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A novel methodology is presented for identifying and distinguishing between

structural phases in multi-phasic systems, such as piezoelectric materials

like PMN–PT [Pb(Mg1/3Nb2/3)O3–PbTiO3], PIN–PMN–PT [Pb(In1/2Nb1/2)O3–

Pb(Mg1/3Nb2/3)O3–PbTiO3] and PZT [Pb(Zr,Ti)O3], using diffuse multiple

scattering and Kossel line diffraction techniques. The method exploits the

splitting of triple line intersections from special coplanar reflections combined

with logical constraints to generate a splitting fingerprint for robust crystal-

lographic phase determination and discrimination.

1. Introduction

Piezoelectric materials, such as PMN–PT [Pb(Mg1/3Nb2/3)O3–

PbTiO3], PIN–PMN–PT [Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3

–PbTiO3] and PZT [Pb(Zr,Ti)O3], exhibit the giant piezo-

electric effect at compositions near the morphotropic phase

boundary (Park & Shrout, 1997; McLaughlin et al., 2004). This

is a region on the compositional phase diagram where there is

a near degeneracy of crystallographic phases, resulting in the

coexistence of multiple phases and domains. This can be

problematic for conventional high-resolution X-ray scattering

techniques because the movement required to measure

multiple reflections essential for structural determination

results in averaging over multiple domains. Here, we present a

novel methodology for distinguishing between phases and

robustly determining their lattice parameters using diffuse

multiple scattering (DMS). Nisbet et al (2015) present an

explanation of DMS with an emphasis on non-coplanar triple

intersections; however, the methodology presented here relies

on the splitting of coplanar triple intersections and is applic-

able to other K-line techniques. PIN–PMN–PT under applied

mechanical stress and electrical polling has been used as a

demonstration because the crystal exhibits two phases at low

stress, which transition to a single phase at high stress

(Patterson et al., 2020; Finkel et al., 2022).

In DMS and K-line diffraction, a divergent source of X-rays

results in constructively interfering X-rays emerging as cones,

producing elliptical lines as they are projected onto the

detector plane. Triple intersections can arise at specific ener-

gies for a given set of non-coplanar reflections (Lonsdale,

1947). This also provides a powerful technique for crystal-

lographic phase determination, which is the subject of an

earlier paper (Nisbet et al., 2021). The current article focuses

on triple intersections from coplanar reflections, which Lons-

dale referred to as ‘geometrically inevitable’ (Lonsdale, 1947).
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This is presented diagrammatically in Fig. 1 for the �2211, 2�112

and 005 coplanar reflections.

The formal condition for a coplanar triple intersection is

given by equation (1) (Harris, 1975):
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where Qi in this case is jjQijj
2. There is a subset of coplanar

triple intersections that occur when the first reflection is

perpendicular to the second reflection and the tertiary

reflection is the sum of the first two. While this is not general, it

gives a useful rule of thumb for the condition above.

These intersections are not unique to specific energies and

can be selected for their sensitivity to specific symmetry

changes in the crystal. For example, a triple intersection

produced by the �1101, 101 and 002 reflections would be sensi-

tive to a change from cubic to tetragonal symmetry because a

change in the a or c directions would result in one of the

determinants in equation (1) being non-zero. A change in b,

however, would not result in splitting, because all of the

determinants would remain zero. On the other hand, a triple

intersection produced by the 002, �1110 and �1112 reflections is

insensitive to changes in a, b or c but is sensitive to rhombo-

hedral or monoclinic distortions. In the case of a rhombohe-

dral distortion, a triple intersection will occur for these

reflections. However, if the lines are indexed as 002, �11�110 and
�11�112, for example, the intersection will be split.

The observation of splitting at carefully selected triple

intersections means a splitting fingerprint can be constructed,

and then a relatively simple procedure can be followed to

identify the crystallographic phases present and even distin-

guish between multiple phases. This is particularly useful in

complex solid solutions where the crystallographic differences

are subtle.
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Figure 1
(a) Three coplanar reflections for a cubic crystal: �2211, 2�112 and 005, coloured red, green, and blue, respectively. The Q vectors are represented by dashed
arrows, and their lengths are equal to d�1/2, or simply d�1 because the denominator cancels out. The triple intersection is highlighted by a small magenta
circle (ti). The radius of the large circle is equal to k0, which is equal to ��1. The red, green and blue solid lines show the cone projections along Q1 � Qi.
(b) A three-dimensional representation of (a) to show that the intersection occurs out of the plane common to Q1, Q2 and Q3.

Figure 2
The experimental setup on the I16 beamline at Diamond Light Source.
The detector is positioned perpendicular to the incident beam and
parallel to the incident polarization (top). The Model ES1500 multi-
functional stress–strain system with high-voltage terminals is also shown
(bottom).



