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An equiatomic nickel–titanium shape-memory alloy specimen subjected to a

uniaxial tensile load undergoes a two-step phase transformation under stress,

from austenite (A) to a rhombohedral phase (R) and further to martensite (M)

variants. The pseudo-elasticity that goes accompanies the phase transformation

induces spatial inhomogeneity. To unravel the spatial distribution of the phases,

in situ X-ray diffraction analyses are performed while the sample is under tensile

load. However, the diffraction spectra of the R phase, as well as the extent of

potential martensite detwinning, are not known. A novel algorithm, based on a

proper orthogonal decomposition and incorporating inequality constraints, is

proposed in order to map out the different phases and simultaneously yield the

missing diffraction spectral information. An experimental case study illustrates

the methodology.

1. Introduction

X-ray diffraction (XRD) is a popular non-destructive quali-

tative and quantitative technique aimed at characterizing

crystal lattice parameters (Drickamer et al., 1967), local strain

(Gailhanou et al., 2007), microstructure evolution (Oliveira et

al., 2022) or phase constituent proportions (Peng et al., 2005)

from analysed specimens (e.g. metals, polymers and ceramics).

Although XRD has been primarily emphasized as an efficient

tool for qualitative analyses, it is often used to perform

quantitative measurements of the phase concentrations within

a material. The Rietveld refinement method (McCusker et al.,

1999) is generally applied to conduct quantitative analysis of

XRD patterns, but it requires the diffraction profiles for all

possible phase constituents to be collected appropriately

during the preparation stage, so that the individual compo-

nents can be adequately identified afterwards. From a prac-

tical point of view, this preparation is rather demanding for

(complex) heterogeneous specimens. Moreover, the preferred

orientation effects of XRD measurement (Dickson, 1969;

Campbell Roberts et al., 2002) are extremely difficult to deal

with experimentally.

A metallic specimen with a pronounced preferred orienta-

tion – especially with a flat-plate geometry – may exhibit a

strong {hkl} intensity dependency when compared with theo-

retical powder diffraction patterns. Although many Rietveld

refinement programs allow for the identification of an artificial

preferred orientation parameter with respect to a specific

crystallographic vector based on either the March–Dollase

model (Dollase, 1986) or the generalized spherical harmonic

model (Sitepu et al., 2005), this remains a crude approximation

when assessing heterogeneous multi-phase specimens.

In this work, a proper orthogonal decomposition (POD)

algorithm, suitably extended to incorporate inequality
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constraints such as positivity (and referred to as positive-POD

or p-POD), is proposed to circumvent the aforementioned

challenges: For all phase constituents whose diffraction

profiles are experimentally available (denoted ‘known

constituents’), the POD technique (Chatterjee, 2000) is first

applied to construct the experimental diffraction spectrum

while taking the preferred orientation effect into account.

Then, by enforcing positivity constraints, the phase concen-

trations for the known constituents can be estimated through a

quadratic minimization with convex positive constraints using

the sub-gradient projection algorithm (Boyd et al., 2003).

Finally, the phase concentration and experimental diffraction

data for the unknown constituents can be obtained.

The performance of the proposed algorithm is illustrated

using a strip-shaped specimen made of equiatomic nickel–

titanium shape-memory alloy (NiTinol) subjected to a uniaxial

tensile load. Under stress, nickel–titanium alloys are

frequently reported to undergo a two-step martensitic phase

transformation in the form of strain localization bands at

ambient temperature [from austenite (A) to rhombohedral

(R) and further to martensite (M)] (Miyai et al., 2006; Halani

et al., 2013; Stebner et al., 2015).

At a given load, the XRD profiles are recorded, scanning

through the specimen along the tensile direction, i.e. across the

strain localization bands, so as to elucidate the on-going phase

transformation(s) from the progressive changes in the

diffraction spectra. For NiTi shape-memory alloys, depending

on the forming process and chemical composition, when

subjected to mechanical loads the R phase sometimes appears

as an intermediate phase in a two-step phase transformation.

It usually co-exists with austenite at the macroscopic scale

(whatever the stress or thermal load), which impedes the

measurement of its individual diffraction spectrum. In

contrast, it is possible to find specific conditions for which pure

austenite or martensite phases exist in the specimen.

Moreover, the formation of strain localization bands is a

macroscopic outcome of the ‘martensite detwinning’ process

(Ng & Sun, 2006) (also known as ‘martensite variants selec-

tion’), resulting in a pronounced preferred orientation effect.

The missing R-phase diffraction pattern and the un-

determined preferred orientation of martensite variants

prevents the Rietveld refinement method from achieving any

comprehensive results. To overcome this limitation, the

proposed p-POD algorithm permits the estimation of the

concentration of different phases along the sample and

provides an estimated R-phase diffraction spectrum. The

proposed method is extremely versatile, since it requires

neither complete knowledge of the diffraction data for all

constituents nor challenging experimental processing to

remove the signature of preferred orientations in the

specimen.

The paper is organized as follows. Section 2 presents the

combined in situ XRD and digital image correlation (DIC)

measurement setups and the associated strain fields and raw

diffraction spectra acquired during 1D tensile loading. The

Rietveld processing method is recalled briefly in Section 3.

Section 4 introduces the positive POD algorithm to conduct

phase field reconstruction. Section 5 applies the proposed

algorithm to the spectra of NiTinol recorded in scans along the

tensile axis at different stages of loading. Section 6 draws some

conclusions.

2. Equiatomic NiTinol under uniaxial tensile loading

2.1. Tested specimen

A specimen of quasi-equiatomic Ni–Ti alloy (NiTinol) (thin

parallelepipedic central zone of length LAD = 14 mm, width l =

3 mm and thickness h = 0.3 mm) was positioned (Fig. 1) in a

mechanical testing machine located within an XRD chamber.

The specimen surface was speckled with white paint to

provide enough contrast for DIC analyses to measure the

displacement field under load. Attention was paid to ensuring

that the paint did not affect the diffraction pattern over the

range of diffraction angles of interest in the following.

