
� 0.05

6.74 1.10 1.46

† The significance of the 3� signal is calculated by �%/�Poisson,%, where �% is the difference in percentage points between the multiples of three (in percent) and the contribution of
multiples from three to all rare events |�| > 3 (in percent), and �Poisson,% = 100[#|�| > 3(m3)]1/2/(#|�| > 3) is the standard deviation based on Poisson statistics, expressed in percentage points.
This is calculated by taking the square root of the number # of rare events |�| > 3 from multiples of three m3, divided by the total number of rare events #|�| > 3 (which gives the fraction of
rare events from multiples of three), multiplied by 100 to obtain the percentage points.



the separate mean values from the positive and negative

residuals and additionally of their consistency with the

expectation value of a Gaussian distribution. The mean values

of the positive and absolute negative residuals are given

together with a 3� error in columns seven and eight of Table 2.

Positive residuals h�+i. The mean values h�+i tend to be

slightly too large, but are surprisingly often in accordance with

the expectation value from a Gaussian distribution (2/�)1/2�.

The positive residuals tend to be larger than their reference

value before and after 3� correction. The correction proce-

dure only leads to a decreasing mean value of the positive

residuals h�+i in the case of data sets 3 and 5, while in the other

cases it remains the same within the given digits, or even

increases, as for data set 2 (from 0.76 to 0.78, see Table 2,

column 8). An increase is clearly counterintuitive. A possible

explanation is an error compensation process: removal of the

3� error leads to visibility of other errors, which were

obstructed or counteracted by the former.

Negative residuals h|��|i. The correction procedure leads to

an increasing mean value of the absolute negative residuals

h|��|i in all cases, and also in the individual case of set 5, where

the mean value was too large from the start (h|��|i before/

after/reference: 0.77/0.79/0.75). In all cases where the correc-

tion was applied, the mean value of the positive residuals is

larger than the mean value of the absolute negative residuals

prior to and after the correction procedure. The mean value of

the absolute negative residuals for the uncorrected data sets 1,

2, 3 and 4 is lower than the reference value. This may be

interpreted as a hint that the standard deviations are too large

in these sets in general, with an additional error that increases

the positive residuals selectively, or it may be connected to a

shift of the residual distribution as a whole to positive values.

Both cases may result in a shift of the residuals to positive

values, as just discussed in Sections 5.2 and 5.3. A positive shift

of any symmetric residual distribution would selectively lead

to increased frequency and strength of positive residuals

compared with the negative ones.

5.5. Mean of positive and negative squared residuals

The mean value of the squared residuals emphasizes

outliers. As the m3 observed intensities are increased by 3�
contamination by �3� � 0, it is expected that more large

positive residuals � > 3 will be found for these, which implies

that negative outliers � < �3 from m3 are reduced. It is

consequently expected that the mean of the squared positive

residuals will be significantly larger than its reference value

and that the correction procedure will lead to a reduction in

the mean value of the squared positive residuals. For the mean

value of the negative squared residuals it is expected, prior to

the correction, that (i) h�2
þi> h�

2
�i and (ii) h�2

�i<�
2 in a data

set without any other systematic error. While (i) is observed in

all data sets, (ii) is often not the case, which shows that the

assumption of low-energy contamination being the sole source

of systematic errors is too optimistic. It is also expected that

(iii) h�2
�i will increase after correction.

Positive squared residuals h�2
þi. In all data sets, the mean

squared positive residuals behave as expected, i.e. they are (i)

larger than the corresponding negative value and (ii) in most

cases significantly larger than the reference value �2 before

correction, and (iii) reduced after correction. The resulting

values after correction are, however, all above the reference

value �2. This is also the case for the filtered data sets. The

reference value �2 corresponds to the case of a Gaussian

distribution of residuals without any systematic errors.

Negative squared residuals h�2
�i. The mean squared negative

residuals all increase after application of 3� correction, as

expected. Some resulting values are, however, still smaller

than the reference value (sets 1 and 4; in 4 with significance).

Expectation values that are significantly too small may be a

hint of too-large �(Io) values. The primary cause would be

overfitting in this case. On the other hand, it could be an effect

from another (as yet unidentified) error that leads to large

positive shifts in the mean values of the residuals h�i/�(h�i).

These positive shifts are largest after correction for data sets 1,

3 and 4, i.e. for exactly those data sets with the lowest mean

values h�2
�i, with h�2

�i<�
2 in the case of data sets 1 and 4. In

this case, the significantly reduced mean value of the negative

squared residuals may not point directly to the primary cause,

but instead may be the effect of an unknown systematic error

that leads to positive shifts in the mean values of residuals, i.e.

a secondary effect. As will be discussed later, data set 3 does

show (a modelled but maybe incomplete) disorder. As a

working hypothesis until validation or falsification, it may be

assumed that a significantly reduced mean value of the

negative squared residuals may be a secondary effect of

disorder, together with a significantly positive shifted mean

value of the residuals. Of course, this pilot study cannot

answer all relevant questions immediately, and the findings

need to be validated or falsified with a larger number of

examples over time.

5.6. Weighted agreement factors and GoF

The weighted agreement factors all decrease after applica-

tion, if sometimes only slightly. The significance of the changes

was tested with the Hamilton test (Hamilton, 1965). They are

all significant at the significance level 0.005.

The GoF also decreases or remains virtually unaffected, as

for reference data set 2. There, the reduction in �h�2
þi =�0.25

due to the correction procedure is compensated by a corre-

sponding increase �h�2
�i = 0.25. As a result, the GoF remains

constant.

5.7. Normal probability plots

The normal probability plot (NPP) is a valuable diagnostic

tool in general, and in particular in the case of 3� contam-

ination. It shows the above-mentioned characteristic features

of stronger and more frequent positive residuals compared

with the negative ones. Note that in the case of modifying the

expected distribution to e.g. the t distribution, as proposed by

Hooft et al. (2009), in order to accommodate the expected

outliers, they might not be visible as such any more. Instead of

modifying the expected distribution, we propose to stay with
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the normal distribution and investigate deviations from it in

order to describe, identify and ultimately remove systematic

errors.2 As an example, the correction procedure for reference

sets 1 and 2 is discussed in greater detail in this section and

depicted in Fig. 3. The findings are similar for the other

reference data sets. The NPPs for all data sets can be found in

the supporting information. The number and strength of

positive outliers is reduced by the correction process, as can be

seen by comparing Fig. 3(a) with Fig. 3(c) for reference data

set 1 and Fig. 3(b) with Fig. 3(d) for reference data set 2. Large

positive outliers remain in both cases and are only visible

when the full range of the NPP is shown (not limited to a

region between �3 and 3). The left-hand sides of the NPPs

show comparably few changes.
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Figure 3
Probability plots. The left-hand column shows data set 1 and the right-hand column shows data set 2. (Left) The 3� correction procedure reduces the
number and strength of rare events � > 3, as indicated by the number and strength of outliers in the right periphery of panel (a) compared with (c). They
are, however, not eliminated and are also visible in the filtered data set shown in panel (e). Changes in the left-hand periphery are much smaller. The
observations are similar in data set 2 (right-hand column).

