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Polarized resonant soft X-ray scattering (P-RSoXS) has emerged as a powerful

synchrotron-based tool that combines the principles of X-ray scattering and

X-ray spectroscopy. P-RSoXS provides unique sensitivity to molecular

orientation and chemical heterogeneity in soft materials such as polymers and

biomaterials. Quantitative extraction of orientation information from P-RSoXS

pattern data is challenging, however, because the scattering processes originate

from sample properties that must be represented as energy-dependent three-

dimensional tensors with heterogeneities at nanometre to sub-nanometre length

scales. This challenge is overcome here by developing an open-source virtual

instrument that uses graphical processing units (GPUs) to simulate P-RSoXS

patterns from real-space material representations with nanoscale resolution.

This computational framework – called CyRSoXS (https://github.com/usnistgov/

cyrsoxs) – is designed to maximize GPU performance, including algorithms that

minimize both communication and memory footprints. The accuracy and

robustness of the approach are demonstrated by validating against an extensive

set of test cases, which include both analytical solutions and numerical

comparisons, demonstrating an acceleration of over three orders of magnitude

relative to the current state-of-the-art P-RSoXS simulation software. Such fast

simulations open up a variety of applications that were previously computa-

tionally unfeasible, including pattern fitting, co-simulation with the physical

instrument for operando analytics, data exploration and decision support, data

creation and integration into machine learning workflows, and utilization in

multi-modal data assimilation approaches. Finally, the complexity of the

computational framework is abstracted away from the end user by exposing

CyRSoXS to Python using Pybind. This eliminates input/output requirements

for large-scale parameter exploration and inverse design, and democratizes

usage by enabling seamless integration with a Python ecosystem (https://

github.com/usnistgov/nrss) that can include parametric morphology generation,

simulation result reduction, comparison with experiment and data fitting

approaches.

1. Introduction

Developing process–structure–property relationships is a

central pillar of materials science and engineering research.

Understanding the effect of composition, structure and

processing on the performance of a material can enable the

intelligent and efficient tuning of the process variables to

improve the end performance of the material in a given

application. With these process–structure–property relation-

ships, the exciting goal of designing new materials instead of
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discovering them becomes a reality. Thus, there is an ever-

present need to develop new characterization methods to

elucidate material structure with increasing detail and clarity.

Structural characterization is particularly challenging in soft

matter due to its semi-disordered nature. Some important

aspects of soft-matter structure include spatial heterogeneities

in composition, density, molecular orientation/conformation

and degree of order. Recent advances in synthesis and

materials processing have unlocked access to systems in which

all aspects of soft-matter structure might ultimately be

controlled by design. However, despite enormous progress in

the capability and speed of characterization methods across

many length scales, it remains a fundamental and pervasive

challenge to assimilate efficiently, rigorously and robustly the

materials structure characterization data streams into a self-

consistent digital twin that describes the material structure. If

achieved, the resultant comprehensive structural description

would allow us to understand, predict and eventually control

how material properties arise from a complex interplay of

different aspects of structure across relevant length scales.

In this context, there have been recent efforts to integrate

computational tools with experimental data streams. Virtual

instruments that mimic the physical principles of the char-

acterization method – X-ray diffraction, light spectroscopy or

electron transmission (Wessels & Jayaraman, 2021; Mukherjee

et al., 2021; Pryor et al., 2017; Reynolds et al., 2022) – can

transform how downstream analysis of experimental data

streams is performed. For instance, a virtual instrument can

enable rapid data quality evaluation and provide statistically

rigorous estimates of when enough data have been collected.

Such approaches can maximize the utilization of heavily

subscribed instruments at centralized facilities such as X-ray

and neutron sources. Furthermore, a virtual instrument can

allow principled down-selection of plausible hypotheses for

developing structure–property relationships. Such virtual tools

also allow formal analysis and characterization of uncertainty,

identify the most sensitive features, and allow in silico

experimentation before performing physical experiments, for

greater efficiency in experiment execution. Finally, the success

of artificial intelligence and machine learning (AI/ML)

methods (Axelrod et al., 2022; Vasudevan et al., 2021; Guo et

al., 2021; Gomes et al., 2019) points to the possibility of inte-

grating experimental data with a virtual instrument to provide

automated and formal approaches to assimilating comple-

mentary data streams – for instance, real space (electron

microscopy) and frequency space (X-ray diffraction) – to

create a self-consistent and multimodal digital twin.

Polarized resonant soft X-ray scattering (P-RSoXS) is a

recently developed technique with unique characterization

abilities (Collins & Gann, 2022) and is an excellent candidate

for developing a virtual instrument. Typical scattering

experiments performed at hard X-ray energies provide a very

low contrast between organic constituents in a material.

P-RSoXS overcomes this limitation by combining conven-

tional small-angle X-ray scattering (SAXS) with soft X-ray

spectroscopy to yield a tunable scattering contrast. The ener-

gies of this soft X-ray beam are scanned across the absorption

edges of the light elements (C, N, O) commonly found in

organic materials, often yielding significant contrast variation

and substantially improved signal-to-noise ratio for organic

systems. P-RSoXS thus provides a path to probe the structure

in the nanometre to micrometre range with both chemical and

physical sensitivity, without the need to perturb the system

with labels such as the heavy element ‘stains’ commonly used

to enhance SAXS or the radioisotopes commonly used to

enhance small-angle neutron scattering (SANS). The contrast

enhancement makes P-RSoXS particularly useful for probing

the structure of thin (<200 nm) films, samples that are chal-

lenging for hard X-rays and neutrons due to the small scat-

tering volumes. Composition contrast with P-RSoXS is so

significant that short exposures of thin films (less than 1 min at

normal incidence) at resonant energies with high contrast will

yield patterns of a quality similar to conventional bulk SANS

patterns requiring millimetre-scale sample volumes and hours

to collect. The approach also does not require the grazing-

incidence geometries which are commonly used to gain signal

in the X-ray scattering of thin films.

The variable sensitivity of P-RSoXS to each chemical bond

can amplify the scattering intensity even with only small

chemical differences between materials, which enables the

extraction of useful structure information for heterogeneous

materials. A unique aspect of P-RSoXS is that it is sensitive to

molecular orientation via interaction of the soft X-ray electric

field vector with oriented transition dipoles within the sample.

Complex P-RSoXS patterns can arise from orientational

heterogeneities. This unique aspect of P-RSoXS provides

exciting opportunities for characterizing previously unmea-

surable features of the structure of soft materials, but it makes

adapting conventional SAXS or SANS analysis approaches

nearly impossible because the material properties that affect

contrast in those techniques are effectively scalar quantities. A

new analysis framework is required to represent independent

fluctuations in material composition and molecular orienta-

tion on sub-nanometre length scales. The availability of a

virtual analog to P-RSoXS would enable the discovery and

quantification of structure in complex chemically hetero-

geneous soft systems. Motivated by this exciting promise, here

we describe our development of CyRSoXS, a fast graphics

processing unit (GPU)-accelerated virtual instrument for

P-RSoXS.