2.2. Experimental setups

As shown in Figs. 2 and 3, a wide-angle X-ray diffractometer

equipped with a conventional X-ray source (cobalt K� with a

wavelength � = 1.79 Å) and a curved detector (Inel CPS-120)

was used to measure the XRD spectrum along diffraction

angles 2� varying in the range 20 < 2� < 140�. An Fe filter was

used to suppress the contribution of Co K� to the X-ray

radiation.

To limit any cross-influence between the two setups, a prism

was used to redirect the image of the specimen surface

towards a visible-light camera (Camera 1). A displacement-

controlled 1D tensile test was carried out at room temperature

(T = 300 K) with a loading speed _UU = 1 mm s�1 (corresponding

to a longitudinal strain rate _�� = 10�4 s�1). An initial XRD scan

was conducted in the stress-free configuration. The mechan-

ical test was then interrupted three times along the loading

stage, during which the displacement was held constant (U =

0.3, 0.4 and 0.6 mm), and a similar holding time was consid-

ered during unloading (U = 0.3 mm), to perform the XRD

measurement along a longitudinal profile (referred to as a

‘scan’ in the following). The corresponding stress/strain curve

is reported in Fig. 4(a). The DIC-measured deviatoric strain
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Figure 1
The geometry of the specimen for the uniaxial tensile test. The effective
zone for XRD measurement is between A and D, of length LAD = 14 mm.



field and strain rate are plotted in Fig. 4(b). Two localization

bands are formed, and the region where the strain is above 5%

corresponds to the region which has transformed into

martensite. The strain-rate field highlights the transformation

front. The temperature elevation due to the latent heat

released in the phase transformation prevents the propagation

of a single transformation front, and hence several bands are

observed in the tested specimen.

The geometry of the specimen is given in Fig. 1. The

designed region of interest is 10 mm long between points B

and C, with B and C marked with very shallow landmarks.

However, points B and C could no longer be seen during the

experiment for both DIC and XRD measurements after

spraying the speckle patterns onto the specimen. As a result,

the effective XRD region length was 14 mm long, between

points A (x = 0) and D (x = 14). At each of the four inter-

ruptions (denoted Steps 0–3) [shown as red marks in Fig. 4(a)],

XRD spectra were recorded, scanning along the load axis in
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Figure 3
Different views of the in situ combined XRD and DIC measurement
setup.

Figure 4
(a) A stress–strain curve during the 1D tensile loading. The positions
where the XRD scans were recorded are shown as red circles. (b) The
(Eulerian) deviatoric strain (left) and strain rate (right) fields at the first
loading stage (scan performed at Step 1), as measured by DIC, appear to
be strongly heterogeneous.

Figure 2
Schematic diagrams of the in situ combined multi-field measurement
utilizing XRD and digital image correlation. (a) The angular XRD
measurement setup in the Oxz plane. (b) An illustration of the DIC setup
in the Oyz plane.



the central part of the Ni–Ti specimen (corresponding to

spatial scanning coordinates 0 mm � y � 14 mm).

2.3. Spatial spectra

The raw spectra collected at the four interruption stages are

plotted in Fig. 5. For the sake of readability, here and in the

following an offset proportional to the y coordinate of the

studied spot is added to the spectra so that they do not

overlap.

2.3.1. Masking and clipping. As indicated in Fig. 5, some

angular intervals of the recorded spectra are not reliable:

(i) The contribution of Co K� to the experimental XRD

should be excluded to grant us a single dominant wavelength

of � to facilitate the indexing of diffraction peaks using

diffraction theory.

(ii) The Fe filter gives rise to a double absorption in the

range of diffraction angles 62 � 2� < 65�.

(iii) The optical prism obscures the X-ray detector for 2� �
100� during Steps 1–3 (during Step 0 the prism was not yet

installed), as shown in Fig. 3.

In order to perform the peak indexing of the diffractograms

properly, masking all three of these regions is mandatory.

Consequently, all diffraction signals shaded in grey as shown in

Fig. 5, within the corresponding ranges of diffraction angles

(that is [44�, 46�] [ [62�, 65�] [ [100�, 140�]), are omitted from

the analysis throughout this paper.

2.3.2. Qualitative analysis. The crystallography of NiTinol

alloys has been extensively investigated. With the published

crystallographic information [A and M (Bhattacharya, 2003),

and R (Zhang & Sehitoglu, 2004)], it is possible to use powder

diffraction theory (Cullity, 1956) to construct theoretical

diffractograms (as illustrated in Fig. 6) and provide qualitative

characterization of the phase constituents present at the four

different stages.
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Figure 5
Diffraction spectra at different spatial coordinates. (a) Step 0, the stress-free state. (b), (c) Steps 1–2 (intermediate stages), on-going martensitic
transformation inside the region of interest. (d) Step 3 (maximum displacement), the central zone of the sample is fully transformed into martensite.



Step 0. In the ambient load-free state (� = 0 MPa, T =

300 K), NiTinol is usually considered as pure austenite. The

{hkl} diffraction peaks at different spatial coordinates in

Fig. 5(a) at 2� = 49 and 92� correspond to A{110} and A{211},

respectively, which are consistent with the theoretical XRD

diffractograms. The {200} peak is not visible in the experi-

mental spectra because of the pronounced crystallographic

texture of this laminated material (Chang et al., 2020).

Therefore, at this stage, the collected experimental diffraction

spectra are taken as the data profile for pure austenite.

Steps 1 and 2. When comparing the diffractograms at

different spatial locations as illustrated in Figs. 5(b) and 5(c),

pronounced differences can be observed. For example,

focusing on the range 48 � 2� � 52�, a large shift in the peak

position and in its broadening characterized by its full width at

mid-height (FWMH) can be seen along the sample axis. For all

spectra acquired in the range 2 � y � 4 mm [within the high-

strain band as illustrated in Fig. 4(b)] the spectra appear as

pure martensite, characterized by the typical double marten-

site peaks in the range 90 � 2� � 100�. Outside the trans-

formed region, the co-existence of A and R phases can be

verified by the secondary peak at 2� = 51�, which can be

unambiguously attributed to the R {202} crystal lattice

diffraction plane.

