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CCD-based X-ray detector systems often suffer from spatial distortions.

Reproducible distortions can be quantitatively measured with a calibration

grid and described as a displacement matrix or as spline functions. The measured

distortion can be used afterwards to undistort raw images or to refine the actual

position of each pixel, e.g. for azimuthal integration. This article describes a

method using a regular grid, not necessarily orthogonal, to measure the

distortions. The graphical user interface (GUI) Python software that is used to

implement this method is available under a GPLv3 license on ESRF GitLab, and

produces a spline file that is usable with data-reduction software such as FIT2D

or pyFAI.

1. Introduction

Indirect detector systems bound on a conversion stage often

suffer from various artefacts that distort measured data.

Among them, non-uniform pixel response, readout noise,

spatial deformation and blurring owing to convolution with a

point spread function (PSF) may be functions of detector

position. All these distortions are measurement artefacts

which should be avoided or corrected, if possible before data

reduction. Without correction, these artefacts reduce the data

quality and may prevent accurate data processing, fitting and

interpretation.

Distortions that are sufficiently constant in time can be

measured using a calibration pattern which produces a

predictable result. Care must be taken that the conditions

where the calibration test has been performed are as close as

possible to the conditions where real data are acquired. Here,

we focus on spatial distortion, which can come from various

sources in the optical pathway of the detector system that are

more or less controlled. In particular, the result of the cali-

bration procedure will be benchmarked with a fiber-optics-

coupled CCD camera used for small-angle X-ray scattering

(SAXS) acquisitions. The fiber-optic faceplate that couples the

visible light from the phosphor to the CCD sensor is here the

main source of spatial distortion.

This calibration procedure is important in various domains

to improve the spatial resolution of images from 2D detectors.

For example, an azimuthally averaged scattering pattern needs

good spatial resolution to avoid smearing (Stanton et al., 1992;

Tate et al., 2005; Mingard et al., 2011), and in medical imaging

accurate measurements need to be carried out on the images

(Spector et al., 1972; Muehllehner et al., 1980; Chakraborty,

1987). In the X-ray field, FIT2D (Hammersley et al., 1994;

Hammersley, 2016) has been used for a long time for this kind

of calibration and correction of 2D patterns, using regular

orthogonal hole grids and splines. Several software packages
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rely on the distortion splines created by FIT2D to perform

distortion correction, like SPD (Boesecke, 2007) or pyFAI

(Kieffer, 2012). However, it appears that there is no software

for creating this file independently, or using non-rectangular

grids. So, a new specific Python software, with a graphical user

interface, has been developed and made available for the

community.

2. Calibration-grid design

The calibration pattern is typically an opaque mask with a

regular 2D grid of transparent holes, which produces a known

pattern on the detector. The mask is placed as close as possible

to the detector and then illuminated. The difference between

the ideal 2D positions and the measured positions is a measure

of the distortion of the detector system.

The hole size and shape must allow an accurate and

unambiguous determination of the position, independent of

the alignment of the grid on the detector. In addition, the

machining of the mask must be performed with the highest

precision. Thus, circular holes are the easiest shape to make

and fit, and still correspond to usual practice (Mingard et al.,

2011; Tate et al., 2005). A circle has the advantage of having an

infinite number of symmetry axes and a center that can be

determined using various algorithms. Hammersley et al. (1994)

show that the minimum grid-hole diameter should be >6� of

the detector PSF.

The calibration-grid shape has been discussed in the

literature (Hammersley et al., 1994). Non-regular grids might

be of interest for oversampling the regions where the data are

of most importance, or where the distortion is known to be

greater. However, the use of regular grids is still common

practice and is the best choice for general-purpose detectors,

where the relative importance of measured data is not known

a priori. Regular grids also have the advantage of the hole

position being easier to find using an iterative algorithm. The

distance between holes must allow a good separation of them

along the recorded image while maintaining a large number of

holes to improve the sampling over the distorted area. The

Nyquist criterion suggests that the highest frequency in the

measured distortion function is half the sampling frequency.