To dispel any questions regarding which technique we

address herein, we note that, because P-RSoXS is not yet a

mainstream technique, a variety of different acronyms have

been proposed for it, including ‘R-SoXS’ and ‘PAXS’ (Gann et

al., 2016). The community now appears to have settled on

‘RSoXS’ and ‘P-RSoXS.’ It is not uncommon for practitioners

to use only ‘RSoXS’ when exploiting its composition contrast

capabilities and to use ‘P-RSoXS’ when adding its orientation

contrast capabilities. We should mention, however, that these

contrast modes are intrinsically linked. It is not possible to

perform RSoXS without polarization and its concomitant

molecular orientation sensitivity. Even circular polarization

will yield patterns that can be significantly affected by mol-

ecular orientation effects. These principles suggest that model-

computer programs

J. Appl. Cryst. (2023). 56, 868–883 Kumar Saurabh et al. � CyRSoXS 869



free composition-only analyses of P-RSoXS in systems having

significant but ignored molecular orientation fluctuations may

yield incorrect results, a situation that could be greatly

improved with a fast virtual instrument.

The current state-of-the-art P-RSoXS simulator, developed

by Gann et al. (2016) in IgorPro,1 has been pivotal in

answering many scientific questions (Jiao et al., 2017; Ye et al.,

2016; Song et al., 2018, 2019; Mukherjee et al., 2017; Litofsky et

al., 2019). However, it has limitations on practical deployment

in terms of speed and no opportunity for deployment on state-

of-the-art high-performance computing clusters. These

limitations become most apparent when attempting to fit

experimental data using goal-seeking algorithms that adjust

material structure input parameters to obtain agreement

between simulation and experiment. Such optimization

routines require a significant number of forward simulations

and thereby motivate the need for a fast forward simulator.

The commercial licensing of IgorPro further hinders the

democratization and availability of the tool to many

researchers. There has been rapid growth in interest among

materials scientists in using advances in machine learning and

data analytics for materials design and exploration. The

availability of a fast forward simulator is a critical necessity for

data creation and integration into machine learning model

operationalization workflows. More practically, since Python

has become the de facto language for data analysis and

machine learning, the currently available simulator does not

provide any straightforward integration for researchers to

utilize such tools.

As our contribution to this ongoing development, we build

upon an earlier framework that modeled the physics of soft

X-ray scattering through a heterogeneous thin film (Gann et

al., 2016). In particular, we significantly reduce the execution

time and, via integration with a Python ecosystem, incorporate

substantial additional functionality. Our key contributions in

this paper are as follows:

(i) Accomplishing near real-time simulation of P-RSoXS at

sizes/resolutions that were hitherto not possible [up to 228 or

268 million voxels on V100 GPUs; this size is limited purely by

the GPU memory (Section 4)].

(ii) Using GPU acceleration to achieve 1000� acceleration

over current state-of-the-art approaches. This is achieved by

careful design of a ‘GPU-friendly’ data structure and algo-

rithms, including memory and communication considerations.

(iii) Careful software design of a simulation engine that lies

at the center of a feature-rich data analysis and model

exploration ecosystem when combined with Python code

bases for morphology generation, simulation result reduction

and data fitting. Python binding democratizes access, simplifies

usage and enables seamless integration with AI or ML

libraries, and eliminates the bottleneck of input/output (I/O)

operation, especially during parameter exploration or inverse

design (file I/O is several orders of magnitude slower than

memory read/write, so this can quickly become a bottleneck).

(iv) A new and well documented voxel-based material

structure data file format in Hierarchical Data Format 5

(HDF5) that includes capabilities for verbose metadata,

multiple materials, independent representation of composi-

tion and orientation, and an intuitive Euler angle description

of material orientation.

(v) An extensive set of validation examples developed by a

growing community across multiple institutions.

(vi) Tutorials that serve as unit tests for this open-source

framework. The full software stack is open source and requires

access to CUDA-enabled hardware.

The rest of the paper is organized as follows: We begin by

briefly introducing P-RSoXS in Section 2, followed by a

detailed mathematical model in Section 3. We detail the data

structures and algorithms in Section 4 and present results

including validation cases in Section 5. We show the perfor-

mance of CyRSoXS with varying problem size and scaling to

multiple GPUs in Section 6. We discuss integration with

Python environments in Section 7, and we conclude by

discussing the implications and a path for future development

in Section 8.

2. Polarized resonant soft X-ray scattering

In P-RSoXS, a polarized soft X-ray beam passes through a

sample, interacting with and scattering off the electrons in that

sample; these scattered X-rays are collected on an X-ray

sensitive detector [typically a charge-coupled device (CCD) or

complementary metal–oxide semiconductor (CMOS)]. Fig. 1

shows a condensed version of the physical principles of

P-RSoXS, which are explained in greater detail in a recent

comprehensive review of the technique and its application to

soft materials (Collins & Gann, 2022). The strength of the

photon–electron interaction depends on the X-ray energy and

on the chemistry of the molecules within the sample. At

energies far from an absorption edge, X-rays interact equally

with all electrons in the sample, and the strength of the

interaction scales directly with the electron density. Near an

absorption edge, the interaction strength increases dramati-

cally when the incident X-ray energy is commensurate with

the energy required to excite an electron resonantly to an

unoccupied molecular orbital. The K absorption edges of

many lightweight elements (C, O, N, F) lie in the soft X-ray

energy regime (100 eV <
� Ephoton

<
� 2 keV); all are commonly

exploited in P-RSoXS. Selection of the incident energy near

the core binding energy of the electrons makes the technique

element specific, whereas the chemical bonds that define the

excited-state unoccupied molecular orbital energy make the

technique sensitive to specific bonds or chemical groups. The

spectroscopic scattering pattern thus provides a tunable

chemically sensitive probe of nanoscale and mesoscale

components in a heterogeneous complex material (Attwood &

Sakdinawat, 2017).