Step 3. Experimental pure martensite diffraction spectra

can be collected when the external loading has reached the

end of the stress–strain transformation plateau, at point

‘Step 3’ marked with a red circle in Fig. 4. The corresponding

diffractogram in Fig. 5(d) can be considered as pure marten-

site with a typical double martensite peak in the region 90 �

2� � 100�.

From Fig. 5, a series of raw spectra D(2�, y) are obtained,

each of which is composed of the three phases of NiTinol: A,

M and R. For the proper identification of these phases, it is

possible to prepare the specimen to obtain pure A and M

phases with either a load-free state at high temperature

(austenite) or under load after a full transformation

(martensite), with a representative anisotropy along the

tensile axis due to the selection of variants. However, this is

not the case for the R phase: in a previous study (Chang et al.,

2020), by conducting differential scanning calorimetry (DSC)

over the NiTinol specimen, it was shown that the R phase is

present only in the intermediate stages and never uniformly.

With careful sequential Rietveld refinement, thermally

induced martensite detwinning diffraction profiles and asso-

ciated concentrations can be accurately estimated, as reported

by Oliveira et al. (2021). However, in the present case, the

combination of missing knowledge of the R diffraction profiles

and possible preferred orientation effects due to martensite

detwinning makes it very difficult to use the Rietveld refine-

ment method to conduct any reliable quantitative analysis. To

highlight these difficulties better, and how we propose to

circumvent them with the positive POD algorithm, the Riet-

veld method and its limitations are briefly recalled in the

following section.

3. Rietveld method

The original presentation of the Rietveld method (Rietveld,

1969) is followed in the discussion below.

3.1. Integrated intensities and estimated diffraction profile

For Bragg diffraction peaks, the integrated intensities I{hkl}

can be written as

Ifhklg ¼ KpfhklgL�P�A�TfhklgEfhklgF
2
fhklg; ð1Þ
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Figure 6
Theoretical XRD profiles (integrated intensities) for (top) austenite, (middle) R phase and (bottom) martensite.



where K is a scale factor, p{hkl} is a multiplicity factor to

account for symmetry in the reciprocal lattice, L�, P� and A�

represent, respectively, the Lorentz, polarization and absorp-

tion factors, T{hkl} is the preferred orientation factor, E{hkl}

designates the extinction factor, and F{hkl} is the structure

factor.

Various effects generate a Gaussian-like broadening of each

peak, so that the estimated diffraction profile for a given pure

phase � can be approximated as

Scalc
� ð2�Þ ¼

X
fhklg

I�;fhklg exp �
4 lnð2Þ

H2
fhklg

2� � 2�fhklg

� �2

" #

þDbgð2�Þ; ð2Þ

where H{hkl} represents the full width at half-maximum

(FWHM) for a given {hkl} peak and Dbg(2�) represents the

background of the XRD signal.

3.2. Rietveld refinement

Several assumptions are made here: diffraction profiles

between different phase constituents follow a natural mixture

law, and other XRD parameters are known (e.g. background,

FWHM, asymmetry parameters, unit-cell dimensions,

preferred orientation etc.). Rietveld refinement aims to

determine the phase concentration C� through a nonlinear

least-squares fitting,

C� ¼ arg min
C�

X
2�

Dexp
ð2�Þ �

X
�

C�Scalc
� ð2�Þ

" #2

; ð3Þ

where Dexp represents the experimental diffraction profile.

Despite the widespread usage of Rietveld refinement in

XRD characterization, three major limitations need to be

specifically addressed.

(i) Noise. The quadratic cost function implemented in

Rietveld refinement rests upon the assumption that the noise

in the XRD measurement follows a Gaussian distribution with

a uniform variance (in 2�) for C� to be optimal. However, for

X-ray detectors, it is commonly reported that noise follows a

Poisson distribution. In such a case, the chosen quadratic cost

function in Rietveld refinement is not ‘wrong’ but neither is it

optimal. Hence the nature of the measured noise needs to be

characterized first and the cost function needs to be adapted

accordingly, with a weight proportional to the inverse inten-

sity.

(ii) Correlated parameter fitting. To the best of the authors’

knowledge, most commercial program codes using Rietveld

refinement require a sequence of parameter refinement

(background, unit-cell crystal parameters, asymmetry para-

meters, preferred texture factor etc.) to reach the sought phase

concentration. Therefore, when dealing with data from a

mixture of different phases with a pronounced texture

preference, the nonlinear least-squares fitting is prone to

secondary minimum trapping, and the set of correlated para-

meters (concentration, preferred orientation) are ill-esti-

mated. Thus, simplifying the Rietveld refinement protocol and

determining the phase concentration with fewer model para-

meters is appealing.

(iii) The effect of preferred orientation. This question is

discussed further in Section 3.3.

3.3. The effect of preferred orientation

In this section, in addressing the role of preferred orienta-

tion for a single phase �, it is assumed that other parameters

remain constant through the entire experiment.

3.3.1. Case 1: a single crystal. If the crystal lattice orien-

tation of the phase is unique and represented using a rotation

quaternion denoted n1, the diffraction profile is denoted Sn1
� ,

which can be seen as the set of intensities of the different {hkl}

Bragg diffraction peaks.