Therefore, higher-frequency distortions will not be corrected

using this method. Regarding these constraints, triagonal grids

(holes organized on the summits of equilateral triangles) are

the best because the sampling of spatial frequencies is more

uniform for all directions and this arrangement maximizes the

number of holes over a specific area. However, in recent

decades, orthogonal grids have been the most used

(Hammersley et al., 1994; Spector et al., 1972; Stanton et al.,

1992; Chakraborty, 1987; Despres et al., 2007; Muehllehner et

al., 1980; Vijayan Asari et al., 1999; Mingard et al., 2011; Tate et

al., 2005).

3. Spatial-distortion measurement and correction

The spatial-distortion-function measurement process has been

subdivided into the following operations: (1) determination of

the origin and initial base vectors, (2) finer determination of

the base vectors, (3) determination of each bright-spot posi-

tion in the image, (4) pixel-size calculation and optional

correction, and (5) spline fitting. Then, from the splines, the

pixel-wise correction matrix can be computed and applied for

distortion correction.

3.1. Peak-center determination

Each hole of the grid is visible as a bright spot on the

detector image. From an initial guess of the position and a

search radius, a sub-region of the image is considered. For

practical reasons, this sub-region is square and not circular. In

this sub-region, the center of the bright spot is determined by

the weighted average of the bright-pixel positions. Pixels are

called ‘bright’ when the intensity is above a certain threshold.

Im ¼ I j I> minðIÞ þ t maxðIÞ �minðIÞ½ �
� �

; ð1Þ

where I and Im are the sub-region matrix and the bright-spot

ensemble, respectively, and t is the threshold coefficient. A

typical value for the threshold is 0.6. Then, the bright-spot

center is estimated as the weighted average of these pixels:

C ¼

P
i2Im
ðxi; yiÞIiP
i2Im

Ii

: ð2Þ

This method is very simple but works for any hole shape with

at least two axes of symmetry. The reason why the condition is

determined over the sub-region and not on the whole image is

because the spots might have different absolute intensities,

depending on how the grid is illuminated.

Sometimes, the sub-region contains no peaks, for example if

the peak is hidden by a beamstop or close to the boundary.

The ‘no peak’ condition is determined when all or no pixels

are selected for the weighted average, or when the maximum

is not statistically different from the baseline:

maxðIÞ< minðIÞ þ 3 std I0mð Þ; ð3Þ

where I0m is the complementary ensemble of Im and std refers

to standard deviation.

3.2. Base-vector determination

From an initial guess of the base vectors (O, A, B) provided

by the user, the peak positions are first refined using the

method described in Section 3.1. The first approximation of

base vectors e1 and e2 is carried out as follows: e01 = A–O and

e02 = B–O.

Then, to refine the base-vector approximation, all bright

spots along e01 and e02 from the origin are detected. The fine

approximation of e1 and e2 is then determined by the average

vector between the bright spots:

ei ¼ PS Oþ ðzþ 1Þe0i
� �

� PS Oþ ze0ið Þ j z 2 Z
� �

; ð4Þ

where PS(P) is the peak-search algorithm described in Section

3.1 and P is the initial guess.
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3.3. Full distortion grid

Once a fine approximation of the base vector has been

determined, the regular grid (G) on the image is computed by

all combinations of the two base vectors:

G ¼ Oþ ie1 þ je2 j ði; jÞ 2 Z2
� �

: ð5Þ

Then, all peak positions are searched for each point of the

regular grid as an initial guess, and the displacement of the

bright spots according to the regular grid is measured:

D ¼ P� PSðPÞ j P 2 G
� �

; ð6Þ

where D is the spatial-distortion ensemble, sampled at all

regular-grid positions. However, some bright spots might be ill

defined. For example, the shape may be cut by a beamstop, the

intensity might be too low to distinguish the bright spot or

the spot might be too close to the boundaries. The spatial-

distortion ensemble is then filtered to remove these abnorm-

alities, assuming that the distortion is smooth over the

detector. The condition to assign one distortion measure as

abnormal is that the displacement along one direction is

farther than the average displacement of close positions, with

an acceptance band of three times the standard deviation.