The resonant soft X-ray absorption is described by a tran-

sition dipole moment that couples the initial and final states.
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The initial state of the electron is a core orbital that is

spherically symmetric. Therefore, the geometric dependence

of the interaction strength is defined by the unoccupied mol-

ecular orbital, which for most soft X-ray resonances can be

represented as a vector or plane parallel or perpendicular to

the bond (Stöhr, 1992). Soft X-ray absorption, a principal

contributor to scattering contrast, varies as the dot product of

the electric field vector and the transition dipole moment. This

interaction makes P-RSoXS sensitive to spatial distributions

in molecular orientation. For instance, in the case of carbon

fused-ring compounds, when the X-ray energy is in resonance

with the fundamental carbon electron transition (C1s! �*),

the molecules exhibit vector transition dipole moments

perpendicular to the ring planes (Mannsfeld, 2012). Two

identical molecules oriented differently within a sample will

have different interaction strengths with a fixed electric field

vector and there will be a scattering contrast between them. If

the orientation of these molecules is spatially correlated in a

sample, a scattering pattern will be observed. For example, P-

RSoXS can detect correlated interfacial molecular orientation

regions (such as mixtures of amorphous, semi-crystalline or

liquid-crystalline phases). Crystalline, semi-crystalline and

liquid-crystalline organic materials have locally large aniso-

tropic bond orientation statistics, impacting the mechanical,

optical and electronic properties of these materials. Under-

standing these relative orientations at different length scales is

necessary for a detailed understanding of organic thin-film

devices. In addition, P-RSoXS has been shown to reveal local

molecular alignment independent of overall crystallinity, and

represents an essential new tool for understanding structure–

property relationships and examining the connection between

transport properties and morphology in organic and hybrid

organic–inorganic electronic devices (Mannsfeld, 2012; Collins

& Gann, 2022; Collins et al., 2012; Liu et al., 2016).

The interaction of X-rays with a system can be encoded

using a 3D analog of the complex index of refraction, N. Each

component of this tensor is a function of the dispersive and

absorptive components of the index of refraction, Nij(E) =

f(�(E), �(E)), where E is the photon energy, � is the dispersive

component and � is the absorptive component of the index of

refraction. In the hard X-ray regime, far away from the

resonance frequency of the constituent atoms, the real part of

the complex index of refraction is a scalar proportional to the

electron density of the material. The imaginary part is negli-

gible due to low absorption, and the electron-density differ-

ence between the constituent materials determines the

scattering contrast of the system. However, close to the

absorption edge of the constituent atoms, the electrons get

excited to the unoccupied molecular states or vacuum and

therefore � will naturally exhibit peaks and other absorption

features that will differ depending on orientation; changes in �
are also expected due to causality and can be calculated using

the Kramers–Kronig relations (Wang et al., 2010; Watts, 2014).

3. Mathematical model

3.1. Notation

The notation used in this paper is as follows.
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Figure 1
A schematic diagram of P-RSoXS, where a polarized soft X-ray beam passes through a sample, interacting with and scattering off the electrons in that
sample; these scattered X-rays are collected on an X-ray sensitive detector.



Vectors are represented as lower-case bold letters, e, p.

Tensors (specifically matrices) are represented as upper-case

bold letters with a single underline, R, N. Scalars are repre-

sented as lower-case letters, ’, nx. The counting (over

components) integer is j.

Having described the overall mechanism of P-RSoXS, we

now detail the mathematics of the simulation.

3.2. Morphology

Consider a morphology composed of a c component

mixture. We discretize the morphology into a uniformly

spaced voxel grid. Each voxel contains some (or all) of the c

components. Each of these components can be either amor-

phous or oriented. If a component is oriented, we assume that

it is well represented by a uniaxial representation.

Note that, while the uniaxial representation is adequate for

most use cases currently considered, it has some disadvan-

tages. A key disadvantage is that it will convey less informa-

tion than other representations. It cannot perfectly represent

properties at the molecular level: the simplest representations

of molecular-level properties for most molecules would be

biaxial. It cannot represent complex orientation distributions

at the sub-voxel level: only a single orientation mode is

conveyed per material and the ‘shape’ of the distribution is

lost.

Notwithstanding the above, a key advantage of the uniaxial

assumption is that it is simple and allows the construction of a

simple abstract model of properties within a voxel. This

abstract model and associated data structures are independent

of the material and energy. The abstract model can then be

combined with a material library, which can be stored in

memory, to allow the same model to be re-used for different

materials and different energies. This abstract representation

requires only two scalar fractions (volume fraction and

orientation fraction) and two Euler angles per material/voxel

for the uniaxial assumption. In contrast, a biaxial repre-

sentation would require five scalar fractions (volume fraction

and four orientation mixing parameters) and three Euler

angles for a similar abstract model. To represent arbitrary

distributions of a biaxial representation in an abstract model

would require including non-diagonal elements of the full

tensor for 19 unique scalar fractions (volume fraction, and six

elements with three coefficients each on the original ‘mol-

ecular’ biaxial elements), significantly increasing memory and

communication footprints.

A uniaxial representation conveys the necessary properties

for materials with a single dominant orientation mode of one

particular molecular axis, which we judge will cover a large

number of use cases. If a more faithful representation of a

multimodal orientation distribution is required, that can be

approached in our framework by breaking a component into

additional materials with identical dielectric functions and

volume fractions that add to the total for that component, but

which have distinct orientations reflecting the expected

distribution. If a more faithful representation of molecular-

level properties is required, it is possible to use a system of

uniaxial functions to represent an underlying biaxial function,

but that is not a currently supported use case for our approach.

We will lay out a clear pathway to relax this assumption and

consider biaxial representation in the next release version of

CyRSoXS.

Each voxel, therefore, has four features associated with

each component j = 1 . . . c:

(i) v
j
frac: the fraction of volume occupied by component j in

this voxel. By definition, 0 � v
j
frac � 1 and the sum v

j
frac across

all j (that is, the sum of all volume fractions of all materials)

within a voxel is expected to be 1.0. CyRSoXS will not check

whether they sum to 1.0, although such checking can be done

with morphology class methods provided in our broader

Python ecosystem. We encourage, as best practice, the use of

vacuum as an explicit material in the model, such that model

self-consistency is straightforward to confirm.

(ii) sj: the degree of alignment of component j in this voxel.

This parameter indicates the volume fraction of component j

that is oriented (as opposed to unaligned). We expect that 0 �

sj
� 1, but unlike v

j
frac there is no expectation of any constraint

involving other materials. sj is a relative volume fraction; in

other words sj is multiplied by v
j
frac to yield the absolute

volume fraction of oriented material j in a voxel [see equation

(2) below]. This parameter is conceptually identical to the well

known uniaxial ‘orientational order parameter’ S, but only in

the range of 0 � S � 1, where S = 1 indicates complete

alignment with a director (our director is defined by the Euler

angles described below) and S = 0 indicates an isotropic

condition. We note that the orientational order parameter S

can also include the range �0.5 � S � 0, which indicates

orientation perpendicular to the director, but we do not

support values of sj less than zero. Expressing perpendicular

orientations should instead be accomplished by explicit

adjustment of the Euler angles.

(iii) ’j: orientation feature 1, defined as the (first) rotation

of component j about the z axis.

(iv) �j: orientation feature 2, defined as the (second) rota-

tion of component j about the (original) y axis.

The last two features represent the Euler angle repre-

sentation of material orientation in a voxel.

We refrain from providing overly prescriptive guidance on

model design because there may be use cases for CyRSoXS

that we cannot anticipate. However, we offer here some model

design choices that have worked well for our internal testing

and for many of the validation cases we provide in Section 5.