For a single crystal having a different crystal orientation, say

n2 , its diffraction profile is related to the former from a matrix

transformation T(n1, n2) such that

Sn1
� ¼ Tðn1; n2Þ S

n2
� : ð4Þ

3.3.2. Case 2: a single crystallographic phase with a strong
texture. When a strong texture is present in the tested

specimen, it is possible to use a reduced basis (n1, n2) to

represent the distribution of possible crystal lattice orienta-

tions. The concentration of any experimental diffraction

profile from phase � can be approximated with the corre-

sponding diffraction profiles ðSn1
� ; Sn2

� Þ,

D� ¼
X2

i

Sni
� Cni

� ; ð5Þ

X
Cni
� ¼ 1; Cni

� � 0; ð6Þ

Sni
� ¼ Sei

�Tðni; eiÞ: ð7Þ

3.3.3. Case 3: a single crystallographic phase but following
a statistical distribution of orientations for multiple grains. It

must be recalled that only three directions (for example, one

of the most conventional choices is the h100i, h110i, h111i

orientation used for pole figures) are required to map the

entire crystal orientation of the specimen. Consequently, as a

natural expansion of equation (4), any experimental diffrac-

tion profile of the polycrystal can be expressed as a linear

combination,

D� ¼
X3

i

Sei
�Cei

� ;
X

Cei
� ¼ 1; Cei

� � 0; ð8Þ

where Sei
� and C

ei
� represent, respectively, the XRD profile

following a given direction of the crystallographic lattice plane

ei and its associated concentration. {e1, e2, e3} represents any

basis of the diffracting crystal plane orientation.

Several remarks are to be made here:

(i) Equation (9) can be considered as the generalized

formulation of the experimental diffraction profiles of a pure

phase (either a single crystal or a polycrystal with a

pronounced texture preference are particular cases).
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(ii) Hereinafter, Sei
� ð2�Þ is used to represent the XRD profile

for a single phase with a particular orientation ei (after

convolution accounting for instrumental acquisition). In this

respect, other model parameters are no longer to be identified

independently for phase concentration determination. Thus,

the number of unknowns in the refinement is drastically

reduced.

(iii) When the preferred orientation effect is present in the

tested sample, it requires at least two (and at most three) sets

of preferred orientation factors; hence two or three diffraction

profiles are needed for the same phase to guarantee a trust-

worthy phase concentration estimation. The preferred orien-

tation correction implemented in the Rietveld refinement

method is a first-order correction considering the principal

crystal lattice orientation

(iv) The non-uniqueness of the (reduced) basis ei is very

beneficial. Taking a highly textured specimen as an example

(Appendix A), one could select any reduced basis (n1, n2) and

its corresponding diffraction profiles ðSn1
� ; Sn2

� Þ to calculate the

corresponding amplitudes ðC
n1
� ;C

n2
� Þ.

The positive POD algorithm is introduced in the following

section, and a proof of concept is given to construct a reduced

basis from experimental data.

4. p-POD algorithm

The analysis consists of five steps:

(i) Correction of background contribution.

(ii) Evaluation of XRD acquisition noise.

(iii) Preparation of the experimental diffraction data for

each constituent phase for which spectra are experimentally

available.

(iv) Estimation of the optimal set of phase concentrations

for each ‘known’ phase by enforcing positivity constraints.

(v) Estimation of the diffraction profiles for the remaining

phase constituents.

4.1. Background correction

In addition to the sought diffraction peaks, a nonzero

background signal is present in all spectra as a result of diffuse

scattering and unavoidable experimental imperfections

(Cullity, 1956). It is therefore necessary to estimate this

background signal Dbg(2�, y) and subtract it from the raw

spectra Draw(2�, y) prior to any further analysis,

Dð2�; yÞ ¼ Drawð2�; yÞ �Dbgð2�; yÞ; 8 y 2 y: ð9Þ

A fourth-order polynomial function is chosen to account for

the spectrum background. It should be such that the resulting

D(2�, y) is always positive after background removal. Thus

Dbg is computed from the minimization of the following cost

function C,

C ¼
X
�

P Dbgð2�; yÞ �Drawð2�; yÞ
� �� �2

��Dbgð2�; yÞ; 8 y 2 y;

ð10Þ

where P is the ‘positive part’ function [PðyÞ ¼ y if y � 0 and

PðyÞ ¼ 0 if y < 0] and � is a scalar. The ‘penalty’ termP
�fP½Dbgð2�; yÞ �Drawð2�; yÞ�g2 promotes the positivity of

D(2�, y) so that the background should remain below the raw

spectrum, while the second term favours a high background,

with a uniform ‘pressure’ � to line up to the minimum values

of the spectrum. Because of the presence of XRD noise, the

chosen parameter � is to be set so that some negative values

are tolerated in the resulting signal D(2�, y) (after background

correction). In quantitative terms, � is tuned so that the

negative values in the residuals have a distribution compatible

with the characterized Poisson noise (discussed in the

following section). Because of the truncation to negative

values, the mean-square value of those negative residuals

should be half the noise variance.

In the following, a similar methodology is applied to

determine the unknown R-phase spectrum: assuming that at

this stage the austenite and martensite spectra are already

known, by selecting the appropriate ratio between the pres-

sure and penalty terms, the austenite/martensite XRD

contributions can be extracted from the experimental

diffraction spectrum while the residual is expected to be

‘positive’. Thus the residual can be further interpreted as the

missing R-phase spectrum weighted by its concentrations.

4.2. Uncertainty analysis

In order to evaluate the noise associated with XRD analysis,

we conducted five scans over a single-phase specimen by

varying the XRD acquisition time (e.g. t = 5, 10, 15, 20,

25 min). Processing those acquisitions led to the conclusion

that the noise is Poisson-like, with a distribution that could not

be distinguished from a Gaussian and a variance that varies

linearly with the mean count and thus the accumulation time.

The motivation of this prior study is to allow an assessment of

whether the residual spectrum (difference between measured

and estimated spectra) is compatible with the observed noise.

In practice, this is done by estimating the differences and

normalizing them (for all angles) by the local standard

deviation (itself proportional to the square root of the mean

signal and acquisition time). Comparing the residual with the

noise thus consists of observing that this scaled residual is

uniform over all angles and its distribution is a Gaussian of

zero mean and unit variance.

