
computer programs

J. Appl. Cryst. (2023). 56, 1295–1303 https://doi.org/10.1107/S1600576723005319 1295

Received 24 February 2023

Accepted 14 June 2023

Edited by J. Ilavsky, Argonne National

Laboratory, USA

Keywords: X-ray scattering; fiber diffraction;

hierarchical modeling; D+ software; structure

factors; polydispersity; orientations.

Upgrade of D+ software for hierarchical modeling
of X-ray scattering data from complex structures in
solution, fibers and single orientations

Eytan Balken,a Itai Ben-Nun,a Amos Fellig,a Daniel Khaykelsonb and Uri Raviva,c*

aInstitute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 9190401, Jerusalem,

Israel, bDepartment of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel,

and cCenter for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat

Ram 9190401, Jerusalem, Israel. *Correspondence e-mail: uri.raviv@mail.huji.ac.il

This article presents an upgrade of the D+ software [Ginsburg et al. (2019). J.

Appl. Cryst. 52, 219–242], expanding its hierarchical solution X-ray scattering

modeling capabilities for fiber diffraction and single crystallographic orienta-

tions. This upgrade was carried out using the reciprocal grid algorithm [Ginsburg

et al. (2016). J. Chem. Inf. Model. 56, 1518–1527], providing D+ its

computational strength. Furthermore, the extensive modifications made to the

Python API of D+ are described, broadening the X-ray analysis performed with

D+ to account for the effects of the instrument-resolution function and

polydispersity. In addition, structure-factor and radial-distribution-function

modules were added, taking into account the effects of thermal fluctuations and

intermolecular interactions. Finally, numerical examples demonstrate the usage

and potential of the added features.

1. Introduction

X-ray scattering is an important tool for determining mol-

ecular structures and intermolecular interactions. In an X-ray

scattering experiment, the scattering intensity, I, is measured

as a function of the scattering vector, q, given by q =

(qx, qy, qz) = (q, �q, �q), in Cartesian and spherical coordi-

nates, respectively. The scattering intensity is the square of the

scattering amplitude, F, given by

F qð Þ ¼ �r0

Z
�� rð Þ expðiq � rÞ dr; ð1Þ

where r is the position vector in real space; ��(r) is the

electron-density contrast of the scattering particles, with

respect to the medium, as a function of r; and r0 =

2.82 � 10�5 Å is the Thomson scattering length (Als-Nielsen

& McMorrow, 2011). In solution, an orientation average over

the reciprocal-space solid angle, �q,

I qð Þ ¼ I qð Þ
� �

�q
¼

1

4�

Z
�q

F qð Þ
�� ��2 d�q; ð2Þ

should be computed. The term d�q ¼ sin �q d�qd�q, where �q

and �q are the reciprocal (q)-space polar and azimuthal angles,

respectively.

Much effort has been devoted to scattering data analysis

and modeling. With the evolution in the strength of computers

came the evolution of X-ray technology, and the complexity of

the experiments followed suit. As previously shown (Ginsburg

et al., 2019, 2016), the analysis program D+ (https://scholars.

huji.ac.il/uriraviv/book/d-0), developed in our laboratory, can

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576723005319&domain=pdf&date_stamp=2023-07-28

accurately and rapidly compute the expected solution small/

wide-angle X-ray scattering intensity from highly complex and

large structural models.

In D+, structures can be defined in hierarchical data-

structure trees, using geometric or atomic model subunits

forming the tree’s leaves. Repeating subunits are then docked

into their assembly symmetries (the tree’s nodes), containing

the locations and orientations of repeating subunits. The

scattering amplitude of the entire structure, made of J unique

subunits, is

F qð Þ ¼
PJ

j¼1

PMu
j

m¼1

Fj A�1
j;mq

� � PKj;m

k¼1

exp iq � Rj;m;k

� �" #
: ð3Þ

Mu
j is the number of unique orientations of an object of type j,

given by the Tait–Bryan rotation matrices Aj,m. Furthermore,

Kj,m is the number of real-space translations, Rj,m,k, of object j

with orientation Aj,m. In D+, F(q) can be calculated by

computing the scattering amplitudes of the subunits on 3D

reciprocal-space grids. When moving up in the hierarchy, the

reciprocal grids of larger structures are computed by inter-

polating precomputed lower-level reciprocal grids. The final

scattering amplitude is obtained by repeating this process for

all the leaves and nodes of the tree data structure.

In the direct method, no grids are computed, and the

scattering amplitude is directly computed by summing all the

subunit contributions in the complex structure [using equation

(3)]. For very large structures, a hybrid method can be used. In

this method, only grids of smaller subunits are summed and

used as subunits (i.e. leaves in the tree data structure) in a

direct computation of the scattering amplitude [equation (3)]

for the nodes in the hierarchy for which grids are not

computed (Ginsburg et al., 2019). The orientation average

[equation (2)] is then numerically calculated by selecting many

random angles in reciprocal space until the scattering intensity

converges.

The D+ program has been used to analyze steady-state and

time-resolved solution X-ray scattering data from various

complicated structures at high resolution (Asor et al., 2017,

2020a; Shaltiel et al., 2019; Dharan et al., 2021; Ginsburg et al.,

2017). In addition, to analyze an ensemble of dynamic struc-

tures and to take into account their stability, D+ has been

integrated with Monte Carlo simulations (Louzon et al., 2017;

Asor et al., 2019), the thermodynamic theory of macro-

molecular self-assembly (Asor et al., 2019; Shemesh et al.,

2021), rate equations (Shemesh et al., 2022) and maximum

information entropy optimization (Asor et al., 2020b).