2 In aviation it is common practice to examine every single accident in great
detail in order to learn more about how this can be avoided. In crystallography
one could examine the cases in which deviations from expected values are
significant so as to also learn from, and improve, the experiments
systematically over the course of time.



5.8. Problems with r(Io)

When the �(Io) = [s.u.2 + (aP)2 + bP]1/2, with P = fIo +

(1 � f)Ic, are (distinctly) too small, this is easily detected, e.g.

in Bayesian conditional probability (BayCoN) plots [see, for

example, Williams et al. (2019) and Henn & Meindl (2014b)].

When, in contrast, the �(Io) are too large, other systematic

errors can be disguised, as this leads to more uniform BayCoN

plots and artificially lowered GoF values.

Standard deviations that are too large or too small have the

potential to invalidate the results from the least-squares

procedure and affect many metrics [like GoF and wR(F 2)]

used to judge the process. Additionally, they play a role in the

correction procedure when they are used as weights and may

lead to over- or undercompensation.

A particularly helpful metric for the detection of too-large

standard deviations is the alternative goodness of fit (aGoF),

as this might become smaller than one in this case, whereas the

GoF may still remain larger than one (Henn, 2019, 2016). To

give a very brief explanation for these findings: The deviation

of the GoF is based on the �2 distribution that describes

independent identically distributed random numbers. In many,

if not most, published data sets, the weighted residuals are not
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Figure 4
The left-hand column shows data set 2 and the right-hand column shows data set 4. The blue bars refer to positive weighted residuals and the orange bars
to negative. The first pair of bars in each plot displays the fraction of positive and negative residuals. A 3� error bar is attached to the positive values,
which indicates the range of statistical fluctuations according to a random-walk process with the same probability for positive and negative steps. The pair
of bars in the middle of each plot display the mean values of the positive residuals and of the absolute value of the negative residuals. These mean values
should be consistent within statistical fluctuations. The range of statistical fluctuations is given by the error bars. Additionally, a reference value (red
horizontal line) is given. When the residuals are Gaussian distributed, the mean values should both be consistent with this reference value. The last pair
of bars in each plot display the mean values of the squared positive residuals and of the squared negative residuals, together with their respective 3� error
bars and the reference value for a Gaussian distribution (blue horizontal line). The squaring emphasizes outliers.



random numbers, as can easily be verified for example by

highly significant correlation coefficients between the squared

weighted residuals and, for example, �2(Io). In 127 analysed

highlighted data sets published in IUCrData, 28 (22%) showed

a corresponding large correlation coefficient with significance

larger than three and the average significance of the correla-

tion coefficient cc[�2, �2(Io)] for all 127 data sets was 3.21 (data

not published). The weighting scheme may play an important

role in this.

Table 2 shows that aGoF � 1 for reference data sets 2 and 4

(and 3_filter), i.e. overfitting applies in these sets. This is

attributed to too-large standard deviations and confirmed by

the mean values of the (squared) positive and negative resi-

duals: the mean values h��i and h�2
�i all remain below the

reference value in reference data set 4 [see Table 2 and

Figs. 4(b), 4(d) and 4( f)]. A similar, but not as distinct,

tendency is visible in data set 2, where h�+i is in accordance

with the reference value despite known low-energy contam-

ination. It should be larger than the reference value for the

contaminated data set. After correction and for the filtered

data set, the mean values h��i are in accordance with their

reference values, but there are systematic errors remaining in

all data sets, i.e. the resulting mean values should be larger

than the reference value [see Table 2 and Figs. 4(a), 4(c)

and 4(e)].

The aGoF shows comparably large values for all reference

data sets 5 (5_uncorr, 5_corr and 5_filter). This is a hint of

unidentified strong systematic errors in this data set. One

possible systematic error leading to high values of the aGoF is

�(Io) values that are too small. Underestimation of �(Io) leads

in some very distinct cases to non-uniform BayCoN plots

[�2, �(Io)], which is not the case for data set 5 {�2[�2, �(Io)] =

109.88, 118.59 and 120.46 for uncorrected, corrected and

filtered data, respectively}. Values of �(Io) that are much too

small are thus excluded as a possible cause for the large aGoF

in all members of data set 5. There are, however, two very

large outliers in the scatter plots Io versus Ic for the strongest

reflections in these data sets that might point to extinction,

detector saturation or partial shadowing. These two reflections

show the largest � values, which may significantly increase the

aGoF.

6. Discussion

The expected specific features can now be categorized into

‘robust’ and ‘fragile’ traces of low-energy contamination. The

robust ones also show up in the presence of other systematic

errors, while the fragile ones are easily obstructed or

counteracted by other systematic errors.

6.1. Expected features after 3k correction visible in almost all
sets despite the presence of other errors

(i) Shift to lower values of the significance of deviation of

the residuals from zero, h�i/�(h�i).

(ii) Total reduction of h�2
i, leading to lower agreement

factors and GoF (exceptions are 2_uncorr and 2_corr). Note

that this is expected due to the new degree of freedom

introduced; i.e. a reduction is per se not a confirmation of the

correctness of the procedure.

(iii) Reduction in h�2
þi (not statistically significant).

(iv) Increase in h�2
�i (significant for data sets 1, 2 and 3 when

comparing uncorrected and corrected data sets).

6.2. Expected, but not visible, features after 3k correction

(i) Reduction in the number of positive residuals in the

corrected data sets compared with the contaminated data sets.

In all data sets except 4_corr the number of positive residuals

increases after correction, as can be seen from the increased

significance of the positive excess residuals (#�+ � #��)/

(Nobs)
1/2.

(ii) Reduction of aGoF = [h�2
i/�h�2(Io)i]1/2. For data sets 1,

2 and 4, aGoF increases after correction. This reflects an

increase in the mean unweighted residuals h�2
i compared

with h�2(Io)i. As an example, the ratios h�2
i/h�2(Io)i prior to

and after correction for data set 1 are 1.02 (1_uncorr) and 1.19

(1_corr), for data set 2 they are 0.78 (2_uncorr) and 0.92

(2_corr), and for data set 4 they are 0.60 (4_uncorr) and 0.71

(4_corr). When comparing the weighted agreement factors for

two sets there is the problem that not only h�2
i changes but

also h�2(Io)i, due to changing weighting scheme parameters.

The weighted agreement factor just gives the total change.

Looking at the aGoF, the total change can be broken down to

a change in the mean of unweighted squared residuals and the

mean of squared standard deviations of the observed inten-

sities. As an example, in data set 1_uncorr h�2
i = 2.89 � 104

and h�2(Io)i = 2.83 � 104, and in 1_corr h�2
i = 2.53 � 104 and

h�2(Io)i = 2.14 � 104, i.e. the correction procedure leads to a

substantial decrease in h�2
i to 88% of the starting value,

although, due to changes in the weighting scheme parameters,

h�2(Io)i decreases even more to 76% of the starting value. In

total that leads to an increase in the aGoF and to a slight

decrease in the GoF. Application of the weighting scheme

actually hampers direct comparison between the agreement

factors and GoF values from different refinements.