Most models will represent the real-space structure of a thin

film, so they will typically have larger x and y ‘lateral’

dimensions and a smaller z ‘height’ dimension. We consider it

best practice for x and y to have the same dimensions and

resolutions. Common x and y dimensions (meaning the length

of the whole model on a lateral side) are micrometre scale,

perhaps ranging from 0.5 to 5 mm. Common lateral resolutions

include 512 � 512, 1024 � 1024 and 2048 � 2048, although

larger sizes are possible. The z resolution is usually a smaller

multiple of 2; common values include 32, 64 and 128. The z

resolution should be substantially greater than 1 for accurate

calculations that involve three-dimensional Ewald sphere

components; these are especially important for models that
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involve significant orientation and pattern anisotropy. The

voxels are considered perfect cubes in CyRSoXS, such that the

model dimensions are the product of the resolution and the

length of a voxel side. These model dimensions and resolu-

tions correspond to voxels with side lengths in the range 0.2 to

10 nm. A practical limit on the minimum voxel size could be

the diffraction limit of the incident radiation, which for carbon

K-edge wavelengths is 1.5–2 nm.

These model dimensions and resolutions are compatible

with data fusion workflows where real-space images derived

from atomic force microscopy, transmission electron micro-

scopy or other imaging methods are used as a foundation for

CyRSoXS model creation. In some cases such images could be

used to assign v
j
frac across voxels for different components,

depending on the contrast mode of the imaging. The other

voxel-level parameters, sj, ’j and �j, will most likely not be

available from imaging methods because there is a lack of

techniques that are sensitive to molecular orientation in soft

materials at the nanoscale. (This fact provides much of our

motivation for investment in P-RSoXS interpretation.)

Hypothesis-driven parametric assignment of sj, ’j and �j might

instead be employed. Models built entirely parametrically are

certainly possible, as demonstrated for many of our validation

cases shown in Section 5.

3.2.1. A brief primer on Euler angles. For Euler angles, we

use the zyz convention. We assume that the primary alignment

axis starts parallel to the z axis (0, 0, 1) [Fig. 2(a)]. This is also

the default direction of the simulated incident beam.

According to this convention (Fig. 2), and with reference to

the rotation matrices B, C and D, which are further defined in

equation (3) below,

(i) the first rotation is by an angle ’ about the z axis using

rotation matrix D [Fig. 2(b)],

(ii) the second rotation is by an angle � about the original y

axis using rotation matrix C [Fig. 2(c)] and

(iii) the third rotation is by an angle  about the original z

axis using rotation matrix B [Fig. 2(d)].

We note that other conventions are possible and have been

used in the literature; for instance, Gann et al. (2016) used the

vector orientation in 3D space to define an equivalent

morphology. These equivalent conventions can be easily

transformed into the Euler angles using suitable rotation

transformations. A benefit of our convention is its straight-

forward expandability into a biaxial representation by adding

a third Euler angle.

3.3. Material properties

As mentioned in Section 2, the interaction of soft X-rays

with a material is encoded in the 3D analog, N, of the material-

specific complex index of refraction. N is a 3 � 3 data struc-

ture that exhibits energy dependence. For a uniaxial system, N

can be diagonalized as

N ¼

n? 0 0

0 n? 0

0 0 nk

0
@

1
A; ð1Þ

where nk and n? refer to the parallel and perpendicular indices

of refraction, respectively. We will refer to N as the refractive

index for brevity, with the understanding that it is actually a

convenient 3D analog of the complex index of refraction.

3.4. Mathematical representation of P-RSoXS

The mathematical operations that mimic P-RSoXS can be

divided into six steps.

(i) Effective refractive index. For each voxel, the effective

refraction tensor for material component j can be computed

using the aligned and unaligned fractions as

Nj
eff ¼ v

j
frac

"
sjNj|{z}

aligned part

þ ð1� sjÞ 1
3 TraceðNjÞ I|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

unaligned part

#
: ð2Þ

I is the identity matrix, a square matrix in which all diagonal

elements are one and all off-diagonal elements are zero.

(ii) Rotated refractive index. For each material component j

in every voxel, the effective refractive tensor N
j
eff is rotated

according to the alignment vector Rj,

Rj ¼ Bj Cj Dj; ð3Þ

where B, C and D are the rotation matrices following the

Euler angle convention depicted in Fig. 2. The rotated

refractive index N
j
rot is computed as

N
j
rot ¼ RjT N

j
eff Rj: ð4Þ
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Figure 2
The different steps of the Euler angle rotation. (a) Initial state, (b) ’ around z, (c) � around y and (d)  around z. The extraordinary optical axis of the
uniaxial dielectric function is shown in red; it is initially aligned with the z axis. The ordinary optical axes of the uniaxial dielectric function are shown in
green; they are initially aligned with the x and y axes.



(iii) Polarization computation. The induced molecular

polarization p produced by the electric field e of the beam is

computed as

p ¼
Xc

j¼1

N
j
rot N

j
rot � I

� �
� e

4�
: ð5Þ

Voxel-to-voxel differences in the p components are the origin

of scattering contrast in P-RSoXS. The structure of these

components in real space can be complex, even for simple

structures. For a qualitative picture of this complexity, Fig. 1

shows an illustration of px and py magnitudes for a simple

compositionally homogeneous disc with radial orientation of a

uniaxial dielectric function (polyethylene in this image), at an

energy that enhances orientation contrast in the material. In

Fig. 1, the initial morphology is shown in the bottom left.

Moving right in the direction of beam passage, the absolute

value of the px component is shown on the right with a pink

false-color map and the absolute value of the py component is

shown on the left with a green false-color map. The initial

beam in this diagram is shown as polarized parallel to the x

axis. The ‘polarized’ px components describe the field that

remains polarized parallel to the x axis after interaction with

the sample. The ‘ellipsometric’ (also called ‘depolarized’) py

components describe the field that is polarized parallel to the y

axis after interaction with the sample. Models that include

Euler angle tilt relative to the z axis may also contain pz

components (not shown). The scattering from each of the px

and py components is then shown, followed by their sum in the

far-field projection.

We include a switch to allow the final scattering pattern to

be computed by averaging across different orientations of the

electric field. If this computation is enabled, it is performed as

follows: We start with e = (1, 0, 0) and we rotate e using a

rotation matrix U. The rotation is done in fine increments

across a range and then averaged. This rotation functionality is

included as a capability to smooth simulated pattern features

that arise from the finite size of the models. Rotating in small

increments and averaging the scattering pattern in this way

effectively simulates a non-interacting polydomain material

where each domain is a copy of the original model that is

rotated about the z axis. Enabling this functionality will better

capture electric field interactions with model details. This

functionality should not be used, however, if a model has

structural features that are intentionally non-uniform in the xy

plane directions.