2. Experimental

The [011] poled PIN–PMN–PT, 12 � 4 � 4 mm, sample was

placed in a multifunctional stress–strain system (Model

ES1500 by Electrosciences Ltd) and mounted on a Newport

kappa-geometry diffractometer on the I16 beamline (Collins

et al., 2010) at Diamond Light Source (Fig. 2). The sample was

prepared with gold electrodes and connected to a Trek high-

voltage power supply. The sample was orientated using two

Bragg reflections to build a UB orientation matrix (Busing &

Levy, 1967), where the B matrix transforms a given hkl to an

orthonormal coordinate system fixed in the crystal and the U

matrix is a rotation matrix that rotates the crystal’s reference

frame to that of the diffractometer. This simplifies the initial

indexing of the lines. The sample was orientated to a non-

integer hkl (1.5697, 1.2153, 3.9792) at a  value (azimuthal

angle) of 16� with an azimuthal reference of 0�110 in the pseudo-

cubic setting to scatter in the plane parallel to the incident

polarization vector. A non-integer reflection was used to

minimize the signal from direct Bragg reflections. A 2M

Pilatus detector was positioned at a distance of 1071 mm from

the sample and perpendicular to the incident beam to mini-

mize background scatter. The beam size was 180 mm in the

horizontal direction and 20 mm in the vertical direction, and

the image acquisition time was 200 s. The sample was stressed

along the [100] direction from �6.8 to �24 MPa and back

again in 1.323 MPa steps, with a cycled electric field of 0 to

250 kV mm�1 and back to 0 kV mm�1 in steps of 50 kV mm�1

applied along the [011] direction. Initially, two phases were

present under low stress, indicated by the split lines in Fig. 3

(top panel), evolving to a single phase at high stress. The

system reverts back to two phases at low stress.

3. Analysis

DMS can be described by an extension of the multiple scat-

tering (MS) geometry. A geometrical representation of the MS

condition is conveniently described using Ewald construction

[Fig. 4(a)].

The radius of the sphere is given by the reciprocal of the

wavelength, G is the primary scattering vector, L is a

secondary scattering vector, k0 is the incident beam vector, k1

is the primary reflected beam vector, and k2 and kn are the

secondary beam vectors. Oreal is the real-space origin, O is the

reciprocal-space origin and  is the azimuthal angle defined

with respect to an azimuthal reference vector, which will lie in

the plane defined by k0 and k1 and away from the incident

beam when  is equal to zero. When L is rotated around G

and intercepts the sphere, MS occurs. The geometry can easily

be extended for DMS by replacing the primary scattering

vector with a continuum of co-aligned vectors. This is

equivalent to allowing the primary scattering vector to be a

diffuse source, which in this case arises from defects in the
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Figure 3
The large central image is a single exposure taken using a Pilatus 2M
detector at the (1.568 1.214 3.976) non-integer reflection at 9.6325 keV at
low mechanical stress (�6.8 MPa). Three regions are highlighted and
enlarged for clarity. T1, T2 and T3 (cyan) represent the line intersections
of coplanar reflections. T1, T2 and T3 (yellow) represent the same line
intersections at high stress (�24 MPa).

Figure 4
Ewald sphere construction of (a) MS and (b) DMS.



sample (Nisbet et al., 2015). Fig. 4(b) shows how scaling G

changes the reciprocal-space origin and thus the azimuthal

interception angle of L. Converting to spherical coordinates,

using the non-integer Bragg angle as the polar angle,  as the

azimuthal angle and k0 as the vector lengths, is equivalent to

calculating diffraction conics.

A benefit of calculating DMS this way is that the � range can

be limited to the detector acceptance angle. The scalar equa-

tion for a plane can be used to define the detector plane and

determine the coordinates at which the DMS vectors intercept

the detector. These can then be binned appropriately to

generate an image of the DMS lines or create regions of

interest for fitting algorithms (Nisbet et al., 2021).

3.1. Indexing

Using two non-parallel reflections to build a UB matrix is

routine on diffraction beamlines. This allows samples to be

conveniently orientated using reciprocal-space vectors. Typi-

cally, for a DMS measurement, a non-integer reflection will be

selected. Ideally, this will have a 2� angle of around 90� with

the scattering plane parallel to the incident beam polarization,

which significantly reduces the scattering background. A

simulated DMS pattern can be calculated using the experi-

mental geometry and directly overlaid on the detector image.

Setting a relatively high structure-factor threshold (95th

percentile) for a low-level cut-off eases the comparison

between simulated and experimental DMS lines, allowing the

lines to be indexed straightforwardly via manual selection.

3.2. Constructing a truth table

The T3 triple intersection is composed of the 002, 200 and

202 reflections. The 002 and 200 reflections are perpendicular

to one another. This means that there are 12 possible sets of

equivalent indices, which reduces for lower-symmetry crystals.