The increase in aGoF after correction is interpreted as a loss

of error compensation after the application of the low-energy

correction, as the aGoF would clearly decrease otherwise. As

just mentioned, this increase is related to changes in the

weighting scheme parameters, which would all be zero in the

case of correct s.u.(Io). In data set 1_uncorr b = 2.3981 and in

data set 1_corr b = 1.9011, i.e. both are large and indicate by

and in themselves the presence of systematic errors. It is again

an ‘elephant in the room’ situation when low-energy

contamination correction leads to a comparatively small

decrease in the weighting scheme parameter from b = 2.3981

to b = 1.9011, but the question of why b is still that large is not

asked at all.

6.3. General and specific signs for the presence of other or
remaining systematic errors

Many specific signs of systematic errors for the individual

data sets have already been discussed above. In this section an
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attempt is made to summarize the most important systematic

errors. Signs of errors that are not specific to low-energy

contamination are emphasized. These may interfere with the

correction procedures. For an overview see Table 3.

(i) Clear signs of overfitting by too-large �(Io) were

observed in data sets 2_uncorr, 2_corr, 3_filter, 4_uncorr,

4_corr and 4_filter.

(ii) Signs of extinction (or detector saturation or

shadowing) were found for reference data sets 5_uncorr,

5_corr and 5_filter in the corresponding scatter pots of Io

versus Ic.

(iii) Remaining outliers are found in all NPPs before and

after correction, as well as for the filtered data sets.

(iv) The necessity of invoking a weighting scheme already

implies a systematic error with the s.u. values or the model or

both. A weighting scheme was applied in all data sets, in some

cases with weighting scheme value b > 1 and up to b = 6.05 (for

data set 3_uncorr).

(v) Large agreement factors were found prior to and after

3� correction, as well as for the filtered data sets, e.g. for

reference data sets 1, 2 and 4. In data set 1, the agreement

factor is just lowered from 12.65% to a still quite high value of

11.13%. For the filtered data it remains at a high level of

wR(F 2) = 11.05%, and similarly for data sets 2 and 4. This may

be a hint that other systematic errors are present in these sets.

Data sets 1_uncorr, 1_corr and 1_filter show the most signifi-

cant 2� contamination signals (with significances 1.83, 1.35 and

1.39, respectively), although these are all less significant than

three standard deviations. This may point either to weak

additional 2� contamination or to other errors, which increase

the 2� contamination signal and may influence the correction

procedure by adding a residual �2� to those reflections which

are simultaneously multiples of two and of three. This leads to

overcorrection, which is visible in a significantly increased

contribution of m3 to the 10% (and 20%) most negative resi-

duals in the corresponding histograms of data set 1_corr. It is

shown below that, for example, disorder can artificially

increase a 2� contamination signal.

Another cause of quite large weighted agreement factors is

again too-large �(Io) (Henn, 2019).3 Other causes could also

still be at work. Overfitting by too-large �(Io) was found with

the help of the aGoF for all reference data sets 2 and 4 as

mentioned above in point (i), but not for reference data set 1.

For data set 4, as will be discussed below, there may addi-

tionally be a slight disorder. This can be detected with the help

of the fractal dimension plot, where unmodelled disorder

appears as a shoulder in the positive residual density [see e.g.

Dittrich et al. (2018) and Meindl & Henn (2010)].

Each of these other unknown systematic errors may inter-

fere with the correction procedure and lead to over-

compensation, undercompensation or partial error

compensation of other errors rather than low-energy

contamination. In this case, the decrease in wR(F 2) after

correction can be attributed only partially to the correction of

low-energy contamination.

In order to evaluate the ‘costs’ of applying a weighting

scheme in terms of the weighted agreement factor, one may

compare the actual agreement factor with the s.u.(Io)-based

predicted agreement factor (Henn & Schönleber, 2013; Henn
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Table 3
Overview of systematic errors in data sets 1–5.

An � in an entry indicates that traces of this systematic error were found in the data set.

Model Disorder Extinction
Significant
shift† of � h�2

�i < �2‡
Over-
fitting§

Large
wR(F 2) Io > Ic

Large
aGoF

sin	/�
dependence}
of �

sin	/�
dependence††
of �2

Over-
compen-
sation‡‡

Under-
compen-
sation§§

Broken
symmetry}}
in �

1_uncorr � � � �

1_corr � � � �

1_filter � � �

2_uncorr � � � �

2_corr � � � �

2_filter � � � �

3_uncorr � � � � � �

3_corr � � � � � � � �

3_filter � � � � �

4_uncorr � � � � � � � � �

4_corr � � � � � � � � �

4_filter � � � � � � � �

5_uncorr � � � � �

5_corr � � � � �

5_filter � � � � �

† Compare with column 5 in Table 1. ‡ Compare with column 12 in Table 1. § As given by aGoF � 1, compare with column 5 in Table 1. } As given by �2(�, sin	/�) > 149,
compare with the supporting information. †† As given by �2(�2, sin	/�) > 149. ‡‡ As shown by histograms showing the 10 or 20% most negative residuals with a signicantly larger
number of m3 after correction. Compare with plots in the supporting information. §§ As shown by histograms showing the 10 or 20% most positive residuals with a signicantly larger
number of m3 after correction. Compare with plots in the supporting information. }} As given by simultaneously showing �2(�, Ic) > 149, �2[�, �(Io)] > 149, �2[�, Ic/�(Io)] > 149, �2(�,
sin	/�) > 149, compare with the supporting information.

3 This may appear counterintuitive at first glance, but when the weighted
agreement factor is written in the form wR(F 2) = {h�2

i/h[Io/�(Io)]2
i}1/2 it is seen

that the numerator has an order of magnitude of one, whereas the
denominator has an order of magnitude of 10 or 100. Application of a
weighting scheme lowers both, but the denominator, the mean squared
significance, is lowered faster, as the weighting scheme limits in particular the
largest value for the significance, such that the resulting agreement factors
tend to increase. A detailed example of this is discussed in the cited literature.



& Meindl, 2014a; Henn, 2019). The predicted agreement

factor based on s.u.(Io) is the value that could be attained if

there are no systematic errors at all, i.e. the s.u.(Io) are

assumed to be adequate and GoF = 1.00. For data set

1_uncorr, wRðF2Þ
pred
s:u: = 1.32%. This exemplifies the large costs

for the application of a weighting scheme in reference data set

1. The s.u.-based predicted agreement factors for reference

data sets 2_uncorr, 3_uncorr, 4_uncorr and 5_uncorr are 1.11,

1.72, 2.73 and 1.33%, respectively. Comparing these values

with the weighted agreement factors in Table 2, it is seen that

there is a large gap between the potential of the data sets and

their actual values in the agreement factors, similar to the

R-factor gap in macromolecular crystallography (Holton et al.,

2014). Either it is not known how to determine the s.u.(Io)

correctly, such that they nearly always need a correction via

application of a weighting scheme, or the remaining errors in

all these data sets are much larger than the error from low-

energy contamination. Both cases are problematic.