(iv) Fast Fourier transform (FFT). To get the reciprocal

space (q) representation, we first compute the FFT of the real-

space polarization vector p,

~pp ¼ FFTðpÞ: ð6Þ

(v) Scatter computation. The differential scattering cross

section X(q) is given by

XðqÞ ¼ jjkout
j
2
ðI� r̂rr̂rÞ � ~ppj2; ð7Þ

where r̂r is the real-space unit vector from the sample to the

detector, such that r ’ kout = kin + q, kin is the wavevector of

the incident wave and kout is the wavevector of the outgoing

wave. Equation (7) is derived using the first-order Born

approximation (far-field limit) (Born & Wolf, 2013). The

individual components of ~pp are combined to produce the final

pattern simulation. Molecular orientation that gives rise to

anisotropy in the real-space structure of p will produce

correspondingly anisotropic patterns in the reciprocal-space

structure of the elements of ~pp, as illustrated for the disk

morphology in Fig. 1. There is typically a significant difference

between the intensity of the polarized and depolarized scat-

tering components such that the polarized scattering contri-

butes most strongly to the sum, but the depolarized

components remain essential for accurate simulation. This

sum is not shown in Fig. 1 because a final step is required, the

Ewald projection.

(vi) Ewald projection. The final step consists of projecting

the differential scattering cross section onto the Ewald sphere

to mimic the detector. For this step we will separately consider

the elements of q as qx, qy and qz. For each location on the

detector given by (qx, qy), we compute qz by evaluating

qz ¼ �kin
z þ jk

out
j
2
� kin

x þ qx

� �2
� kin

y þ qy

� �2
h i1=2

: ð8Þ

For real values of qz, the detector image is given by inter-

polating X(q). Interpolation is needed because qz may not be

an integer. We perform linear interpolation using the nearest

integer neighbors. Fig. 1 shows the final scattering simulation

after Ewald projection of the ~pp components, also depicted.

4. Algorithm

The two criteria considered during algorithm design for

P-RSoXS simulation are the memory limitation on the GPU

side and the communication time from the central processing

unit (CPU) to the GPU. GPU architecture advancements have

produced constant memory growth, but GPU memory

remains much lower than its CPU counterpart. Additionally,

data communication from CPU to GPU or vice versa remains

a bottleneck. In this section, we describe the memory layout

for the morphology and describe the two algorithms

supported by our framework: (i) Algorithm 1, which mini-

mizes the data movement from CPU to GPU but is memory

intensive, especially for larger numbers of material compo-

nents; and (ii) Algorithm 2, which minimizes the memory

footprint at the cost of communication between the CPU and

GPU.

4.1. Memory layout for morphology

The overall morphology is represented in memory as a 1D

array of size Nx � Ny � Nz � c. Each entry of this 1D array

consists of a Real4
2 data type representing the four compo-

nents (vfrac , s, ’, �). Fig. 3 shows the memory layout of the

morphology for P-RSoXS simulation. Using a 1D array
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Real4 represents float4, a single-precision floating-point number, or

double4, a double-precision floating-point number, depending upon the type
of compilation.



ensures that only a single cudaMemcpy instruction is needed

to load from CPU to GPU memory. The use of the Real4 data

type ensures vectorized load from global memory of the GPU

to local memory. Additionally, this memory layout – of striding

through voxels first before striding through components –

ensures the best utilization of the load bandwidth from global

memory to local memory.

The memory layout allows for additional computational

gains during the averaging process. An earlier algorithm by

Gann et al. (2016) relied on rotating the material while

keeping e fixed, in order to compute the average intensity on

the detector. This step is computationally expensive, especially

for 3D morphologies, where we would need to rotate Nz

channels of Nx � Ny voxelated morphologies. In this work, we

reformulated the algorithm to rotate e while keeping the

material fixed.

Additionally, we rotate the detector coordinates in the last

step to average the resulting intensity. The transfer of

computation from the material to the e reference frame makes

the algorithm computationally efficient and GPU friendly.

4.2. Communication minimization (Algorithm 1)

This algorithm relies on copying all the morphology infor-

mation once from the CPU to the GPU at the start of the

computation, and this is then utilized for all subsequent

computations. Once this copy has been performed, no further

communication is needed for the next computation steps. We

perform the polarization computation p given by equation (5).

As discussed in the previous section, the memory layout for

the vector morphology allows us to achieve maximum band-

width, mainly because all subsequent threads within the block

try to load the nearby memory. Additionally, packing the data

as Real4 allows us to perform vectorized load from global

memory to local thread memory. To utilize the available

resources efficiently, we use streams to compute the FFT of the

polarization vector. In particular, we use three streams, one for

each of px, py and pz. We then compute the qz position for a

given value of (qx, qy) 2D pixel, given by equation (8). Note

that we only compute X(qz) for the pixels participating in the

3D Ewald projection. This helps to eliminate the memory

requirement to store a 3D vector for X(q). Finally, the aver-

aged result (averaged across a range of rotation angles of e) is

transferred from the GPU to the CPU. Table 1 shows the

memory requirement for P-RSoXS simulation.

One potential drawback of this approach is the overall

memory requirement. We can see that the overall memory

requirement grows linearly with the number of materials.

Memory requirements are dependent on the resolution and

number of materials per model and can range from less than

1 GB to approaching or exceeding the � 48 GB memory limit

of current-generation CUDA GPUs.

4.3. Memory minimization (Algorithm 2)

Analysis of the steps detailed in Section 3.4 indicates that

morphology inputs are only required during the computation

of polarization p in equation (5). The main idea of Algorithm 2

is to precompute a precursor of p for a given energy and use it

for all subsequent computations (across multiple rotations of

e). The pre-computation stage is shown by Algorithm 3, which
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Table 1
Memory requirement for various steps during P-RSoXS computation for
Algorithm 1.

Algorithm Variable Data type Size Total size

P-RSoXS
(Algorithm 1)

M Real 4c(nxnynz) 4c(nxnynz)
px Complex (nxnynz) 2(nxnynz)
py Complex (nxnynz) 2(nxnynz)
pz Complex (nxnynz) 2(nxnynz)
Ewald Real (nxny) (nxny)
EwaldAvg Real (nxny) (nxny)
Total (4c + 6)(nxnynz) + 2(nxny)

Figure 3
An illustration of the memory layout of morphology for a c = 3
component system, color coded for each component. The complete
morphology is a 1D array of size Nx � Ny � Nz � c. Each entry of
morphology consists of a Real4 entry.



computes an intermediate tensor Nt [which is defined asPc
j¼1ðN

j
rot Nj

rot � IÞ=ð4�Þ, see equation (5)]. The computation

in this step is embarrassingly parallel and can be computed per

voxel independently. Therefore, even if the complete memory

required does not fit on the GPU, we can asynchronously

stream the required data to and from the CPU and GPU. In

particular, we stream the data per material from CPU to GPU.

The memory requirement during this stage thus drops from

(4c + 12)(nxnynz) to 16(nxnynz). The streaming helps to overlap

computation with communication and hides the latency.