4.3. Experimental diffraction data for pure phase constituents

In order to collect pure diffraction data while taking

potential preferred orientation effects into account, it is

recommended to collect diffraction spectra at N different

spatial coordinates y and rearrange them into a matrix form

D(2�, y) on which the POD analysis is performed:

Dð2�; yÞ ¼
XN

n¼1

dnUnð2�ÞVnðyÞ; ð11Þ

where Un(2�) represents the nth POD angular modes and

Vn(y) is the corresponding spatial amplitude. dn represents the

energetic contribution of the nth POD mode to the diffraction
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matrix as a result of the normalization of each mode, kUnk� = 1

and kVnky = 1 (the subscript after the norm symbol recalls that

these two norms operate in different spaces).

In the following, the discussed test case is such that three

phases and only three are expected in this material. With the

additional assumption that their orientation is transversely

isotropic, it would be expected that no more than three modes

are needed to account for the entire set of data. This obviously

does not mean that the angular modes Un(2�) for n = 1, 2 or 3

should coincide with the pure-phase spectra, but rather that

the linear combinations of these three modes should be

sufficient to match any composition of the three phases.

This simple presentation rests on the assumption of a

unique type of orientation distribution per phase. Here

transverse isotropy is the most likely, but a single orientation

or an isotropic distribution would also lead to the same result

that no more than three modes are needed to account for all

acquired experimental spectra (with the exception of noise

which can be considered as an additional mode). In cases

where the orientation or orientation distribution is evolving

along the loading direction, then more modes should be added

with a maximum of three modes per phase, as discussed above

(neglecting symmetries that can reduce this number).

It must, however, be emphasized that one of the key

properties of POD analysis is that the modes are ordered

along a specific hierarchy, according to their relative power

contributions (more precisely, the power of the nth mode is

proportional to its squared eigenvalue, d2
n) in decreasing

order. Therefore, the analysis has the potential to proceed

with simple assumptions (such as no more than three modes)

and test from the residuals (the unexplained data) whether

they are compatible with the noise, and hence the initial three-

phase assumption is deemed satisfactory, or if the basis should

be enriched to account for preferential orientation effects.

(Note that, when the residual is within the noise level, this

does not mean that the assumptions are correct, but simply

that their further refinement cannot be obtained from the

currently available noisy XRD data.) Also, because the modes

are not the spectra of pure phases, some work is needed to

perform a physically meaningful conversion. This is the

motivation of the following section.

4.4. Positive POD algorithm

For powders, any diffractogram obtained at a given spatial

coordinate D(2�, y) should be equal to the sum of each pure i

phase spectrum Si(2�) weighted by its volume fraction Ci(y).

For austenite, due to its crystalline symmetry (with a body-

centred cubic crystalline structure), its experimental XRD

spectrum is unique regardless of its crystal orientation. In

contrast, we assume that the R and M phases (with a much

lower crystalline symmetry than the A phase) are subject to

potential variant selection during 1D tensile loading; a

different combination of variant selection induces a modula-

tion of different peak intensities for the XRD spectra, and

consequently the experimental diffraction patterns for the R

and M phases are not unique.

Dð2�; yÞ ¼
X
�

C�S� þ sð2�Þ; � ¼ A;Ri;M j; ð12Þ

X
�

C� ¼ CAðyÞ þ
X

i

CRiðyÞ þ
X

j

CM j ðyÞ ¼ 1; 8 y; ð13Þ

where SRið2�Þ denotes the ith R-phase diffraction spectrum,

SM jð2�Þ represents the jth M-phase diffraction spectrum and s
denotes the Poisson noise of the raw signal.

As discussed earlier, the diffraction patterns for A and M

variants can be obtained experimentally, whereas the R-phase

diffraction profile is as yet unknown. After eliminating the

entire signal contribution from all ‘known’ phase constituentsP
� C�S� (� denotes the austenite and martensite spectrum),

the remaining diffraction signal at any given diffraction angle

is expected to remain positive for each angle. However,

because of the presence of XRD noise, one may tolerate some

negative values (as for the case of background signal removal)

when consistent with our prior knowledge of its statistical

characteristics.

In the following, at each position y an optimum set of local

phase concentrations C�ðyÞ ¼ ½CA;CM j � can be obtained

through the quadratic minimization of the primary cost

function,

FðC�Þ ¼
X

2�

P

X
�

C�S�ð2�Þ �Dð2�; yÞ

" #2

�
X
�

��C�S�ð2�Þ;

ð14Þ

where � ¼ A;M j, P is the positive part function and �� is a

positive scalar. Similarly to the background correction, the

‘penalty’ term
P

2� P½
P

� C�S�ð2�Þ �Dð2�; yÞ�2 promotes the

positivity of the residual signal, and �ð2�; yÞ =

Dð2�; yÞ �
P

� C�S�ð2�Þ so that the total contribution of all

known phase constituents C�S� should remain below the local

diffraction signal. In contrast, the second ‘pressure’ termP
� ��C�S�ð2�Þ favours a large contribution for each known

constituent, which is increased as much as possible (similar to

the ‘penalty’ and ‘pressure’ terms introduced for the back-

ground).

The minimization of the primary cost function should be

carried out under the following convex inequality constraints:

(i) Each phase concentration is expected to be positive,

C�ðyÞ � 0; � ¼ A;M j: ð15Þ

(ii) The sum of all concentrations is expected to be lower

than 1,

CAðyÞ þ
X

j

CM jðyÞ � 1; 8 y: ð16Þ

In the following, we propose to group all the above physical

inequality constraints on the concentration (15)–(16) into a

single matrix form,

EC� F � 0: ð17Þ
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4.5. Sub-gradient projection

Finding the optimum set C with respect to all positive

constraints is a typical convex inequality constrained problem,

which consists of minimizing the cost function FðCÞ subject to

EC� F� 0. The sub-gradient projection method is frequently

used to handle constrained optimization problems. First, the

dual cost function (or the augmented Lagrangian) GðC; �Þ is

introduced,

GðC; �LÞ ¼ FðCÞ þ �LðEC� FÞ; ð18Þ

where �L is the classical augmented Lagrange multiplier to

ensure that all physical concentration constraints are fulfilled.