(vi) The scatter plots of observed versus calculated inten-

sities show unexpected and unexplained features. For

example, in reference data set 4, the strong intensities have a

distinct tendency to be larger than the corresponding calcu-

lated intensities prior to and after the correction process, as

well as for the filtered data set. A similar, but not as distinct,

pattern is observed in reference data set 3, which shows

modelled disorder. It is not clear how this interferes with the

correction procedure. However, it is clear that it might inter-

fere with the correction procedure as (a) it clearly violates the

assumption that the unaffected intensity can be replaced by a

calculated intensity that is unbiased on the true intensity and

(b) it adds to � such that this may again influence the value of

k3�, in particular when many m3 are affected by the error in a

systematic way or when some of the m3 reflections are affected

particularly strongly. The underlying cause for this error is also

not clear. It may be connected to undetected or only partially

modelled disorder.

A single large outlier for the strongest intensity is visible in

1_uncorr, 1_corr and 1_filter.

(vii) There is possible slight disorder in data sets 3 and 4.

For data set 3 a disorder was modelled, but it may not be

modelled completely. With weighting scheme parameters as

large as b = 6.05, 4.60 and 3.62 for data sets 3_uncorr, 3_corr

and 3_filter, respectively, these remain very high.

(viii) All data sets show a distinct resolution-dependent

error, which is indicated by the BayCoN plots ð�; sin 	=�Þ and

ð�2; sin 	=�Þ and the corresponding �2 values. In each set the

respective �2ð�2; sin 	=�Þ value is the largest from all �2(�2, X),

X 2 fIc; �ðIoÞ; Ic=�ðIoÞ; sin 	=�g. This may indicate a common

problem with the data acquisition or data processing steps.

This observation is important, as it was found that, among the

analysed �2(�2, Y) values for the 127 data sets, those for

Y ¼ sin 	=� were the largest. The average values for the 127

data sets were h�2ð�2; sin 	=�Þi = 297.48, h�2[�2, �(Io)]i =

135.62 and h�2(�2, Ic)i = 221.35. There seems to be a wide-

spread unknown resolution-dependent systematic error

present in the overwhelming majority of these 127 analysed

data sets. None of the data sets 1–5 shows a �2 value smaller

than 150 for the BayCoN plots ð�; sin 	=�Þ. For all members of

reference data set 4 (4_uncorr, 4_corr and 4_filtered) these

values are even above 1000. The corresponding values for all

members of reference data set 5 are between 451.90

(5_uncorr) and 455.40 (5_corr), which are also much higher

than the threshold value of 149 (Henn & Meindl, 2014b). This

disproves the uniformity of the corresponding plots and

establishes a systematic (nonlinear) connection between the

residuals (and squared residuals) and the resolution.

(ix) All members of reference data sets 4 (4_uncorr, 4_corr

and 4_filter) and 5 (5_uncorr, 5_corr, 5_filter) show much

larger �2 values for the (�, X) standard BayCoN plots

compared with the (�2, X) standard plots,

X 2 fIc; �ðIoÞ; Ic=�ðIoÞ; sin 	=�g. From the large �2 values for

the (�, X) plots, those for ð�; sin 	=�Þ are by far the largest.

This might suggest that a primary resolution-dependent

systematic error induces as a secondary effect the non-

uniformity of the remaining BayCoN (�2, Y), Y 2 {Ic, �(Io),

Ic/�(Io)}, plots.

Data set 4 is of particular interest as it shows, simulta-

neously, overfitting by too-large �(Io) and large �2(�, X)

values. Too-large �(Io) lead to artificially uniform BayCoN

plots. Nevertheless, the �2(�, X) values are still all much larger

than 149. Data set 4 also has by far the most reflections. The �2

statistics are more sensitive the larger the number of reflec-

tions. As it has already been pointed out that all data sets show

a resolution-dependent error, it could be the case that this

error just becomes particularly visible due to the large number

of reflections in data set 4. The resolution-dependent error

seems to be of great importance as it appears in all data sets. It

is therefore described briefly in the next section.

6.4. Brief characterization of the resolution dependence

In order to describe the resolution dependence of the

residuals, two types of plots are chosen (depicted in Fig. 5) and

briefly discussed for the example reference data set 4. The first

type of plot shows the moving averages of the residuals for

different averaging windows, sorted by resolution. In all three

cases (4_uncorr, 4_corr and 4_filter) the same pattern appears:

in the beginning there is very steep decrease from a positive

region to a negative region, followed by a steady and slow

increase again. The overall form is reminiscent of a spoon.

This spoon-like pattern, or a similar pattern starting from the

negative region with a steep increase to positive values and a

slow decrease again to negative values (inverse spoon), was

observed frequently in 127 data sets from IUCrData (not

shown). It seems to point to a common error. The corre-

sponding BayCoN plot ð�; sin 	=�Þ also shows a typical

pattern, in which the weighted residuals are highly non-

uniformly distributed. For reference data set 4_uncorr, the

residuals are strongly polarized towards large positive values

for the lowest-resolution shell, as indicated by the high

concentration of points in the lower right-hand corner of the

plot [Fig. 5(b)]. For slightly larger resolution values, the

polarization of the residuals reverses to negative values and

from there the highest density of points moves slowly again to
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the top right-hand side for increasing resolution. This pattern

is virtually the same for all members of data set 4, i.e. it is in

essence not affected by the correction procedure or filtering.

Reference data sets 2, 3 and 5 show similar patterns, and

reference data set 1 shows the pattern of the inverse spoon.

This common phenomenon could be caused by a slight

nonlinearity in the detector response to a large dynamic range,

but this is speculative at this point and deserves to be inves-

tigated in greater detail. The widespread resolution depen-

dence might explain why empirical correction methods based

on resolution-dependent scale factors seem to be able to

reduce the agreement factors (Niepötter et al., 2015), although

it would be better to learn how this error could be avoided in

the first place.

7. Other causes of low-energy contamination signals

In order to have a unique signal of low-energy contamination,

it must be shown that the metrics used to detect low-energy

contamination do not lead to ‘false positive’ results, or, if false

positive results exist, the circumstances for false positive

results need to be characterized. The question is whether there
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Figure 5
Data set 4. The left-hand column shows moving averages of the residuals sorted in ascending order of resolution, and the right-hand column shows the
corresponding BayCoN plots ð�; sin 	=�Þ. The moving averages are calculated for windows of 50 (blue), 100 (orange) and 500 (green) consecutive
reflections for (a) the uncorrected data set, (c) the corrected data set and (e) the filtered data set. They all show the characteristic ‘spoon’ form of initially
quickly decreasing and then slowly increasing mean values, which was also found frequently in the 127 data sets analysed earlier. The corresponding
BayCoN plots are also virtually unaffected by the correction procedures. The �2ð�; sin 	=�Þ values are (b) 1208.02, (d) 1265.37 and ( f ) 1023.96, all of
which are far larger than the threshold value of 149.



are circumstances that lead to a significant increase in mx (x 2

2, 3, 6) to rare events |�| > 3 without low-energy contamina-

tion.