Since the release of version 4.1, in 2019, several changes

have been made to D+. We have upgraded the versions

of CUDA (11.7) (https://www.nvidia.com/en-gb/geforce/

technologies/cuda/), Python (3.8, 3.9, 3.10, 3.11), Visual Studio

(2022) and Ceres Solver (2.0.0) (http://ceres-solver.org/),

improved the error messages, created a more intuitive user

interface, added GitHub automation to create the installer and

the Python wheels, added tests, introduced JSON file format

(https://www.json.org/), fixed several bugs, considerably

improved the internal workflow of the program, and updated

the Python API of D+ (https://scholars.huji.ac.il/uriraviv/

book/python-api), making it independent of the installation of

D+. We have also implemented the option to account for

instrument resolution, similarly to how it is done in the X+

software (Ben-Nun et al., 2010). Other changes, however, have

taken D+ to the next level. We have built a Python API

module that receives a list of N repeating subunit positions, ri

(i.e. a structural model), and computes the structure factor,

S q;N; r1; . . . ; rN

� �
� N�1

PN
i

PN
j

exp iq � ri � rj

� �� �
; ð4Þ

its orientation average,

S q;N; r1; . . . ; rN

� �
� S q;Nð Þ
� �

�q
¼ N�1

XN

i

XN

j

sin qrij

� �
qrij

;

ð5Þ

where rij � |ri � rj|, and the radial distribution function,

g rð Þ �
N rð Þ

4��br2�r
; ð6Þ

where �b is the average bulk subunit number density. N(r) is

the number of repeating subunits in a shell of radius r and

thickness �r, from a random subunit ri, averaged over all the

subunits in the list, applying periodic boundary conditions.

The module can also compute g(r) from S(q) and S(q) from

g(r). Our most important upgrade is the option to compute the

2D scattering intensity pattern from a structure in a specific

orientation, as typically measured by area detectors. In addi-

tion, we have created a module for computing the 2D fiber

diffraction pattern from a fiber containing subunits with a

uniform azimuthal angle distribution within a fiber aligned in a

specific direction. This module performs orientation averaging

over the reciprocal-space azimuthal angles, �q. Finally, in the

Python API of D+, we have implemented the possibility of

simulating the effects of thermal fluctuation and polydispersity

in each parameter. All of these changes will be discussed and

demonstrated in the following sections. The examples we shall

present will provide insights into the functions and the correct

usage of the Python API of D+.

2. Materials and methods

2.1. The Python API of D+

The Python API of D+ is a fully independent pythonic

version of the D+ software, meaning that one can install the

API without having to install the entire D+ software with its

graphical user interface (GUI). Using the Python API of D+,

the user can exploit and combine all the main functions of D+

as needed, and integrate them into any other code. The

opposite is also true. One can integrate all the Python modules

(like NumPy or SciPy; https://numpy.org/; https://scipy.org/) to

build and simulate models, requiring advanced and sophisti-

cated analyses.

The D+ program is broken down into different modules,

providing all the computational functions of D+. Thus, we

computer programs

1296 Eytan Balken et al. � Upgrade of D+ software J. Appl. Cryst. (2023). 56, 1295–1303

have the CalculationInput module, with which one can

build the ‘state file’, containing all the information required

for computing a model. In addition, the module

DataModels(.models) covers all the structural models

implemented in D+. After creating a model (and saving it in a

state file), one calculates the scattering intensity of the model

using the CalculationRunner module. In the end, if the

model was run using a grid, one might want to use the

Amplitude module for other purposes, like obtaining its 2D

scattering pattern.

As the API has many functions, a document explaining all

the inner workings of the Python API of D+ has been

provided in our GitHub repository (API README;

https://github.com/uri-raviv-lab/dplus-dev/blob/development/

PythonInterface/README.md). Our code is open source for

academic purposes, and fixes for encountered bugs or adding

new features or functions are wholeheartedly accepted, as are

any questions or problems encountered during installation or

usage (D+ Issues, https://github.com/uri-raviv-lab/dplus-dev/

issues; D+ GitHub, https://github.com/uri-raviv-lab/dplus-

dev).

2.2. Resolution function

When performing an X-ray experiment, the scattering

pattern might be different from what is computed from a

model. One of the possible reasons is the finite resolution of

the setup. We can take this effect into account, as done in the

X+ program (Ben-Nun et al., 2010), by convolving the

modeled scattering intensity with a Gaussian resolution

function, with a standard deviation given by �. This function

smears the model, meaning that some sharp peaks or minima

will be less prominent or will merge with others (Pedersen et

al., 1990; Pauw, 2013). To simulate this effect, D+ has, next to

the ‘Generate’ button, an input area for the standard devia-

tion, �, of a Gaussian instrument resolution function, offering

users the choice of whether to take it into account or not.

Similarly, a Gaussian resolution function with a specific � can

be added when building a state in the Python API of D+, using

apply_resolution.

2.3. Polydispersity

In experiments, the measured particles often have a distri-

bution of sizes rather than a single size. This effect can be

modeled by adding a standard deviation to the geometric

model parameters in the Python API of D+. In turn, as in X+

(Ben-Nun et al., 2010), the model will be recalculated 14 times

with a change of the size parameter, using the inputted stan-

dard deviation inside a Gaussian weighting distribution

around the parameter’s center value (i.e. 15 models will be

calculated in total). This function only works with geometric

models, not atomic ones. The polydispersity of atomic models

might be computed by averaging the solution scattering

intensity of different conformations generated, for example,

by a Monte Carlo simulation (Louzon et al., 2017).