The minimization of the dual cost function not only pushes the

residual � close to 0 while remaining ‘positive’ but also grants

the physical admissibility of phase concentrations.

With an initial guess of C(k), the sub-gradient can be

computed as

Tk
ðCðkÞ; �LÞ ¼ @CðkÞG; @kL

G
� �T

: ð19Þ

Here Tk(C(k), �L) is a positive and monotonic operator. The

solution C(k) is updated via the sub-gradient projection,

Cðkþ1Þ
¼ CðkÞ � 	TðkÞ; ð20Þ

where 	 is the step length. A relatively small step length is

applied to prevent numerical oscillations, 	 = 1. The value of 	
could be further optimized for a faster convergence rate.

However, because the computation time was not a critical

factor, this optimization was not investigated. The sub-

gradient projection is repeated until C(k) reaches a stationary

value,

Cðkþ1Þ
� CðkÞ

CðkÞ

����
���� � 10�4: ð21Þ

Note that the sub-gradient method is not a descent method;

the primal and dual cost function values can (and often do)

increase before reaching convergence.

5. Positive POD algorithm applied to the case of
nickel–titanium alloys

5.1. Background correction

An example of the background correction procedure is

illustrated in Fig. 7 using a local spectrum at step 1. The

missing channels due to experimental artifacts (K�, double

absorption by the Fe filter, prism obscuration) make the

fourth-order polynomial background signal fitting even more

difficult. To overcome this problem, we propose to add addi-

tional information from diffraction signals over 2� 2
[35�, 45�] [ [125�, 135�], which are away from any relevant

diffraction peaks; these channels are expected to be centred

around zero after background removal. The presence of ‘zero’

channels at the boundary of the spectrum, instead of diffrac-

tion peaks, greatly improves the stability of the background

correction algorithm.

After choosing the appropriate ratio � = 0.12 between the

pushing force and the penalty term [see equation (10)], the

background signal is properly estimated (after background

correction, for 2� channels away from {hkl} diffraction peaks,

the diffraction counts are mostly centred at 0). The differences

between the background signals at different spatial positions

are very small. Therefore, the average background signal was

used in this study to minimize uncertainty. In the following

sections, for all four loading stages where XRD scans were

carried out, raw diffraction spectra received the same back-

ground removal as a pre-processing before launching the

p-POD analysis.

5.2. Uncertainty analysis

The uncertainty analysis is carried out on fully austenitic

NiTinol at room temperature. Five XRD scans are carried out

with corresponding acquisition time intervals t = 5, 10, 15, 25,

30 min [Fig. 8(a)], and the differences between these XRD

scans are then computed [Fig. 8(b)].

The identified noise follows a Poisson-type distribution [the

variance scales with the amplitude of the diffraction signals at

each channel, see Fig. 9(a)]. When a signal is affected by

Poisson noise, its Anscombe transform exhibits a stationary

Gaussian noise of uniform variance (Anscombe, 1948) as soon

as the noise amplitude is small compared with the signal. In

the present case, the Anscombe transform simply consists of

research papers

758 Xuyang Chang et al. � Three-phase material mapping J. Appl. Cryst. (2023). 56, 750–763

Figure 7
(a) The raw diffraction spectrum plotted in blue and the estimated
background signal plotted in red. (b) The corrected diffraction spectrum
after background correction.

Figure 8
Uncertainty analysis. (a) Experimental austenite spectra collected with
different acquisition times. (b) Eigenvalues of each POD mode ranked in
decreasing order. (c) Angular shape functions for the first two POD
modes. The second mode has been offset by �0.1 for readability.



taking the square root of the signal. The re-scaled noise after

Anscombe transformation does indeed show the expected

variance uniformity over angle and time [see Figs. 9(b) and

9(c), respectively].

5.3. Experimental diffraction data collection

5.3.1. Austenite diffraction spectrum. After thermal

heating to transform the 1D NiTinol strip completely into a

fully austenite state, the experimental austenite diffraction

data can be collected in the stress-free state at room

temperature at eight different spatial locations [as shown in

Fig. 5(a)]. The POD analysis (Fig. 10) indicates that, for

austenite diffraction profiles, the first POD mode with the

highest eigenvalue can be interpreted as the diffraction

pattern of austenite, and higher-order POD modes (without

any significant peak or structure) are compatible with noise

and will be considered as such in the following.

5.3.2. Experimental martensite diffraction spectrum
collection. Experimental martensite diffraction data can be

collected when the NiTinol specimen has been fully trans-

formed into martensite [e.g. the end of the transformation

plateau corresponding to Step 3 in Fig. 4(a)]. In order to take

into account potential preferred orientation effects, spectra

are acquired at eight different spatial coordinates in the region

of interest (y = 7, 7.5, 8, 8.5, 9, 9.5, 10 and 10.5 mm). After

rearranging the eight different diffraction spectra into a matrix

form, a POD analysis is performed (see Fig. 11). Plotting

eigenvalues against POD modes, it is clear that at least two

POD modes are needed to describe all spectra faithfully.

The first POD angular mode represents the principal

diffraction pattern of martensite. In the range 48 � 2� � 53�,

multiple martensite diffraction peaks contribute: Mf111g (2� =

48.3�), M{020} (2� = 51.4�), M{111} (2� = 52.4�) and M{012}

(2� = 52.9�). In the range 92 � 2� � 98�, one finds the char-

acteristic martensite diffraction peaks M{023} (2� = 93.4�) and

M{220} (2� = 98.9�). Meanwhile, higher-order POD modes,

although very noisy, can be seen as the underlying undulation

in {hkl} intensities due to spatial heterogeneity of ‘martensite

detwinning’ across the martensite localization band.