In the book Crystal Structure Refinement: A Crystal-

lographer’s Guide to SHELXL edited by Peter Müller (2006),

examples for disordered and twinned structures are given and

discussed in detail. The SHELX input files are given for each

individual step in modelling of disorder and twinning, starting

from scratch, where the problem is usually not yet known, and

leading to the final models in which disorder and twinning are

modelled. This provides a great opportunity to use examples

known by a broad audience and processed by renowned

specialists.

7.1. Twinning

From these examples, in the first of two discussed cases of

twinning by reticular merohedry, a distinct signal for 3�
contamination appears. The detailed numbers are as follows:

93 reflections were multiples of three, m3, corresponding to

10.95% of all reflections. The m3 contributed seven rare events

|�| > 3 from a total of 14, i.e. 50%. The deviation of the given

fraction from the expected fraction corresponds to a 2� event.

A polarization of the residuals with respect to m3 is also visible

in the corresponding histogram. After modelling twinning in

data set ret1-03, the 3� signal is insignificant: the m3 contribute

only two rare events |�| > 3 from a total of 12 rare events, i.e.

16.67%. This is less than one standard deviation from the

expected 10.95%.

Twinning by reticular merohedry may therefore lead to an

increase in the significance of 3� signals that decreases again

after modelling of twinning. In the second example for twin-

ning by reticular merohedry, m2, m3 and m6 all contribute to

the rare events as expected, prior to and after modelling of

twinning.

7.2. Disorder

In the section about disorder, the example of a TiIII

compound is discussed. The initial model Ti-01 leads to a 2�
signal with significance 7.65, i.e. high significance. Modelling of

the disorder in Ti-07 reduces the significance of the 2� signal

to 0.34, i.e. it is insignificant. In greater detail, the numbers are

as follows. In Ti-01, 1156 reflections (27.03%) are multiples of

two, m2. These contribute 655 rare events |�| > 3 to a total of

1699 rare events (38.55%). The difference is 11.52 percentage

points, which is equivalent to a 7.65� event.

Disorder in the discussed example resulted in a significant

2� signal which vanished after modelling of disorder.

A particularly interesting example of disorder is given by

the solvent molecule toluene, where the second position is

twisted by about 180�. File tol-01 shows a 2� signal with

significance 2.01 that becomes more instead of less significant

after modelling of disorder (significance 3.44) in tol-05.

Among the examples of disorder discussed here (Ga, Ti,

toluene and benzene), the disordered toluene structure is the

only one that also shows a fractal dimension plot with large

shoulders after modelling of disorder. This points to another,

undetected, systematic error in this data set, such as yet

another disorder. In all other cases of disorder discussed, the

fractal dimension plot is parabolic in shape after modelling of

disorder.

7.3. Inadequate standard deviations of the observed inten-
sities

Finally, inadequate standard deviations of the observed

intensities may also lead to false positive and false negative

low-energy contamination signals. This can be deduced easily

by just thinking about what happens when all standard

deviations are too small or too large by the same factor. When

they are all massively too large, this will eventually lead to

zero rare events, such that the multiples of two, three or six are

also not able to contribute to rare events. As a possible

example for this, the case of pseudo-merohedic twinning in

data set pmero-02 shows only one rare event from multiples of

two and none at all from multiples of three or six. The

percentage of multiples of two with 273 reflections is 15.25%,

but all m2 contribute only one rare event corresponding to

1.92% of all rare events. So 15.25% of reflections contribute

1.92% of rare events. There are further hints of too-large

�(Io) in this data set, such as h|��|i = 0.65 � 0.06 (3�) being

significantly too small compared with the reference value

[(2/�)�]1/2 = 0.73, and similarly for h�2
�i = 0.74 � 0.17, which is

also significantly smaller then its reference value � = 0.92.

For too-small average values one reason could be too-large

standard deviations. Another reason could be that the mean

value of the residuals is significantly shifted to positive values,

which is also the case in this data set: the shift of the mean of

residuals at h�i = 7.56�(h�i) is highly significant, as is the

excess number of positive residuals [(#�+ � #��)/(Nobs)
1/2 =

3.55]. It would require a much more detailed analysis to

(dis)prove inadequate standard deviations as the cause for a

substantially reduced signal of low-energy contamination that

may lead to false negative results, but this is out of the scope of

this work. Nevertheless, the above Gedankenexperiment of

having too-large standard deviations proves the relevance of

inadequate standard deviations.

The other extreme is when the �(Io) are much too small, as

this will lead to an abundance of rare events and in conse-

quence to small error bars as derived from Poisson statistics.

This would make even small deviations from the expected

value suddenly significant, although that significance would be

artificial. A fingerprint trace of this error could be that all

signals m2, m3 and m6 are simultaneously (significantly) large.

There was no example of this case in the discussed data sets.

The whole question of how flawed �(Io) influence low-

energy detection (and the detection of other systematic

errors) is a big topic that definitely needs more attention.

For now, it can be accepted that it is plausible that at least

grossly flawed �(Io) may influence the detection of low-energy

contamination adversely by leading to false positive and false

negative results.
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8. Other causes for significant positive shifts of the
mean value of the residuals

As it is expected that low-energy contamination will be

accompanied by an increased frequency of positive residuals

and stronger positive residuals and by a shift of the mean

value of the residuals to positive values, and as disorder,

twinning and flawed standard deviations may lead to false

positive low-energy contamination signals as given by signifi-

cantly increased percentages of m2 and m3 to rare events |�| >

3, it is worth asking how disorder and twinning affect the mean

value of the weighted residuals.

8.1. Twinning

Modelling of twinning shifts the mean value of the residuals

to lower values in all cases where initially a significant positive

shift was given. For the merohedric case, the shift is quite

substantial, from a highly significant 19.84 to an insignificant

�0.47, and similarly in the pseudo-merohedric case, where the

shift is from a highly significant 7.56 to an again insignificant

�0.78. In other cases, a substantial downward shift results in a

still significant value like for reticular case ret2, where the

initial very significant value (20.22) is still significant after

modelling of twinning (3.69). In the nonmerohedric case

nmero2 all the values are insignificant. Of particular interest is

the case of nonmerohedric twinning nmero1, where the shift is

from a significant 5.98 to an again significant but negative

�4.92. A similar, but not as distinct, tendency is found for the

significance of positive excess residuals, which are reduced

for the merohedric case from 9.88 to 2.64, for the pseudo-

merohedric case pmero from a significant 3.55 to an insignif-

icant �0.24, and for reticular twinning ret2 from a highly

significant 11.04 to a still significant 4.33. In the nonmer-

ohedric case nmero2 all values are again insignificant, whereas

in nmero1 the value for unmodelled twinning of �5.46 is

significantly negative (significant excess number of negative

residuals) and remains significantly negative at �5.67 after

modelling of twinning (Table 4).