Using the Python API of D+, any other polydispersity

weighting function (Zimm, 1948; Kotlarchyk & Chen, 1983;

Breßler et al., 2015) can be implemented for geometric or

atomic models.

2.4. g(r) and S(q) modules

The following subsections are based on the functions inside

the g(r) module, whose functions work, where relevant, with

NumPy arrays (Harris et al., 2020). The structure factor and

the radial distribution function which are based on a structural

model [equations (4)–(6)] have been parallelized on CPUs

using the DaCe algorithm (Ben-Nun et al., 2019). The parallel

computation allowed us to get results in a reasonable time,

even for large models.

2.4.1. Supporting functions. In this module, three important

supporting functions were built:

(1) build_crystal is a function similar to the space-

filling symmetry, which builds a docking list (‘dol’) file from

either lattice vectors [a, b, c] or lattice constants

[a, b, c, �, �,], and the number of repetitions in each direc-

tion. By default, the crystal is moved to its geometric center.

(2) thermalize adds uniformly distributed random fluc-

tuations to the lattice points according to �r = 2uv � u, where

v 2 [0, 1] (randomly selected) and u is the maximal fluctuation

in each coordinate. thermalize takes a list of points and

adds normally distributed random fluctuations as defined by a

user-inputted standard deviation. Unlike build_crystal,

thermalize does not build a crystalline structure and then

fluctuate the points, but rather takes an already built set of

coordinates (that do not have to be crystalline) and adds

fluctuations. In this way, it is possible to build different states

that start from the same coordinates and differ only by a user-

defined random factor.

(3) MC_Sim function is a Monte Carlo simulator,

accounting for thermal fluctuations of a set of points (i.e. a dol

file) by working against either harmonic or Lennard-Jones

potentials (Jones, 1924a,b), V(r), between nearest neighbors,

nn. The pairwise energy cost, �E
j
i, of a random displacement

u
j
i is

�E
j
i ¼

2

nnt

X
k2nn

V jr j�1
i þ u j

i � r j�1
k j

� �
� V jr j�1

i � r j�1
k j

� �
; ð7Þ

where nnt is the total number of nearest neighbors. The factor

of two originates from the fact that each interaction is shared

between the interacting pair. The probability of obtaining a

random displacement u
j
i is

P
j
i �E

j
i

� �
’ exp �

�E
j
i

kBT

	

; ð8Þ

where kB is the Boltzmann constant and T is the absolute

temperature. Monte Carlo simulations estimate the effect of

thermal fluctuations. At iteration j, the probability, P
j
i , of a

random displacement, u
j
i , at a random lattice point r j�1

i is

compared against a random number between 0 and 1. The

displacement is accepted if the random number is smaller than

P
j
i . This process is repeated until the maximum number of

iterations (provided by the user) is attained while maintaining

computer programs

J. Appl. Cryst. (2023). 56, 1295–1303 Eytan Balken et al. � Upgrade of D+ software 1297

periodic boundary conditions. At the end of the process, a new

dol file is saved with the new coordinates.

2.4.2. Structure factor. The structure factor is an important

property of crystals or oriented samples [S(q)] and solutions

[S(q)]. It is needed for analyzing X-ray scattering data, as it

sheds light on the arrangement of subunits in a sample

(Yarnell et al., 1973). Therefore, four functions were built to

compute the structure-factor contribution, assuming mono-

dispersed particles:

(i) Amp_of_SF receives a model as a dol file containing a

list of subunit positions (a docking list generated, for example,

using one of the supporting functions). The function computes

the theoretical structure factor associated with the model in a

single orientation [equation (4)].

(ii) S_Q_from_model receives a model as a dol file and

computes the theoretical structure factor associated with the

model after orientation averaging [equation (5)]. To

S_Q_from_model, we added an option to include the effect

of a finite temperature by averaging over NT different random

configurations (subunit positions, ri, using thermalize),

assuming thermal fluctuations,D
S q;N; r1; . . . ; rN

� �E
NT

¼
1

NT

XNT

j¼1

S q;N; r1 þ u
j
1; . . . ; rN þ u

j
N

� �
; ð9Þ

where u j
i is the jth displacement in the position ri of the ith

subunit. This function can better model realistic samples with

thermal fluctuations. The displacements assume a Gaussian

distribution of average standard deviation �u ¼

ðhu j
i � u

j
i i=3Þ1=2.

(iii) S_Q_from_I computes the structure factor from the

number of subunits, N, the total intensity, I, and the form

factor of a subunit. The structure factor of oriented samples is

a double sum over the complex exponents of the projections

of the distances between all subunit pairs on the scattering

vector (i.e. the phase factors) without the form-factor coeffi-

cients. The scattered intensity from an oriented sample

containing copies of the same subunit is

I q;N; f qð Þ; r1; . . . ; rN

� �
¼
PN

i

PN
j

fi qð Þfj qð Þ expðiq � rijÞ

¼ Nf 2 qð Þ þ f 2 qð Þ
PN

i

PN
j

expðiq � rijÞ; ð10Þ

where the ith subunit form factor fi(q) is equal to f(q) and rij =

ri � rj, and the structure factor is given by equation (4). In

isotropic solutions, we average over all the orientations and

get a 1D structure factor [equation (5)] or

S q;N; r1; . . . ; rN

� �
¼ N þ 2

XN

i

XN

j> i

sin qrij

� �
qrij

ð11Þ

that is implemented in D+ because it is somewhat faster to

compute.