When confronted with the non-uniqueness of the marten-

site diffraction data due to ‘martensite detwinning’, it is

possible to enrich the martensite diffraction profiles by

introducing multiple different martensite diffraction patterns.

In the present case, two martensite patterns were chosen. The

optimum set of two martensitic diffraction spectra

[SM1 ð2�Þ; SM2 ð2�Þ] should satisfy the constraint of physical

admissibility, namely, the corresponding phase concentration

for each diffraction profile should obey

Dð2�; yÞ ¼ CM1 ðyÞSM1 ð2�Þ þ CM2 ðyÞSM2 ð2�Þ þ 
ð2�; yÞ;

8 ð2�; yÞ; ð22Þ

CM1 ðyÞ þ CM2ðyÞ � 1; 8 y: ð23Þ

One possible example set (this set is not unique)

½SM1ð2�Þ; SM2 ð2�Þ� is illustrated in Fig. 12(a). The first experi-

mental martensite diffraction spectrum promotes the M{020}

diffraction peak, while the second shows an enhanced inten-

sity for the M{111} peak. The two proposed martensite

diffraction spectra consistently represent the entire diffraction

matrix, given that the overall sum of these two phase consti-

tuents at different spatial coordinates y equals almost 1, while

each individual concentration remains physically admissible.

The reason why the sum of concentrations does not strictly

equal 1 may be that two spectra are not enough to give an

exhaustive description of the martensite orientations, but the

residual data are so few that adding a third phase would make
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Figure 9
(a) The characterized noise follows a Poisson-type distribution. (b), (c)
Angular and temporal stability for re-scaled noise 
2/D after Anscombe
transformation.

Figure 10
POD analysis applied to the austenite diffraction matrix. (a) Eigenvalues
of each POD mode ranked in decreasing order. (b) The first two POD
angular modes.

Figure 11
POD analysis applied to experimental martensitic diffraction spectra. (a)
Eigenvalues of each POD mode ranked in decreasing order. (b) The first
three POD modes are shown. For clarity, successive modes are offset by
�0.15. (c) The first three spatial POD modes Vn(y) as a function of the
spatial coordinate y.



the problem much less robust, and it was decided not to enrich

this description.

Note that the experimental profiles for austenite and

martensite are now set to the above spectra, S =

½SAð2�Þ; SM1 ð2�Þ; SM2 ð2�Þ�. Hence hereinafter it is possible to

estimate the optimum set of phase concentrations for auste-

nite and martensite for Steps 1 and 2 in Fig. 4(a) and even-

tually to characterize the R-phase diffraction spectrum and its

concentration.

5.4. Positive POD algorithm applied to scans 1 and 2

Two local spectra are selected as examples to illustrate the

performance of the proposed algorithm. The first spectrum,

D12 , is selected for an acquisition positioned inside the

transformed bands (with the presence of a strongly preferred

orientation effect) while the second spectrum, D4, is selected

at a point which is located at the interface between the

austenite matrix and a martensite band (Fig. 13).

5.4.1. First case: acquisition within the transformed band.

At convergence of the p-POD algorithm where both the

primal and dual cost functions reach a stationary value

[Fig. 14(b)], each constituent concentration is physically

admissible and they sum to a value close to 1 [
P

C� ’ 0:95,

see Fig. 14(a)]. Furthermore, the final residual almost vanishes

when compared with the initial spectrum. When re-scaled by

the standard deviation of the XRD noise, it does not show any

significant angular dependency. Thus, it can be concluded that

the p-POD algorithm can reliably and efficiently account for

the preferred orientation effect by introducing physical

constraints and two representative martensite diffraction

patterns (Fig. 15).

5.4.2. Second case: acquisition at the interface between
the matrix and transformation band. In the second case, the

austenite and martensite concentrations stabilize at conver-

gence (see Fig. 16) where the sum is well below 1 (0.6). The

remaining signal after removing austenite and martensite

contributions [Fig. 17(a)] still shows a pronounced angular

dependency after Anscombe transformation that cannot be

attributed to noise. After considering the locations of the

diffraction peaks and their indexing, it is concluded that they

correspond to the R phase.

5.4.3. R-phase diffraction pattern reconstruction. The

p-POD algorithm is applied to the entire set of spectra

collected during scan 1. The residual (remaining signal)

�(2�, y) in the diffraction signal after removal of the

research papers

760 Xuyang Chang et al. � Three-phase material mapping J. Appl. Cryst. (2023). 56, 750–763

Figure 13
Two investigated local XRD scans and known XRD diffraction data for
austenite and martensite. Each spectrum has been offset by 200 counts for
readability.

Figure 14
(a) Phase concentrations for austenite and martensite constituents. (b)
The primal/dual cost functions plotted against iteration number.

Figure 15
(a) A comparison between the raw spectrum, initial residual and final
residual. (b) Initial and final re-scaled residuals.

Figure 12
(a) Two proposed sets of different martensite diffraction patterns. An
offset of 100 counts has been applied at SM1 for readability. (b) The
associated phase concentrations for two different martensite spectra at
different spatial coordinates.



diffraction contributions from austenite and martensite is

displayed in Fig. 18(a). A POD analysis over �(2�, y) shows

that at least two POD modes are required to account for the

remaining diffraction signal [Fig. 18(b)]. The first POD

angular mode corresponds consistently to R-phase powder

diffraction peaks, with features such as a double peak (Rf112g

and R{112} at 2� = 49.3� and 2� = 49.6�, respectively) or

several secondary diffraction peaks (R{202} at 2� = 52.7� or

R{222} at 2� = 73.6�). Meanwhile, higher-order POD modes

can be seen as underlying {hkl} intensity undulations due to

heterogeneous R-phase detwinning at different spatial posi-

tions [Figs. 18(c)–18(d)].