8.2. Disorder

Table 5 gives the deviation of the mean value of the resi-

duals from zero for data sets with unmodelled and modelled

disorder, as well as the significance of the number of positive

excess residuals for unmodelled and modelled disorder. h�i/
�(h�i) is shifted to significant positive values in all cases where

disorder is not modelled, and it is reduced in all cases except

toluene when disorder is taken into account in the model. In

the toluene data set there are still other significant systematic

errors present, as can be seen from the broad residual density

distribution (see the fractal dimension plots in the supporting

information). It is concluded that it is very likely that un-

modelled disorder easily leads to a positive shift in the mean

value of the residuals, in particular when it is not disorder

about special positions.

9. Validation of the results with other data

Macchi et al. (2011) discussed the problem of low-energy

contamination in the context of sealed tubes with multilayer

optics. Contaminated data sets were chosen and model

refinements were compared with data sets with a thin alumi-

nium filter to block low-energy radiation.

Fig. 6 shows a number of plots for a data set contaminated

with low-energy radiation (data set IB) and the corresponding

filtered data set IA. The percentage contributions of m2, m3

and m6 to the rare events are all increased compared with the

expected contribution [Fig. 6(b)], but none is significant

according to a 3� criterion (the significance of the m2 signal is

1.11, that of m3 is 2.82 and that of m6 is 1.35). But this data set

was chosen because it is known to be contaminated from

observation of typical radial streaks in the reconstructed

diffraction images. The one-sided NPP [Fig. 6(h)] and h�2
þi =

1.32	 h�2
�i = 0.66 [compare with Fig. 6(d), right] indicate low-

energy contamination. The histogram of the number of m3 in

five different bins of weighted residuals � shows a peak for

research papers

J. Appl. Cryst. (2023). 56, 1200–1220 Slawomir Domagala et al. � Progress in low-energy contamination 1215

Table 4
Unrecognized twinning leads to a positive shift of (the mean value of) the
residuals in all cases except nonmerohedric twinning nmero2.

mero-02 mero-06 nmero1-02 nmero1-07

h�i/�(h�i) 19.84 �0.47 5.98 �4.92
(#�+ � #��)/

(Nobs)
1/2

9.88 2.64 �5.46 �5.67

nmero2-02 nmero2-03 pmero-02 pmero-03

h�i/�(h�i) �0.99 �0.53 7.56 �0.78
(#�+ � #��)/

(Nobs)
1/2

�2.37 �0.56 3.55 �0.24

ret1-02 ret1-03 ret2-02 ret2-09

h�i/�(h�i) 5.87 4.94 20.22 3.69
(#�+ � #��)/

(Nobs)
1/2

3.40 3.81 11.04 4.33

Table 5
Showing how modelling of disorder also leads to a reduction in the
significance of the deviation of residuals from zero in all cases except
disordered toluene, the only data set that also showed a broad residual
density distribution after modelling of disorder.

The number of positive excess residuals is reduced in all cases by modelling of
disorder.

Ga-01† Ga-06 benz-01‡ benz-04

h�i/�(h�i) 6.24 1.77 12.19 �3.03
(#�+ � #��)/(Nobs)

1/2 5.44 1.52 2.30 �2.52

Ti-01† Ti-07 Tol-01‡ Tol-05

h�i/�(h�i) 23.47 3.43 9.14 9.19
(#�+ � #��)/(Nobs)

1/2 15.67 1.54 5.14 4.21

† Disorder of two ethyl groups. ‡ Disorder of benzoic acid molecule on a twofold
axis. † Disorder of a TiIII cation. ‡ Disorder of a toluene solvent molecule about a
special position.
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Figure 6
Data sets IA (filter, left-hand column) and IB (no filter, right-hand column) from Macchi et al. (2011). All signs of 3� contamination vanish for the
filtered data set IA, as expected: (a) the 3� signal is insignificant, (c) the positive squared residuals are no longer on average much larger than the
negative ones, (e) the histogram of the number of m3 in different bins of the residuals is uniform and (g) the NPP still shows outliers, although it is not
one-sided any more. Panels (b), (d), ( f ) and (h) show the corresponding plots for IB. In panel (b) the initial 3� signal is just not significant despite proven
3� contamination in this set. Too-large �(Io) from a large weighting scheme parameter a = 0.10 prevent the signal from becoming significant (for more
information see text).



large positive residuals, which again confirms 3� contamina-

tion [Fig. 6( f)].

The balance sheet in Fig. 6(d) (middle) shows that the mean

values for positive and absolute negative residuals are both

below the expected value, which is interpreted as a sign of

�(Io) being generally too large in this data set. This finding

may not be surprising in view of the large weighting scheme

parameter a = 0.10, resulting in unweighted squared residuals

being on average less than half the mean squared standard

deviation, h�2
i = 0.47h�2

i, and a correspondingly low aGoF =

0.70, i.e. overfitting. However, GoF = 1.02 fails to indicate

overfitting. (Note that the weighting scheme is constructed

with the purpose of bringing the GoF close to one, so it does a

good job for that specific purpose, but this is in conflict with

the purpose of GoF to indicate systematic errors.)

The (too-)large standard deviations lead to a correspond-

ingly small number of rare events in this data set: in total there

are 13 rare events |�| > 3, four from m2, nine from m3 and two

from m6. Due to the small number of events, the corre-

sponding Poisson-based standard deviations are large, which

leads to an insignificant 3� signal, despite the large difference

between the expected (4.17%) and observed (69.23%)

contributions of m3 to |�| > 3. This data set is an example for

the further above-mentioned situation in which too-large

standard deviations suppress the significance of the low-

energy contamination signal. The corresponding filtered data

set IA does not show, as expected, any of the discussed signs of

3� contamination.

10. Relevance of low-energy contamination and yet
another means of detection

When searching for data sets with low-energy contamination,

one faces mainly two problems with the metrics: (i) The

standard uncertainties are questionable, in particular when

large weighting scheme parameters are employed. Too-large

standard uncertainties may artificially lead to an insignificant

contribution of e.g. m3 to all rare events. (ii) The chosen

criterion of using a 3� Poisson-based error bar as a threshold

value for detection of low-energy contamination may be too

rigid. Not even all reference data sets known to be contami-

nated by low-energy radiation exceeded this threshold value:

reference data set 5 showed a significance of only 2.14 for 3�
contamination, as can be seen from Table 2. Another problem

is with the interpretation of the metrics, as 3�-contamination

signals may also indicate other errors like twinning or disorder

as discussed above. One way of solving these problems with

the metrics is again to use the histograms of contributions

from m3 to the residuals, as used and discussed above.

Another way of quantifying this could be to look addi-

tionally at the ratio of expected and observed contributions of

m3 to rare events. If the observed ratio is distinctly larger than

one, e.g. larger than two, but insignificant by the 3� criterion, it

might be a good idea to investigate more deeply into this data

set. One way of deepening the investigation is to ask whether

there are hints of overestimated �(Io), which may artificially

make a 3� contamination signal insignificant.