Using the second function in equation (10), we can

approximate the structure factor from a solution scattering

curve, I, of a system with N identical subunits, provided we

have the solution scattering curve of the subunit (form factor)

| f2(q)|:

S q;N; I qð Þ; j f 2 qð Þj
� �

¼
I qð Þ

Nj f 2 qð Þj
: ð12Þ

S_Q_from_I receives the number of subunits, N, the inten-

sity and the subunit form factor (rather than a list of subunit

positions), and computes equation (12). Therefore, the

intensity must be correctly normalized to the absolute inten-

sity and the density of subunits. Equation (12) assumes that

the subunits are spherically symmetric. If not, deviations from

the exact structure factor [equation (11)] appear (Fig. 1).

(iv) s_q_from_g_r converts a given radial distribution

function, g(r), into a structure factor using the known relation

between the two (Als-Nielsen & McMorrow, 2011; Hansen &

McDonald, 2013; Egelstaff, 1992):

S qð Þ ¼ 1þ
4��b

q

Z1
0

rg rð Þ sin qrð Þ dr: ð13Þ

This function can be implemented using either SciPy’s discrete

sine transform (DST) (Virtanen et al., 2020) or the numerical

Simpson integration method. Equation (13) has integration to

infinity but the cut-off is determined by the rmax value of the

radial distribution function.

computer programs

1298 Eytan Balken et al. � Upgrade of D+ software J. Appl. Cryst. (2023). 56, 1295–1303

Figure 1
Examining the assumption behind structure factor, S(q), computations.
S(q) of our cubic crystal model (lattice parameter a = 3.5 nm, and ten
subunit repetitions in each axis) was computed in three ways. We first
computed S(q) from a list of subunit point locations [equation (11), blue
curve]. The other two structure-factor curves were obtained using
equation (12). Initially, the scattered intensity of the same crystal was
computed, where the subunits were either symmetric (spheres with a
radius of 1.5 nm) or asymmetric (cylinders with a height of 3.2 nm and a
radius of 0.17 nm). We then divided each scattering intensity by its
subunit form factor: sphere (orange curve) or cylinder (green curve).
Except for some discrepancies owing to numerical errors, the difference
between the crystal model (blue curve) and the symmetric subunit
(sphere – orange curve) graph is minimal, unlike the difference between
the crystal model (blue) and the asymmetric subunit (cylinder – green)
graphs. The results demonstrate the assumption behind equation (12)
stating that the form factor has to come from subunits with spherical
symmetry.

In addition, using the Python API of D+, it is possible to

compute any other structure-factor function (Baxter, 1970),

fill an amplitude grid (using fill), and multiply it by the

amplitude grid of the form factor (Amp_multi). The resulting

amplitude can then be loaded to D+ or a state file and

‘Generate’ can be used to square the amplitude and compute

its orientation average.

For polydispersed subunits, it is possible to implement

equation (3) using the GUI of D+ or the Python API of D+.

Equation (4) can be computed at each reciprocal grid ampli-

tude point using the Python API of D+. The structure-factor

amplitude grid can then be multiplied (Amp_multi) by any

form-factor amplitude grid and added (Amp_sum) to other

amplitude grids, representing other structures. The last two

structure-factor options are demonstrated in a Jupyter Note-

book (https://github.com/uri-raviv-lab/dplus-dev/blob/development/

PythonInterface/getting_started.ipynb).

2.4.3. g(r). The radial distribution function is another tool

often used to analyze X-ray data to study how local densities

vary in a crystal or a liquid. From these data, one can under-

stand the general structure and symmetries in a sample

(Olgenblum et al., 2020; Mu et al., 2019; Yarnell et al., 1973).

Our module contains two functions:

(a) g_r_from_s_q computes the radial distribution

function from a structure factor by reordering equation (13)

and applying the inverse Fourier transform (Als-Nielsen &

McMorrow, 2011; Biehl, 2019; Hansen & McDonald, 2013):

g rð Þ ¼
1

2�r�b

Z1
0

q S qð Þ � 1½ � sin qrð Þ dq: ð14Þ

This function encounters the same problems as its twin

[equation (13)] and is computed up to a cut-off determined by

the value of qmax.

(b) g_r_from_model receives a model (a list of subunit

positions, i.e. a dol file) and finds the radial distribution

function through a simple binning technique around a

randomly chosen point of reference [equation (6)]. This

function can either count the number of subunits between r

and r + �r (assuming the subunits are points) or take into

account the subunit size (or radius) and compute the exact

total volume of subunits between r and r + �r. It is possible to

average different configurations (using one of the supporting

functions) and/or different initial subunits of reference within

the same configuration.

2.5. 2D scattering intensities

The 2D scattering intensity from oriented structures or

fibers can be computed using the Python API of D+. First, one

must calculate the 3D reciprocal grid scattering amplitude

(using the GUI of D+ or its Python API). One can then use

the Python API to calculate 2D scattering patterns from fibers

or oriented structures (as in crystallography experiments).

This can be done by positioning the structure in a specific

orientation with respect to the y axis (which is the beam

direction).

The user must also define the 2D pattern density by

providing the total number of calculated points along each

detector axis (from the negative to the positive side). This

number is used for both the q? and qz axes. In other words, the

size of the returned 2D matrix will be the number of calculated

points squared. The calculation time can thus quickly become

very large. Interpolations are used to compute the amplitudes

at points in the 2D matrix between precomputed reciprocal

grid points.