Similarly to the case of martensite detwinning, it is possible

to use two different R-phase diffraction patterns to take into

account a preferred orientation effect [see Fig. 19(a)]. The two

R-phase diffraction profiles correspond well to the theoretical

R-phase diffraction peaks but with different {hkl} peak

weights. With the complete diffraction pattern, the phase

concentrations for each constituent as functions of the scan

position are illustrated in Fig. 19(b). All concentrations are

always bounded between [0, 1] and their sum never exceeds 1.

At several points where the sum of the concentrations is

slightly less than 1 (�0.95), it can be inferred that detwinning

introduces multiple R phases and martensite diffraction

patterns (not only limited to two). Additional R-phase and

martensite diffraction profiles could be further introduced to

improve the phase field reconstruction, but the small signal-to-

noise ratio becomes limiting.

Fig. 19(c) shows that the central part of the specimen has

transformed into martensite almost completely, whereas the
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Figure 16
(a) Phase concentrations for austenite and martensite. (b) Primal/dual
cost functions plotted against iteration number.

Figure 17
(a) A comparison between the raw spectrum, initial residual and final
residual. (b) Re-scaled residuals.

Figure 18
POD analysis applied at �. (a) The residual diffraction signal after removing austenite and martensite contributions. (b) Eigenvalues of each POD mode
ranked in decreasing order. (c) The first three POD angular modes. (d) The first three POD spatial modes.



sides are composed of a mixture of A and R phases. Thus it

appears that, from pure austenite, the R phase is nucleated

under load, coexisting with the austenite, and these two phases

eventually turn completely into martensite. This is consistent

with the DSC characterization as shown in Fig. 21 (Appendix

B), where A is transformed into M in a two-step process with

an R phase as an intermediate phase. The thermal hetero-

genity during 1D tensile loading could be the reason for this

appearance.

6. Conclusions

Quantitative XRD analysis remains a great challenge when

aiming to obtain a quantitative evaluation of heterogeneous

materials. The classical Rietveld method and its general-

izations are not adequate when dealing with an incomplete

database of diffraction patterns for each phase constituent or

undetermined spatially heterogeneous texture distribution for

one or several constituents.

When assessing a pure phase with strong spatial hetero-

geneity in texture distribution, instead of using one unique

artificial texture as implemented in the March–Dollase model,

the proposed approach uses proper order decomposition to

capture the diffraction patterns at different spatial coordi-

nates. This allows for the reconstruction of one or several

experimental diffraction patterns, which are much more flex-

ible in accounting for the entire diffraction spectrum including

limited orientation modulations.

Moreover, by including inequality constraints into convex

minimization, the ‘positive-POD’ algorithm introduced herein

can seamlessly remove diffraction contributions from known

phase constituents and make it possible to reconstruct

diffraction patterns for the unknown constituent afterwards.

Additionally, the accuracy of the reconstructed unknown

constituent can be verified by powder diffraction indexing.

This algorithm can be considered as a step forward compared

with the March model. Its extreme versatility appears to make

it a promising tool in quantitative XRD analysis for complex

heterogeneous materials.

APPENDIX A
Crystal orientation of equiatomic NiTinol

As shown in Fig. 20, the equiatomic NiTinol exhibits a very

pronounced anisotropy in its crystal lattice orientation, as a

result of its lamination. The texture orientation is along the

h111i direction, underlining its transverse isotropic texture.

APPENDIX B
Differential scanning calorimetry

The results of DSC measurement of equiatomic NiTinol are

shown in Fig. 21. The presence of the R phase is manifest
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Figure 19
(a) The diffraction patterns for austenite, R phase and martensite. Each has been offset by 200 counts for readability. (b) The phase concentration for
each constituent at different spatial positions. (c) The phase concentration for A, R and M phases at different spatial positions.

Figure 20
(Top) Inverse pole figure and (bottom) pole figures for the equiatomic
NiTinol alloy.



along the cooling curve as an intermediate step between

austenite and martensite.

Acknowledgements

The authors thank Dr Mame Daro Fall for discussions and Mr

Marc Bonnet for his technical support.

Funding information

Funding for this research was provided by Ecole Normale

Supérieur Paris-Saclay (PhD grant to XC).

References

Anscombe, F. J. (1948). Biometrika, 35, 246–254.

Bhattacharya, K. (2003). Microstructure of Martensite: Why It Forms
and How It Gives Rise to the Shape-Memory Effect, Oxford Series
on Materials Modelling, Vol. 2. Oxford University Press.

Boyd, S., Xiao, L. & Mutapcic, A. (2003). Notes on Decomposition
Methods. Lecture Notes for EE392o, Stanford University, Autumn
2003. Stanford University, California, USA.

Campbell Roberts, S. N., Williams, A. C., Grimsey, I. M. & Booth,
S. W. (2002). J. Pharm. Biomed. Anal. 28, 1149–1159.

Chang, X., Lavernhe-Taillard, K. & Hubert, O. (2020). Mech. Mater.
144, 103361.

Chatterjee, A. (2000). Curr. Sci. 78, 808–817.

Cullity, B. D. (1956). Elements of X-ray Diffraction. Reading:
Addison-Wesley Publishing.

Dickson, M. J. (1969). J. Appl. Cryst. 2, 176–180.

Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.

Drickamer, H., Lynch, R., Clendenen, R. & Perez-Albueene, E.
(1967). Solid State Phys. 19, 135–228.

Gailhanou, M., Loubens, A., Micha, J.-S., Charlet, B., Minkevich,
A. A., Fortunier, R. & Thomas, O. (2007). Appl. Phys. Lett. 90,
111914.

Halani, P. R., Kaya, I., Shin, Y. C. & Karaca, H. E. (2013). Mater. Sci.
Eng. A, 559, 836–843.

McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D. & Scardi, P.
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Figure 21
The DSC results for the NiTinol alloy. The two-step phase transformation
during thermal loading confirms the presence of the R phase.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=tu5026&bbid=BB23