As an example, in a pyrazoline study by Yoo & Koh (2021a),

the ratio of observed to expected contributions of m3 to rare

events is 8.37, while the significance based on Poisson statistics

is, with a value of 2.49, lower than 3�. There are multiple signs

of overestimated �(Io) in this data set, like aGoF = 0.77 < 1.0,

which are not further discussed here. This may be an example

of a data set with undetected 3� contamination due to too-

large �(Io) values. A similar situation arises with the data set

used by Ovalle et al. (2021), with a ratio of observed versus

expected contributions of m3 to rare events of 2.07, i.e. the

multiples of three contribute to the rare events twice as often

as expected. With only five rare events from multiples of three,

this signal remains insignificant by the 3� criterion. There are

again, however, hints of overestimated �(Io), as given e.g. by

aGoF = 0.62. Both mentioned data sets show one-sided NPPs

and further signs of low-energy contamination.

Going through all 94 data sets published by IUCrData in

2021, 23 data sets (24%) show a ratio of observed to expected

contributions of m3 to rare events larger than two. A list of the

affected data sets with the corresponding numbers and plots is

given in the supporting information. Among these data sets

are two that used Cu radiation, for which a 3� contamination

is not expected, as this is supposed to happen only with Mo

radiation in combination with mirror optics. Only one of the

94 data sets shows a significance of contributions of m3 to rare

events larger than three (Yoo & Koh, 2021b), a study of an

isoflavone. This is also the data set that shows the largest ratio

of 12.52 of observed to expected contributions of m3 to rare

events. This data set may be re-examined by the authors and

tested for low-energy contamination and other systematic

errors like disorder, twinning or phase transitions, which may

also lead to a low-energy contamination signal. Other data sets

that may profit from re-examination with respect to low-

energy contamination signals are a study of a cyclohexylidene

derivative from Sivapriya et al. (2021) (ratio of observed and

expected contributions of m3 to rare events 6.45, significance

based on Poisson statistics 2.67), a re-determination of barium

bis[tetrafluoridobromate(III)] from single-crystal diffraction

(measured with Cu radiation, which makes it unlikely to be

caused by 3� contamination, as this is expected only for Mo

radiation in combination with mirror optics) instead of a

powder diffraction experiment by Ivlev & Kraus (2021) (ratio

6.05, significance 2.89), and a study of a triphenylamine deri-

vative by Patel et al. (2021) (ratio 5.91, significance 2.88).

These findings again seem to suggest that a 3� Poisson

statistics based criterion for the detection of low-energy

contamination signals may be too rigid as serious signs of low-

energy contamination start appearing earlier, in this subset of

95 data sets at approximately 2.5�.

The examples discussed again stress the importance of the

correctness of the �(Io). As long as this problem is not solved

and weighting scheme parameters are used to disguise errors,

real and substantial progress in increasing overall data quality

and the accuracy of the models is prevented. Already the

detection of systematic errors is hampered.
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11. Open questions

The present work leads to general and specific questions that

need to be answered by the crystallographic community. The

specific questions are connected to low-energy contamination:

(i) What is the correct procedure when signals for 2� and 3�
contamination are simultaneously present?

(ii) What is the correct procedure when extinction is

present? Does the extinction correction need to be applied

first and only then low-energy contamination correction, or

the other way round?

(iii) What is the correct procedure when overfitting by too-

large �(Io) is present? The general problem here is that it may

not be obvious from the start that overfitting is present, as

overfitting by too-large �(Io) may be counteracted by other

systematic errors such that GoF and aGoF result in values very

close to one despite the presence of other errors.4 In the

present case overfitting was obvious from aGoF < 1 for the

affected data sets. But as systematic errors tend to increase the

unweighted residuals, such that h�2
i increases, this may result

in aGoF > 1 and overfitting may still be present, but

obstructed by other systematic errors. Overfitting can be

detected in these cases only after removal of one or more

systematic errors, all of which increase h�2
i. Another problem

is that empirical correction procedures employing too-large

�(Io) may lead to undercompensation. This point touches on

the more general topic that there is still no commonly

accepted procedure for testing the �(Io), which would also be

important for the validity of the least-squares procedure.

The more general questions are:

(i) How does one go about correction procedures in

general? There is no common guideline for this. It is just tacitly

assumed that, if an error occurs like a low-energy contam-

ination, it can be corrected for. But the present work raises

some doubts: systematic errors may interact and lead to over-

or undercompensation, as well as to incomplete correction of

other errors rather than the intended one. In practice this

means that some correction procedures may introduce new

and more systematic errors than they can possibly remove. It is

not yet common practice to investigate the necessary

requirements for a valid and helpful correction procedure. The

authors’ personal view is that this lack is due to insufficient

instruments for error analysis and error description in

diffraction data, but it is still a good idea to monitor the

circumstances and requirements to be able to discriminate

between cases in which the systematic error is decreased by a

correction procedure and cases in which it is not. Monitoring

only wR(F 2) and the GoF is not sufficient for this. They may

both be affected by flawed �(Io). Monitoring errors in the

bonding distances would be helpful if the total error were

calculated and not just the statistical error. The total error is

composed of a systematic error and a statistical error, but to

this day, the systematic error in the model parameter values is

rarely evaluated. Due to high redundancies, the systematic

error may be the dominant error nowadays, even in small-

molecule crystallography. It is clear that e.g. 2� contamination

signals, extinction, detector saturation, or too-small or too-

large �(Io) all hamper or even prevent the correct functioning

of a 3� correction procedure, yet in practical applications this

is often not monitored.

(ii) When the correction of a systematic error reduces

wR(F 2) from 12.65 to 11.13%, like in reference data set 1, but

the expected agreement factor for absence of all systematic

errors (including those that lead to non-zero weighting scheme

parameters) wR(F 2)pred = 1.32% is one order of magnitude

smaller, should this not ring alarm bells? Is it really helpful to

perform a small correction reducing wR(F 2) by 1.52 percen-

tage points and disregard the causes of and potential inter-

actions with the remaining errors that could reduce the

weighted agreement factor by 11.33 percentage points?

(iii) Why are weighting scheme parameters like b > 1

commonly accepted without even discussing the possible

causes? Either the s.u. values are grossly wrong or there is a

problem with the model; in either case, action is required. The

first important step could be to identify the error as one in the

model or in the s.u. values. But none of these problems are

addressed. This is again a common problem, as was pointed

out earlier [see, for example, the discussion on pages 140 and

141 in the article by Henn (2019)].

For low-energy contamination it seems to be important

always to monitor 2� and 3� contamination together prior to

and after the correction procedure. Histograms of multiples in

bins of residuals may be helpful for diagnostic purposes and

can reveal overcompensation processes like in reference data

set 1, or processes in which 2� contamination becomes more

significant only after 3� correction like in reference data set 2.

12. Summary and concluding remarks

A number of new data quality descriptors have been intro-

duced to tackle the problem of low-energy contamination.

Among these are the significance of the deviation of the

residuals from zero, the separate mean values of positive and

negative residuals with their reference values and error bars,

the separate mean values of the squared positive and negative

residual values with their reference values and error bars, and

the significance of the low-energy contamination signals based

on Poisson statistics, together with histograms of the multiples

in bins of the weighted residuals and squared weighted resi-

duals.