In the current version of D+, to calculate 2D intensities one

needs to use a reciprocal grid from the leaves up to the root of

the model tree data structure. This means that the advantages

of the hybrid method cannot be used yet, and large grids and

reasonable computation power might be needed for com-

puting the 2D scattering pattern from large structural models.

This limitation will be removed in a future version of D+.

2.5.1. Single orientation. A function (get_crystal_

intensity) has been written to simulate the 2D scattering

intensity from a structure in a single orientation (as in crys-

tallography experiments), whose input is a reciprocal grid

amplitude computed by D+. Amplitudes are kept as a grid

with polar coordinates in reciprocal space, F(q, �q, �q). In

experiments with oriented samples, the 2D detector intersects

with the sample’s Ewald sphere (represented by the ampli-

tudes) at a specific �q. The default �q value is 0 for positive q?
values and � for negative q? values. Other �q values can be

calculated if needed, in which case, for negative q? values, �q +

� is used instead of �q. The function gets the number of

calculated points and generates the 2D matrix in (q?, qz)

space, and each pixel is converted to polar coordinates:

q ¼ q2
? þ q2

z

� �1=2
ð15Þ

and

�q ¼ arctan2 q?; qz

� �
: ð16Þ

The 2D scattering intensity, |F(q, �q, 0)|2 for positive q? and

|F(q, �q, �)|2 for negative q?, is then obtained by interpola-

tions from the 3D reciprocal grid of the root.

As the 3D reciprocal grid amplitude contains all the �q

values, it is possible, using the same amplitude, to sample other

planes of the structural model around the z axis by inputting a

different �q value, �qin
, for positive q?. In such a case, ampli-

tudes at negative q? values are calculated at �q ¼ �qin
þ �.

2.5.2. Fiber diffraction. In fiber diffraction experiments, the

scatterers are aligned in the polar angle in real space, �r, and

isotropically distributed around the azimuthal angle in real

space, �r. The following azimuthal average, therefore, gives

the scattering intensity in reciprocal space:

I q; �q

� �
¼

1

2�

Z2�
0

F qð Þ
�� ��2d�: ð17Þ

To compute this average, the API function get_fiber_

intensity uses D+’s Monte Carlo integration function in

which equation (16) becomes

computer programs

J. Appl. Cryst. (2023). 56, 1295–1303 Eytan Balken et al. � Upgrade of D+ software 1299

I q; �q

� �
¼

1

N

XN

i¼1

F q; �q; �qi

� ���� ���2; ð18Þ

and �qi
is randomly and uniformly sampled in the distribution

[0, 2�) by the use of the relationship � = 2�u and u 2 [0, 1).

The number of sampled �q values grows until convergence is

attained according to the Monte Carlo algorithm of D+

(Ginsburg et al., 2019). We also added the option to change the

sampling domain to a user-defined one, simulating a sample

with only certain azimuthal orientations. The sampling equa-

tion then becomes �qi
¼ ð�max � �minÞuþ �min.

3. Usage examples

Several usage example codes and graphs can be found in our

Jupyter Notebook. Some of the examples are discussed in this

section.

3.1. Supporting functions

With these functions, we first built a simple cubic crystal

with a lattice parameter a = 3.5 nm and ten repetitions in each

axis (i.e. a 10 � 10 � 10 lattice), which will be the model used

in our examples.

We then added thermal fluctuations to the same cubic

crystal. We added displacements that are either uniformly

distributed in the domain [�0.3 nm, 0.3 nm) [where the half-

opened domain stems from the way random numbers are

generated, as explained by Press et al. (2007)] or according to a

Gaussian distribution with a standard deviation, �u, of 0.3 nm.

In both cases, fluctuations were applied to all three axes. Fig. 2

shows a partial side view of the resulting crystals (shown as a

5 � 5 � 5 cube for clarity).

3.2. Resolution function

To demonstrate how the resolution function, computed as

explained (Ben-Nun et al., 2010), changes the scattering curve,

we computed the scattering curves from spheres with a radius

of 1.5 nm, arranged in our cubic crystal model. We calculated

the scattering curve in D+, with and without a resolution

function. We used typical �r values of 0.01 and 0.02 nm�1 but

also some extreme values of 0.05 and 0.1 nm�1 that better

demonstrate the effect. As expected, the higher the �r, the less

localized and prominent the peaks and minima are (Fig. 3).

3.3. Polydispersity

Similarly, we ran the same model (without a resolution

function) and added a Gaussian polydispersity with �p of

0.3 nm around the mean 1.5 nm sphere radius. In other words,

D+ computed multiple times the scattering intensity from

spheres with radii selected from a Gaussian weighting distri-

bution with a mean of 1.5 nm and a standard deviation of

computer programs

1300 Eytan Balken et al. � Upgrade of D+ software J. Appl. Cryst. (2023). 56, 1295–1303

Figure 2
Our cubic crystal. (Left panel) A view of a 5 � 5 � 5 section of our simple
cubic crystal model with a lattice parameter a = 3.5 nm and 10 � 10 � 10
subunits. This is the model used in our examples. (Center panel) A view of
the same model, but, to each lattice point, a random fluctuation was
added in all directions according to a uniform distribution within the
domain [�0.3 nm, 0.3 nm). (Right panel) A view of a simple cubic crystal
to which random fluctuations were added in all directions according to a
Gaussian distribution with a mean at the lattice point coordinate and a
standard deviation, �u, of 0.3 nm.