Once all Nt have been computed, these values are subse-

quently used for the P-RSoXS simulation in a similar way as in

Algorithm 1. Table 2 shows the memory requirement for the

different steps. The memory requirement for the main stage is

independent of the number of materials and requires less

memory than Algorithm 1 for c � 3. This is an important

consideration, especially when we consider multi-component

chemical systems. Finally, we exploit the symmetric structure

of Nt to minimize further the number of computations

required. While Nt contains nine entries (3 � 3 matrix), only

six of these entries are unique.

Remark 1. We note that further optimization is possible in

terms of memory requirement. Theoretically only 6(nxnynz) +

2(nxny) (three p vectors, and two vectors for Ewald and

EwaldAvg) units of memory are required for P-RSoXS

computation. All the other information can be communicated

from CPU to GPU in a streamed fashion. But achieving this

theoretical bound would imply a lot of communication over-

head with M or Nt being communicated from CPU to GPU for

each rotation of the e field. For most of our use cases, we find

that the memory available on current GPUs, like the NVIDIA

Voltas V100, is sufficient for carrying out the computation

using Algorithm 1, with Algorithm 2 needed in some extreme

cases.

Remark 2. We remind the reader that c denotes the total

number of materials. While we recommend adding vacuum as

an additional component to the morphology to ensure robust

morphology checks, this is not strictly enforced. CyRSoXS

does not provide any special treatment to vacuum. When

provided in the input morphology, the code treats vacuum as

an additional material.

5. Results: validation cases

We comprehensively verify and validate CyRSoXS by

comparing against an array of benchmarks. This includes three

test cases with analytical scattering expressions and one vali-

dation case consisting of comparisons against results within an

earlier framework (Gann et al., 2016).

5.1. Form factor scattering test

A simple validation case is for form factor scattering, in

which scattering results purely from the shape of a particle. We

specifically test the form factor scattering of a sphere. We

consider two cases, a 2D projection of a sphere and a 3D

sphere, and we compare the results of CyRSoXS with analy-

tical expression results. The analytical expression for form

factor scattering of a sphere is given by

IðqÞ ¼
scale

V

3Vð��Þ ½sinðqrÞ � qr cosðqrÞ	

ðqrÞ3

� �2

; ð9Þ

where scale is the intensity scaling, V is the volume of the

sphere, r is the sphere radius (in ångströms) and �� is the

scattering contrast (in Å�2).

5.1.1. Two-dimensional projection of a sphere. As a first

test case, we consider a 2D projection of a sphere of radius

50 nm placed at the center of the domain. For this test, the

sphere is composed of amorphous polyethylene in a

surrounding medium of vacuum. Fig. 4 illustrates an enlarged

view of the domain setup for the test case. The whole domain

is discretized using 2048 � 2048 � 1 voxels, with each voxel

representing a 5 � 5 � 5 nm physical volume. Fig. 4 shows an

enlarged view near the center of the circle. The scattering

profile for this morphology was simulated from 270 to 310 eV

using tabulated optical constants of polyethylene (Gann,

2022) for the projected sphere and vacuum outside.

Fig. 5 shows the result of the 2D projected sphere validation

case at 285 eV. Line cuts of the analytical and simulated

data are plotted in Fig. 5(b) and show excellent agreement.

To validate the energy dependence of the P-RSoXS simula-

tion, we calculate the integrated scattering intensity (ISI), a
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Table 2
Memory requirement for various phases during P-RSoXS computation
for Algorithm 2 and for NrComputation (Algorithm 3).

Algorithm Variable Data type Size Total size

P-RSoXS
(Algorithm 2)

Nt Complex 6(nxnynz) 12(nxnynz)
px Complex (nxnynz) 2(nxnynz)
py Complex (nxnynz) 2(nxnynz)
pz Complex (nxnynz) 2(nxnynz)
Ewald Real (nxny) (nxny)
EwaldAvg Real (nxny) (nxny)
Total 18(nxnynz) + 2(nxny)

NrComputation
(Algorithm 3)

M Real 4c(nxnynz) 4c(nxnynz)
Nt Complex 6(nxnynz) 12(nxnynz)
Total (non-stream) (4c + 12)(nxnynz)
Total (stream) (4 + 12)(nxnynz)

Figure 4
An enlarged view of the 2D projected sphere.



q-bounded approximation of the scattering invariant, across

the range of simulated photon energy values. Fig. 6 plots the

simulated ISI alongside the theoretical energy dependence

given by the analytical expressions provided by Tatchev

(2010), computed for this specific dielectric function by us,

ISI / ��2 þ��2
� �

E4: ð10Þ

While they are on different absolute scales, the theoretical and

simulated photon energy dependences show commensurate

relative scaling, indicating that we are capturing the correct

physics in our scattering model.

5.1.2. Three-dimensional sphere test. Fig. 7 shows the 3D

sphere test domain along with a 2D slice of the sphere mid-

plane. The morphology consists of 128 � 2048 � 2048 voxels,

where each voxel is 5 � 5 � 5 nm. A 3D sphere of radius

50 nm is placed at the center. The simulation was carried out

at 285 eV, using tabulated polyethylene optical constants for

the sphere and vacuum for the surrounding matrix.

Fig. 8(a) shows the 2D scattering pattern and Fig. 8(b)

compares the 1D analytical expression for a sphere with the

azimuthally integrated data from Fig. 8(a). The analytical and

simulation data were both normalized to 1 at q = 1 �

10�2 nm�1. We see an excellent comparison between the

analytical and simulated results. The minor discrepancy

between the simulation and analytical results at higher q

values can be attributed to the finite discretization of the
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Figure 7
(a) The domain for the 3D sphere validation test (not to scale). (b) A 2D slice along the mid plane.

Figure 6
The simulated ISI alongside the theoretical energy dependence.

Figure 5
(a) Results of the projected sphere case and (b) comparison with the analytical solution.



sphere and voxel size. To demonstrate this further, we simu-

lated two additional parameter sweeps: increasing box size at a

constant voxel size of 5 � 5 � 5 nm, and a constant

256 � 256 � 256 voxels at 5 and 2 nm voxel sizes. These

results are plotted in Fig. 9. Increasing the box size at a

constant voxel size effectively pads the sphere morphology

with additional vacuum. This has the effect of creating more

complete destructive interference in the form factor minima.

Decreasing the voxel size at a constant box size increases the

resolution of the simulation and leads to better agreement at

higher q, but more of the simulation box is occupied by the

sphere. Thus the padding is decreased and less complete

destructive interference results in the minima.

5.2. Periodic structure test

Extending beyond form factor scattering, many materials

studied with X-ray scattering techniques exhibit periodic

structures which result in Bragg diffraction: constructive

interference of the scattered X-rays produces sharp peaks at

locations corresponding to the periodic spacing. Materials of

this nature that have been studied with RSoXS include block

copolymers (Wang et al., 2011; Virgili et al., 2007) and

patterned thin films (Freychet et al., 2018). Voxelized repre-

sentations will approximate the spacings and shapes of real

morphologies. We perform two validation cases that reflect

this periodic arrangement of structures, a 2D hexagonal

packed lattice and a grating test.