This re-indexing can be done by applying each of the 12

transformation matrices in Table 1.

The reflections in T1, T2 and T3 intersections are multiplied

by each transformation matrix and tested against equation (1)

for a rhombohedral distortion to determine if the intersections

are split. For example, as mentioned above, the �1110, 002 and
�1112 reflections without transformation satisfy equation (1)

when a rhombohedral distortion is applied. However, by

changing the indexing according to the first matrix in row 4 of

Table 1, the reflections become 110, 002 and 112, and equation

(1) is no longer satisfied. The same logic was applied to cubic,

tetragonal and orthorhombic crystals, which all give a single

truth table of [1,1,1]; while triclinic, assuming at least two
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Table 1
Truth table for a rhombohedral crystal based on T1, T2 and T3 calculated
from equation (1).

A value of 1 means there is a triple intersection. A value of 0 means there is a
split intersection. The three transformation matrices in each row are
equivalent and give the same vector representation in the truth table.

Transformation matrices T1 T2 T3 (rhombohedral)

1 0 0

0 1 0

0 0 1

2
4

3
5

1 0 0

0 �11 0

0 0 �11

2
4

3
5

0 �11 0
�11 0 0

0 0 �11

2
4

3
5

½ 1 1 0 �

0 �11 0

1 0 0

0 0 1

2
4

3
5

1 0 0

0 0 1

0 �11 0

2
4

3
5

0 1 0

1 0 0

0 0 �11

2
4

3
5

½ 0 0 0 �

�11 0 0

0 �11 0

0 0 1

2
4

3
5

0 0 1

0 �11 0

1 0 0

2
4

3
5

1 0 0

0 �11 0

0 0 �11

2
4

3
5

½ 1 0 0 �

0 1 0
�11 0 0

0 0 1

2
4

3
5

1 0 0

0 0 �11
0 1 0

2
4

3
5

0 0 �11
0 �11 0
�11 0 0

2
4

3
5

½ 0 1 0 �

Figure 5
(a) Two splitting fingerprints measured at low stress. (b) The observed fingerprint measured at high stress. (c) Calculated fingerprints for the four
inequivalent settings of the rhombohedral phase. (d) Calculated fingerprints for the three inequivalent settings of the monoclinic phase.



angles deviate from 90� and are not equal, gives a single truth

table of [0,0,0]. The truth tables for rhombohedral and

monoclinic crystals are presented pictorially in Fig. 5.

3.3. Phase identification

Five lines can be seen at T3 in Fig. 3. These are produced by

two phases and can be indexed as the 002, 200 and 202

reflections. The absence of closed triple intersections imme-

diately eliminates the possibility of cubic, tetragonal and

orthorhombic phases being present. This is because changes in

a, b or c, or any combination thereof, cannot split the inter-

sections produced by this combination of coplanar reflections.

T1, comprising the �1110, 002 and �1112 reflections, shows a split

intersection and a closed intersection. Of course, a different

assignment of the lines could mean that there were two split

intersections. While this is an unlikely occurrence, it is easily

checked with DMS by changing the incident wavelength,

which can split the intersections formed by lines from neigh-

bouring phases. T2 shows two closed intersections composed

of the 01�11, 200 and 21�11 reflections. Now we can construct the

table for the low-stress phase shown in Fig. 5(a). The two sets

of lines merge at high stress. T1 is split, while T2 and T3 are

closed. As before, the splitting of just one of the intersections

eliminates the possibility of cubic, tetragonal and ortho-

rhombic phases. Identifying these phases is a simple process of

comparing the table constructed directly from the data with

the tables presented in Figs. 5(c) and 5(d). This can be done

independently of the experimental geometry.

Fig. 5 shows the splitting for the four unique settings for the

rhombohedral crystal system [Fig. 5(c)] and the three unique

settings for the monoclinic system [Fig. 5(d)]. The low-stress

phases can be explained by the green and blue columns

(columns 1 and 4), indicating that both phases are rhombo-

hedral, or two domains of the same phase. Following the same

logic, the splitting pattern for the high-stress phase matches

the yellow column (column 1), indicating that it is monoclinic.

Once the phases have been identified, the lines can be

assigned to their respective phases and used to refine the

lattice parameters to a precision of 5 � 10�5Å (Lonsdale,

1947; Nisbet et al., 2021).

4. Conclusions

We have demonstrated a new methodology for discriminating

between phases in complex solid solutions. A splitting

fingerprint over multiple triplets can be generated. This

reduces the phase identification to the simple task of using a

lookup table. The technique has been developed for DMS but

is applicable to Kossel lines (Kossel, 1935) and pseudo-Kossel

lines (Imura, 1954).
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