Figure 3
Effect of the instrument-resolution function. Scattering intensity, I, as a
function of the magnitude of the scattering vector, q, from our simple
cubic crystal (a = 3.5 nm and 10 � 10 � 10 subunits), with spheres of
radius 1.5 nm as subunits, to which a Gaussian resolution function was
added with four different standard deviation values: �r = 0.01, 0.02, 0.05
and 0.1 nm�1. As �r grows, the peaks start to merge and the extrema
become less localized.

Figure 4
Effect of polydispersity. Scattering curves of our simple cubic crystal (a =
3.5 nm and 10 � 10 � 10 subunits), with spheres of radius 1.5 nm as
subunits. We then added a Gaussian distribution function with a standard
deviation of 0.3 nm to the radius of the spheres (with a mean at the
inputted radius) to simulate the effect of polydispersity in the model. The
minima, related to sphere radius, have shifted and are a lot less
prominent, as would be expected from a polydispersed system.

0.3 nm (Fig. 4). In addition to filling the sharp minima as in

Fig. 3, the positions of the minima and maxima have shifted

slightly.

3.4. S(q) and g(r)

This section demonstrates different ways to compute the

structure factor and how they affect the result. In addition, we

examined the effect the spherical symmetry assumption has on

the result shown in Fig. 1. For this, we used a sphere with a

radius of 1.5 nm as one model, and a cylinder with a height of

3.2 nm and a radius of 0.17 nm as a second model. We show

that with the cylinders, already at q ’ 3 nm�1, the assumption

becomes critical for further analysis of the model.

Fig. 5 shows the calculated radial distribution function of

our crystal [equation (6)], assuming the particles have a radius

of 0.3 nm (using g_r_from_model), with and without

thermal fluctuations (using thermalize). We compared it

with the g(r) calculated from our cubic crystal model,

assuming the spheres are delta functions [Fig. 5(b)]. As

expected, both radial distribution functions calculated from

the model returned peaks at the typical distances for our cubic

crystal, where the first three are at

r1 ¼ a ¼ 3:5 nm;
r2 ¼ 21=2a ¼ 4:95 nm;
r3 ¼ 31=2a ¼ 6:06 nm:

8<
: ð19Þ

However, when computing the radial distribution function

from a structure factor [equation (14)], the results [Fig. 5(c)]

are not as good as in the blue curve of Fig. 5(b). We get the

peaks with Simpson’s algorithm, but they are relatively wide

and not always perfectly centered around the correct value.

With the DST algorithm, we only get some of the peaks, whose

maxima are sometimes off the expected values. It is, therefore,

better to use Simpson’s algorithm. Another difference

between the model radial distribution function [equation (6)]

and the integrated radial distribution function from a structure

factor [equation (14)] is the intensity of the peaks. However,

the area under the peaks,

NNN ¼

Zr2

r1

4�r2�b gðrÞ dr; ð20Þ

revealing the total number of nearest neighbors (nnt) (Als-

Nielsen & McMorrow, 2011), is better preserved than the peak

line-shape intensity. After integrating up from r1 = 3.4 to r2 =

3.6 nm, we found that the number of nearest neighbors (which

is expected to be 6) is 5.90, 5.71 and 5.30 for the radial

distribution function calculated from the model [equation (6)],

Simpson’s integration and the DST, respectively. Specifically

for the DST, we integrated over the range [3.5, 3.7], because

otherwise we got an incorrect NNN owing to the negative

oscillation before the peak.

Lastly, using equation (13), we tried to return to the struc-

ture factor [equation (5), Fig. 6, blue curve] from the radial

distribution function calculated from a model [equation (6),

Fig. 6, red curve] or a structure factor [equation (14), Fig. 6,

green curve]. Fig. 6 shows that neither function was able to

completely reproduce the modeled structure factor [equation

(5), Fig. 6, blue curve]. However, when we took the structure

computer programs

J. Appl. Cryst. (2023). 56, 1295–1303 Eytan Balken et al. � Upgrade of D+ software 1301

Figure 5
Radial distribution functions, g(r). (a) The radial distribution function
from a 10 � 10 � 10 cubic crystal model (a = 3.5 nm), calculated
according to equation (6) with spherical subunits with a radius of 0.1 nm,
with (red curve) and without (blue curve) thermal fluctuations (�u =
0.1 nm). (b) Repeating the calculation in (a) with a subunit radius of
0.01 nm, with (red curve) and without (blue curve) thermal fluctuations
(�u = 0.03 nm). We added a radius to the subunit lattice points to avoid
delta functions at the peak positions and get results that are closer to
reality. (c) The radial distribution function of the same crystal model
(assuming the subunits are points), without thermal fluctuations,
computed by equation (14) [using S(q) from Fig. 6 (blue curve),
computed until a qmax of 100 nm�1], using Simpson’s integration or DST.

Figure 6
Comparing the structure factor emanating from the radial distribution
function [equation (6), rmax = 32.5 nm] of a cubic crystal (a = 3.5 nm with
10 � 10 � 10 subunits), using equation (13) and Simpson’s integration
(red curve), with the proper structure factor [equation (5), blue curve].
The green curve was obtained by taking the structure factor [equation (5),
blue curve], Fourier transforming it into a radial distribution function
[equation (14), using qmax = 8 nm�1], and then changing it back to the
structure factor, using Simpson’s integration method [equation (13), using
rmax = 32.5 nm].

factor [equation (5)], Fourier transformed it to the radial

distribution function [equation (14)] using Simpson’s inte-

gration method, and then returned it to S(q) [equation (13),

Fig. 6, green curve] using the same integration method, the

deviation from the modeled structure factor [equation (5),

Fig. 6, blue curve] was rather small.