5.2.1. Circle on hexagonal lattice. We first consider an

arrangement of circular domains on a 2D hexagonal lattice

(Fig. 10). This morphology is representative of hexagonally

packed cylinders, a common block-copolymer morphology.
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Figure 8
(a) Results of the 3D sphere case and (b) comparison with the analytical solution.

Figure 10
A volume fraction map of PEOlig for the hexagonal lattice. The dark-blue
region represents vacuum.

Figure 9
Effect of (a) box size and (b) voxel size on the 3D sphere form factor for different voxel sizes of 1283, 2563 and 5123 and different physical sizes of 5 and
2 nm. The black lines show the analytical results.



We consider the cylinders to be oriented parallel to the X-ray

beam.

Fig. 11 shows the 2D scattering pattern output from

CyRSoXS. Given the target lattice spacing of the input

morphology, we observe Bragg peaks at the expected locations

[q*, (31/2)q*, (41/2)q*, (71/2)q*, (91/2)q* and so on]. Fig. 12

shows the azimuthally integrated scattering intensity plotted

versus q, with the first seven Bragg peaks labeled. There is

perfect agreement between the analytical and simulated peak

locations. We do observe some non-peak background features

with low intensity that originate from the finite size of the

model and voxel-level discretization effects. Such artifacts can

be further reduced by using larger and/or higher-resolution

models, models that contain realistic structural defects, and

models with periodic boundary conditions.

5.2.2. Grating test. The second periodic structure test case

is a set of parallel lines which form a grating structure. This

type of morphology is observed in the directed self-assembly

of block copolymers or in structures fabricated using litho-

graphic processes; it is often seen in semiconducting manu-

facturing. We consider a single line grating morphology in two

and three dimensions. The 3D morphology consists of a single

line grating extended in the z direction. Fig. 13 shows the setup

for the grating simulation. The 2D morphology consists of

1024 � 1024 � 1 voxels whereas the 3D morphology consists

of 1024 � 1024 � 63 voxels, with each voxel representing a
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Figure 11
(a) The hexagonal lattice validation case. (b) Contours of I(q) with the corresponding peak locations.

Figure 13
The setup of the line-grating simulation.

Figure 12
A 1D simulated diffraction pattern (solid blue line) with the analytical
peak locations marked (dashed lines).

Figure 14
Comparisons of analytical and simulation line-cut integration for (a) 2D and (b) 3D line gratings. The qx component of q is at the location of the first-
order peak.



physical dimension of 1 � 1 � 1 nm. The simulation was

carried out at 17 keV. The analytical results are calculated

using a previously published procedure (Sunday et al., 2015) in

which the grating is discretized into a stack of trapezoids. The

analytical solution for the Fourier transform of a trapezoid is

used to calculate the scattering intensity at each q position.

Fig. 14 compares the analytical and simulation results for the

line gratings. The simulated results are in excellent agreement

with the analytical results.

5.3. Orientation effect on polymer-grafted nanoparticles

All of the previous test cases deal with isotropic materials.

As the final validation case, we consider a film of polymer-

grafted nanoparticles (PGNs) (Mukherjee et al., 2021). Poly-

styrene chains are grafted onto gold nanoparticles and the

confinement of polystyrene chains near the nanoparticle

surface results in radial stretching of the chains and a net

molecular orientation. Fig. 15 is a 2D slice of the 3D

morphology, showing the gold nanoparticle core surrounded

by the oriented polystyrene shell, all embedded in a matrix of

isotropic polystyrene. The CyRSoXS simulation is tested

against the current state-of-the-art P-RSoXS simulator (Gann

et al., 2016). Fig. 16 plots the scattering anisotropy averaged

over q = 0.02–0.4 nm�1 for the reference simulator and for our

GPU-accelerated P-RSoXS simulator. Our implementation

perfectly reproduces the results of the reference simulator.

6. Performance

In this section, we report the scaling of CyRSoXS with respect

to variation in the numbers of voxels and materials. All

computations were carried out using an NVIDIA Volta V100

GPU with 32 GB of memory.

6.1. Performance with increasing number of voxels

As our first scaling test, we considered performance with

increasing number of voxels. The overall number of voxels

varied from 128 � 128 � 16 to 1024 � 1024 � 128 with an

increment of 2� in each direction (the 1024 � 1024 � 128

voxel size is the largest that fits into the memory of a 32 GB

NVIDIAV100 GPU). The number of materials is fixed to four

and the computation was carried out for 150 photon energies.

For each photon energy, the electric field e was rotated from 0

to 180
 in increments of 2
.

Fig. 17 compares the time with increasing number of voxels

for Algorithm 1. Fig. 17(a) shows the variation in total wall

time with respect to the number of voxels. Overall we see a

linear dependence OðNÞ, where N is the total number of

voxels. Fig. 17(b) compares the percentage of time taken by
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Figure 15
A 2D slice of 3D PGN morphology. An oriented shell of polystyrene (PS)
surrounds each gold nanoparticle core. The pixels in this image are
colored by the values of the Euler angle ’PS, which exhibits a radial
orientation relative to the particle centers. The orientation of the
extraordinary axis of the dielectric function in real space relative to the x
and y axes is shown in the inset color wheel. This 2D slice was collected
near the particle equators such that ’PS

’ �/2 for all pixels.

Figure 16
Scattering anisotropy plotted versus energy for the CyRSoXS and
reference simulators

Figure 17
The performance of Algorithm 1 with variation in the number of voxels.
(a) Total time with variation in the number of voxels. (b) Percentage of
time with variation in the number of voxels. The number of materials was
fixed to four. The time reported corresponds to computation of 150
energy levels with e rotated from 0 to 180
 in increments of 2
 for each
energy level.



different sections of the computation. The total time is

dominated by polarization computation [equation (5)] and

FFT computation. The ‘Others’ cost, which includes Ewald

projection computation, image rotation, and data transfer

from CPU to GPU and vice versa, forms a significant fraction

at lower resolution (i.e. smaller voxel sizes) but becomes

insignificant at higher resolutions.

Fig. 18 compares the time with increasing number of voxels

for Algorithm 2. Fig. 18(a) shows the variation in total time

whereas Fig. 18(b) compares the percentage of time with

increasing number of voxels. We observe a similar perfor-

mance behavior to Algorithm 1, including OðNÞ scaling with

increasing number of voxels. The majority of the time is spent

in computing Nt , which also involves copying data from the

CPU to the GPU (Algorithm 3), polarization computation and

FFT computation. The ‘Others’ cost, similarly to the previous

algorithm, forms a significant percentage at lower resolution

but becomes insignificant at higher resolutions.