A priori expectations about traces of low-energy contam-

ination in the fitted data have been formulated and compared

with the experimental findings. Some of the expected features

were found consistently in the affected data sets, some not. In

this case it is assumed that the expected features were

obstructed by other systematic errors. This detailed compar-

ison facilitated discrimination between robust and ‘fragile’

signs of low-energy contamination, which are easily obstructed

or even reversed by other systematic errors. The concept of

primary and secondary effects was applied to the question of
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4 For example, reference data sets 2_uncorr and 2_corr both show aGoF < 1,
whereas 2_filter shows aGoF = 1.00. As there are, however, remaining
systematic errors in data set 2_filter, it must be concluded that overfitting is
also present in reference data set 2_filter despite aGoF = 1.00.



whether low values in h|��|i and h�2
�i are a sign of too-large

standard deviations (primary cause) or an effect of the shift of

the mean values of the residuals to a positive value (secondary

cause). The origin of the positive shift of the mean value of the

residuals in all data sets 1–5 remains unclear. It is most likely

that many different systematic errors (disorder could be one

of these) lead to positive shifts in the residuals. It is important

to investigate this, as many data sets show a significant positive

shift of the mean value of the weighted residuals.

In the view of the present authors, a detailed list of expected

effects for a given systematic error on positive and negative

weighted residuals, as done here for low-energy contamina-

tion, should be compiled for every relevant systematic error.

This is invaluable for discriminating between robust and

fragile signs and for learning how systematic errors are

connected and how they affect each other. This diagnostic

procedure will be very helpful in identifying and removing

systematic errors at a later stage, but diagnosis is prior to the

cure and the art of diagnosing systematic errors seems not to

be well developed yet in crystallography when, as an example,

weighting scheme parameters like b > 6 are left unmentioned,

undiscussed and undisputed. The present work aims to

contribute to the development of diagnostic standards and

protocols. For all metrics used to describe the fit quality and

systematic errors, it should be established under which

circumstances they are applicable [to start with the simplest:

are wR(F 2) and the GoF applicable in cases of flawed standard

deviations?] and when they are not, and how to monitor these

circumstances. This question is related to the question of false

positive and false negative results, which should be discussed

for all metrics as well (as an example: too-large standard

deviations may lead to a low GoF value, despite the presence

of systematic errors), and to error compensation processes. It

would also be helpful to discuss the nature of the appearance

of systematic errors in terms of whether they are primary or

secondary. If they are secondary, the primary error may still be

unknown and a search for suitable candidates may follow. The

reduced mean values of negative residuals are an example

here: a primary error could be that the standard deviations are

too large, leading to overall reduced residuals, which are then

increased again by the systematic error of low-energy

contamination only for the positive residuals. A secondary

effect would be that the negative residuals are just reduced,

due to a residual distribution that is, on average, shifted to

positive values as a whole, leading to a large positive signifi-

cance of the mean value of the residuals, which was found in

some of the data sets as well. We have mentioned that primary

errors leading to positive shifts in the residuals are low-energy

contamination, disorder and twinning, but there may be many

more.

The present work needs to be seen within a much wider

framework than just low-energy contamination, as it touches

on some important questions which are relevant for all

correction procedures, including those at the data processing

level and for the treatment of systematic errors in general. The

authors’ personal view is that it is important to discuss the

appearance of systematic errors in as much detail as has been

done here, by breaking it down into such simple questions as

how a specific systematic error affects the NPP, the separate

positive and negative mean values of the residuals, the mean

values of positive and negative squared residuals, the signifi-

cance of the deviation of the mean value of the residuals from

zero and so on. Analysing systematic errors in such great

detail leads to a steep increase in knowledge of systematic

errors, and in the long run will help to improve experiments in

terms of cost, precision and accuracy. Therefore, what this

needs is to put systematic errors, and their metrics, appearance

and interactions, at the centre of attention. This will help to

clarify under which circumstances large weighting scheme

factors appear, in which cases these are due to flawed s.u.(Io)

and in which cases the model is flawed, what kind of errors

lead to Io > Ic in the corresponding scatter plots, and why there

is an all-pervasive systematic error with respect to the reso-

lution in many published data sets, to name just a few. Many

insights gained in this context may help to improve not only

standard experiments but also high-resolution and macro-

molecular experiments, and may be at least partially trans-

ferable to neutron and even to electron diffraction

experiments.

Other questions are: How do systematic errors interfere

with each other? Which other systematic errors need to be

excluded in order to have a reasonable empirical correction

procedure that does not account for those other errors? When

do correction procedures reduce the total number of

systematic errors and under which circumstances are these

unintentionally increased, despite e.g. lower agreement factors

and lower GoF values? What are the adequate metrics to

quantify the total number of systematic errors in a given data

set? These are also needed to quantify progress. Metrics like

GoF and wR(F 2) are problematic as they fail when too-large

(or too-small) �(Io) are involved. Their failure to serve as

objective metrics may not be obvious. A lower value of both

metrics after application of a correction procedure may be

attributed to partial correction of other remaining errors. This

leads to the question: When is a reduction in the agreement

factor or in the GoF correctly solely attributed to a correction

procedure, and under which circumstances is this invalid? This

question goes rather deep and cannot be answered fully here.

It is obvious that some sort of assessment of the remaining

systematic errors and their interaction with the correction

procedure is needed, but this is rarely done. It would also be

helpful to know more about the hierarchy of errors, i.e. about

the level at which the errors appear (data acquisition, data

processing, model refinement). From the appearance of a

similar resolution-dependent error in all reference data sets

studied here (and in many others from other authors), it seems

to be a plausible hypothesis that this error appears at a more

fundamental stage such as the data acquisition or data

processing steps. How can this be verified or falsified?

Our closing questions are: Can the indicators for low-energy

contamination be improved further? When will crystal-

lographic diffraction experiments finally be equipped with

reliable standard uncertainties for the observed intensities?

When will crystallographers at least start to discriminate

research papers

J. Appl. Cryst. (2023). 56, 1200–1220 Slawomir Domagala et al. � Progress in low-energy contamination 1219



between the case where systematic errors are in the s.u. values,

which makes some form of correction procedure necessary

like the application of a weighting scheme, and the case where

the s.u. values are adequate and the resulting differences are

due to other model errors. As the s.u. values are entering the

data quality evaluation process, for example in the weighted

agreement factor and the GoF, this distinction would be

essential for progress in the field of data quality assessment

and improvement.

13. Related literature

The authors of additional data sets cited in the supporting

information are as follows: Abou et al. (2021); Castaldi et al.

(2021); El-Hiti et al. (2021); Ha (2021a,b,c,d,e); Hu et al.

(2021); Meenatchi et al. (2021); Pacifico & Stoeckli-Evans

(2021); Sathya et al. (2021); Su et al. (2021); Sung (2021);

Vinotha et al. (2021); Yaffa et al. (2021); Yang & Long (2021).
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