D+ allowed us to carefully examine the assumptions often

applied when computing structure factors and radial distri-

bution functions. We also demonstrated that care must be

taken when analyzing the results as they can significantly

deviate from the correct values.

3.5. Fiber diffraction and single orientation

To demonstrate the most important upgrade of the Python

API of D+, we used a model of graphene and computed its 2D

scattering pattern. This model was used because it is a 2D

structure, and thus, the direction of the beam could be

determined. Another reason was that the lattice parameters

are known in real space and thus also in reciprocal space,

meaning the resulting diffraction can be validated. The

graphene model was built to be on the xz plane and used the

following real-space lattice vectors (Wallace, 1947; Yang et al.,

2018):

a1 ¼ ða=2Þ 1; 0; 31=2
� �

;
a2 ¼ ða=2Þ ½0; 1; 0�;
a3 ¼ ða=2Þ 1; 0;�31=2

� �
;

8<
: ð21Þ

where a = 0.246 nm. The crystal had 25 repetitions in the a1

and a3 directions and only one repetition (to get a 2D struc-

ture) in the a2 direction (which is parallel to the direction of

the beam). The lattice vectors in reciprocal space are

a�1 ¼ ð2�=aÞ 1; 0; 1=31=2
� �

;
a�2 ¼ ð2�=aÞ ½0; 1; 0�;
a�3 ¼ ð2�=aÞ 1; 0;�1=31=2

� �
:

8<
: ð22Þ

Fig. 7 shows the 2D scattering pattern, which falls on the

theoretically expected Bragg peaks. This demonstrates the

single-orientation scattering simulation capabilities of D+.

To simulate a fiber diffraction experiment, we built a model

whose base leaf is a PDB entry for DNA (Protein Data Bank;

PDB ID 1zew; Hays et al., 2005) inside a Manual Symmetry

that added two other subunits, 3.5 nm above and 3.5 nm below

the original unit. The PDB unit was aligned parallel to the z

axis by rotating it with angles 	 = 60.5	 around the z axis and

� = 90	 around the x axis. The result of the simulation (Fig. 8)

clearly shows the expected typical ‘X’ pattern of helical

structures (Cochran et al., 1952). The computation time of a

single orientation is about three orders of magnitude faster

than the computation time of fiber diffraction (though this can

vary with the convergence parameters of D+).

4. Conclusions

In this work, we have reported the functions and capabilities

added to D+, some of which are implemented in the GUI and

all in the Python API of D+. To the GUI (and the API), we

added the possibility to add a resolution function to the

resulting intensity and take into account the setup resolution.

To the API, we added the possibility of taking into account the

polydispersity of geometrical models. In addition, we added a

module for computing the structure factor and the radial

distribution function from either scattering data or a structural

model, including the effects of thermal fluctuations and

intermolecular interactions. Lastly, we added functions that

can compute the 2D scattering pattern from either a single

orientation or fibers. As D+ can create and compute highly

complicated hierarchical structural models, these additions

open new opportunities for modeling complex fiber and

crystallographic structures. In future updates of D+, most

computer programs

1302 Eytan Balken et al. � Upgrade of D+ software J. Appl. Cryst. (2023). 56, 1295–1303

Figure 7
A simulated 2D scattering pattern from a layer of graphene (containing
25 � 25 unit cells; partly shown in the inset) aligned parallel to the xz
plane (where the beam is along the y axis). The high intensity around q =
0 has been blacked out to emphasize the correlation peaks at higher q
values. To make the different peaks more prominent, the intensities were
rescaled using scikit’s (van der Walt et al., 2014) rescale_intensity
function. The simulated peaks fall on the peaks expected from the
reciprocal lattice of graphene [equation (22)].

Figure 8
Computed fiber diffraction of a B-DNA model (using PDB ID 1zew). The
typical ‘X’ 2D scattering pattern from double helices can be seen. The
intensities were rescaled using the rescale_intensity function and a
beamstop was added at the low q values.

changes will be implemented in the Python API of D+ owing

to its wide versatility.

Acknowledgements

We are grateful for the helpful discussions with R. Beck, L.

Houben, B. Rybtchinski, Y. Levi-Kalisman and D. Harries.

Funding information

E. Balken acknowledges the Heseg Foundation for supporting

him throughout his undergraduate studies. This project was

supported by the Israel Science Foundation (1331/20) and by

the Israel Ministry of Science and Technology. We thank the

Safra, Wolfson and Rudin Foundations for supporting our

laboratory.

References

Als-Nielsen, J. & McMorrow, D. (2011). Elements of Modern X-ray
Physics. John Wiley & Sons.

Asor, R., Ben-nun-Shaul, O., Oppenheim, A. & Raviv, U. (2017). ACS
Nano, 11, 9814–9824.

Asor, R., Khaykelson, D., Ben-nun-Shaul, O., Levi-Kalisman, Y.,
Oppenheim, A. & Raviv, U. (2020a). Soft Matter, 16, 2803–2814.

Asor, R., Schlicksup, C. J., Zhao, Z., Zlotnick, A. & Raviv, U. (2020b).
J. Am. Chem. Soc. 142, 7868–7882.