6.2. Performance with increasing number of materials:
communication minimization versus memory minimization
algorithms

In our next analysis, we compared the performance of both

algorithms with respect to increasing number of materials. We

considered a system with a voxel size of 2048 � 2048 � 64.

The computation was carried out for nine photon energies. For

each photon energy, the electric field e was rotated from 0 to

180
 in increments of 2
. We utilized ten streams for the

computation of Algorithm 2 to overlap computation and

communication.

Fig. 19(a) compares the total time for the two algorithms.

Algorithm 1 is faster than Algorithm 2. However, the overall

slope, or the rate of increase in time with number of materials,

tends to be much steeper for Algorithm 1 than Algorithm 2.

This is because the polarization computation [equation (5)]

involves a loop over the number of materials. Algorithm 1

performs this computation for each rotation of e, whereas in

the case of Algorithm 2 this computation is carried out once

for each photon energy and stored in Nt . With increasing

number of materials, this computation tends to dominate and

thus we see a higher slope for Algorithm 1. Further, we

observe that the memory requirement of Algorithm 1 exceeds

the overall GPU memory for more than four materials,

whereas Algorithm 2 continues to exhibit a linear variation

with increasing number of materials. This agrees with the

memory requirement analysis in Section 4. We recall that the

memory requirement of Algorithm 1 exceeds that of Algo-

rithm 2 for number of materials � 3.

Fig. 19(b) shows the percentage of time for different

sections of Algorithm 2. We see an increase in time for Nt

computation. This is expected, as only Nt computation in

Algorithm 2 depends on the number of materials. Overall, the

time is mostly dominated by FFT computations.

6.3. Scaling performance across multiple GPUs

We parallelize the code with respect to photon energies

across multiple GPUs. This makes the code embarrassingly

parallel. Each GPU device allocates its own chunk of memory

depending on the photon energies owned by it and performs

the computation independently. We utilize OpenMP to sche-

dule the threads, with each thread handling a single GPU. This

allows us to utilize all GPUs efficiently across a single node.

In order to demonstrate the scaling performance, we

consider a server with two NVIDIA V100 GPUs and analyze

the efficiency for different voxel sizes (Fig. 20). We consider a

material system with two different voxel sizes of

512 � 512 � 64 and 1024 � 1024 � 128 and four materials.

We consider 150 photon energies distributed across multiple

GPUs. Overall, we see an ideal scaling behavior, with both
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Figure 18
The performance of Algorithm 2 with variation in the number of voxels.
(a) Total time with variation in the number of voxels. (b) Percentage of
time with variation in the number of voxels. The number of materials was
fixed to four. The time reported corresponds to computation of 150
energy levels with e rotated from 0 to 180
 in increments of 2
 for each
energy level.

Figure 19
Run time and percentage distribution of P-RSoXS for 2048 � 2048 � 64
morphology with increasing number of materials for nine different energy
levels. (a) Run time. (b) Percentage of time for Algorithm 2. The
parameter e was rotated from 0 to 180
 in increments of 2
 for each
energy level. For Algorithm 1, the overall memory requirement exceeds
the GPU memory size if the number of materials is greater than four.



algorithms achieving 2� acceleration while utilizing two

GPUs.

Remark 3. In practice, we observe Algorithm 1 to be faster

than Algorithm 2. Therefore, Algorithm 1 is recommended as

the first choice, until we hit the memory limit of the GPU

(usually exhibited as a memory error).

6.4. Comparison with current state of the art

We consider the PGN case from Section 5.3 for perfor-

mance comparison between CyRSoXS and an Igor-based

state-of-the-art simulation (Gann et al., 2016). The overall

morphology contains 512 � 512 � 32 voxels with three

components. We only report the timing for one rotation and

101 photon energies. The Igor-based simulation took around

31 min on an Intel Core i7-8700 CPU running at 3.20 GHz

with 24.0 GB of RAM. In contrast, CyRSoXS took only 1.05 s

(>1000� acceleration) on an NVIDIA Quadro A6000 GPU

with 48 GB of GDDR6 global memory to accomplish this task.

We note that the acceleration will become much more

prominent once we perform the simulation for multiple

rotations, as these rotations do not involve any communication

between the CPU and GPU.

7. Python interface to CyRSoXS

In addition to GPU acceleration, we have added a Python

interface using Pybind11 (https://github.com/pybind/

pybind11). Pybind11 was designed to expose C++ data types

to Python and vice versa. One of the benefits of this approach

is directly passing the morphology information via memory

instead of performing file I/O operations, which can be a major

bottleneck for fitting and other inverse problems. Addition-

ally, the output of the scattering pattern in the form of NumPy

arrays enables users to use sophisticated Python visualization

libraries like matplotlib (Barrett et al., 2005) and seaborn

(Waskom, 2021) and to develop Python-based post-processing

tools. We also interface with the cupy (Nishino & Loomis,

2017) library that enables morphology generation on a GPU.

A morphology generated on a GPU can be directly passed to

the simulator without copying data back and forth from the

CPU. However, the morphology layout must strictly match

the framework layout as shown in Fig. 3 and described in

Section 4.1.

We believe that the availability of the Python interface will

give a major boost to inverse problems relating to materials

design, as most of the machine learning (ML) or data analysis

(DA) toolkits (Garreta & Moncecchi, 2013; Chollet, 2015;

Abadi et al., 2016; Paszke et al., 2019) are currently Python

based. This interface will allow users to integrate their ML/DA

models seamlessly with the current framework.

8. Conclusions

We have demonstrated a new P-RSoXS virtual instrument

with greatly increased performance compared with the current

state of the art. Computations with this new virtual instrument

are fast enough to enable practical data fitting by adjusting

structure parameters using goal-seeking algorithms.

The first fitting of orientational parameters to experimental

P-RSoXS data was recently demonstrated using this virtual

instrument to simulate polymer-grafted nanoparticles using a

high-throughput multi-resolution parametric sweep of a three-

parameter system (Mukherjee et al., 2021).

We have developed Python-driven workflows that demon-

strate the practical use of this virtual instrument with other

fitting methods, including genetic algorithm and Markov-chain

Monte Carlo approaches, and these will be published else-

where. Close integration with Python environments affords

opportunities to develop morphological models based on data

fusion approaches, particularly exploiting real-space imaging,

which reduces common questions of model uniqueness in

fitting small-angle scattering data.

The P-RSoXS virtual instrument shows great promise as a

cornerstone of future approaches for assimilating comple-

mentary data streams to construct complex and self-consistent

material structure representations in silico, and ultimately for

powering inverse design frameworks that eliminate the need

for costly Edisonian optimization approaches.

9. Data and software availability

The core C++/CUDA software is available online at https://

github.com/usnistgov/cyrsoxs. Additional reference data and

analysis scripts necessary to reproduce the validation results in

Section 5 are available online at https://github.com/usnistgov/

NRSS under tests/validation.
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