Asor, R., Selzer, L., Schlicksup, C. J., Zhao, Z., Zlotnick, A. & Raviv,
U. (2019). ACS Nano, 13, 7610–7626.

Baxter, R. J. (1970). J. Chem. Phys. 52, 4559–4562.
Ben-Nun, T., de Fine Licht, J., Ziogas, A. N., Schneider, T. & Hoefler,

T. (2019). SC ’19: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis.
New York: Association for Computing Machinery.

Ben-Nun, T., Ginsburg, A., Székely, P. & Raviv, U. (2010). J. Appl.
Cryst. 43, 1522–1531.

Biehl, R. (2019). PLoS One, 14, e0218789.
Breßler, I., Kohlbrecher, J. & Thünemann, A. F. (2015). J. Appl. Cryst.

48, 1587–1598.
Cochran, W., Crick, F. H. & Vand, V. (1952). Acta Cryst. 5, 581–586.
Dharan, R., Shemesh, A., Millgram, A., Zalk, R., Frank, G. A., Levi-

Kalisman, Y., Ringel, I. & Raviv, U. (2021). ACS Nano, 15, 8836–
8847.

Egelstaff, P. A. (1992). An Introduction to the Liquid State, p. 390.
Oxford: Clarendon Press.

Ginsburg, A., Ben-Nun, T., Asor, R., Shemesh, A., Fink, L., Tekoah,
R., Levartovsky, Y., Khaykelson, D., Dharan, R., Fellig, A. & Raviv,
U. (2019). J. Appl. Cryst. 52, 219–242.

Ginsburg, A., Ben-Nun, T., Asor, R., Shemesh, A., Ringel, I. & Raviv,
U. (2016). J. Chem. Inf. Model. 56, 1518–1527.

Ginsburg, A., Shemesh, A., Millgram, A., Dharan, R., Levi-Kalisman,
Y., Ringel, I. & Raviv, U. (2017). J. Phys. Chem. B, 121, 8427–8436.

Hansen, J.-P. & McDonald, I. R. (2013). Theory of Simple Liquids:
with Applications to Soft Matter, 4th ed., pp. 1–619. Oxford:
Academic Press.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-

Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C. & Oliphant, T. E. (2020). Nature, 585, 357–362.

Hays, F. A., Teegarden, A., Jones, Z. J., Harms, M., Raup, D., Watson,
J., Cavaliere, E. & Ho, P. S. (2005). Proc. Natl Acad. Sci. USA, 102,
7157–7162.

Jones, J. E. (1924a). Proc. R. Soc. London Ser. A, 106, 441–462.
Jones, J. E. (1924b). Proc. R. Soc. London. Ser. A, 106, 463–477.
Kotlarchyk, M. & Chen, S. (1983). J. Chem. Phys. 79, 2461–2469.
Louzon, D., Ginsburg, A., Schwenger, W., Dvir, T., Dogic, Z. & Raviv,

U. (2017). Biophys. J. 112, 2184–2195.
Mu, X., Mazilkin, A., Sprau, C., Colsmann, A. & Kübel, C. (2019).

Microscopy, 68, 301–309.
Olgenblum, G. I., Sapir, L. & Harries, D. (2020). J. Chem. Theory

Comput. 16, 1249–1262.
Pauw, B. R. (2013). J. Phys. Condens. Matter, 25, 383201.
Pedersen, J. S., Posselt, D. & Mortensen, K. (1990). J. Appl. Cryst. 23,

321–333.
Press, W. H., Teukolsky, S. A., Vettering, W. T. & Flannery, B. P.

(2007). Numerical Recipes: the Art of Scientific Computing, 3rd ed.
Cambridge University Press.

Shaltiel, L., Shemesh, A., Raviv, U., Barenholz, Y. & Levi-Kalisman,
Y. (2019). J. Phys. Chem. C, 123, 28486–28493.

Shemesh, A., Ginsburg, A., Dharan, R., Levi-Kalisman, Y., Ringel, I.
& Raviv, U. (2021). ACS Chem. Biol. 16, 2212–2227.

Shemesh, A., Ginsburg, A., Dharan, R., Levi-Kalisman, Y., Ringel, I.
& Raviv, U. (2022). J. Phys. Chem. Lett. 13, 5246–5252.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright,
J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J.,
Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C.
R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt,
P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A.,
Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N.,
Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.
A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser,
E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold,
G., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P.,
Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick,
J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J.,
Harrington, J., Rodrı́guez, J. L. C., Nunez-Iglesias, J., Kuczynski, J.,
Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke,
M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N.,
Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer,
R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S.,
Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones,
T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U.,
Halchenko, Y. O. & Vázquez-Baeza, Y. (2020). Nat. Methods, 17,
261–272.

Wallace, P. R. (1947). Phys. Rev. 71, 622–634.
Walt, S. van der, Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,

Warner, J. D., Yager, N., Gouillart, E., Yu, T. & The scikit-image
Contributors (2014). PeerJ, 2, e453.

Yang, G., Li, L., Lee, W. B. & Ng, M. C. (2018). Sci. Technol. Adv.
Mater. 19, 613–648.

Yarnell, J. L., Katz, M. J., Wenzel, R. G. & Koenig, S. H. (1973). Phys.
Rev. A, 7, 2130–2144.

Zimm, B. H. (1948). J. Chem. Phys. 16, 1093–1099.

computer programs

J. Appl. Cryst. (2023). 56, 1295–1303 Eytan Balken et al. � Upgrade of D+ software 1303

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5065&bbid=BB35