ClðOÞ ¼ P j jjP�Ojj<Rc; P 2 G
� �

ð7Þ

and

Pf ¼ P j � 3 stdðDi½ClðPÞ�Þ � DiðPÞ � Di½ClðPÞ�
� ��

� 3 stdðDi½ClðPÞ�Þ; i 2 ½x; y�
�
; ð8Þ

where Cl is the ensemble of points close to the considered

point, i.e. closer than the coherence radius (Rc), and Pf is the

ensemble of filtered points, where the measured displacements

are trusted.

3.4. Pixel-size calculation

On some detector systems, the apparent pixel sizes are not

exactly known, or can vary due to distortion in the detector

optics. This is a typical problem with indirect X-ray conver-

sion, e.g. coupling of an X-ray converter with optical lenses or

fiber optics, which is usually the main source of spatial

distortion. In these cases, the X-ray sensitive area is generally

different from the image-sensor area. A possible solution is to

calibrate the pixel size to an undistorted virtual detector,

knowing the physical distance between bright spots on the

grid. The pixel size and distances then apply to a virtual

detector with an active area coinciding with the position of the

calibration grid (see Fig. 1). The equation system to be

solved is

d2
1

d2
2

� 	
¼

e2
1;x e2

1;y

e2
2;x e2

2;y

� 	
P2

x

P2
y

� 	
; ð9Þ

where d1 and d2 are the physical lengths of e1 and e2,

respectively, and Px and Py are the pixel sizes along x and y.

However, for certain orientations of the base vectors, this

system is ill conditioned (see Fig. 2). For example, if e1,x ’ e2,x

and e1,y ’ �e2,y, because of the squared values, the two

equations will be almost the same.

In this case, a second system can be used, knowing the angle

between base vectors of the regular pattern (�):

e3 ¼ e1 � e2; ð10Þ

d2
3 ¼ d2

1 þ d2
2 � 2d1d2 cosð�Þ ð11Þ

and

d2
1

d2
3

� 	
¼

e2
1;x e2

1;y

e2
3;x e2

3;y

� 	
P2

x

P2
y

� 	
: ð12Þ

In practice, one can choose the best system to solve on the

basis of the condition number of the matrices. The discrepancy

between the measured and the theoretical pixel size can be

corrected in the displacement matrix. This additional correc-

tion then allows one to use the theoretical pixel size for further

calculations after the image has been distortion corrected. It is
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Figure 1
Relative positions of sample, grid, fiber optic and detector. The detector is
seeing a deformed calibration grid.

Figure 2
Ill-chosen base vectors for pixel-size calculation (in red) and an
alternative base vector (in blue).



convenient to introduce the pixel-size correction at this step,

especially for detectors with square pixels. This additional

correction simplifies further calculations because it reduces

the pixel size to a single parameter, which can be set to any

value. Let us define it as r = [Px/Px,th; Py/Py,th]. The new

displacement grid to be considered is

D0 ¼ Drþ ðG� CÞðr� 1Þ; ð13Þ

where C is the coordinate of the expansion/contraction center,

usually the center of the image.

3.5. Spline calculation

Up to now, the displacement has been determined at the

sample points, which are the regular-grid positions. However,

in order to correct an image, the displacement along each axis

has to be determined for each pixel in the image. So, the

measures need to be interpolated over the whole image area.

One convenient method is to use the bicubic spline function.

The coefficients can be fitted and the number of knots mini-

mized in order to obtain a smooth displacement function while

keeping a good representation of the displacement samples.

However, this method will not work directly for sharp

transitions between different parts of the image: for example,

on detectors with multiple modules, to correct for module

misalignment. To perform this kind of correction, a spline

function needs to be computed for each module of the

detector instead of the whole image area.

3.6. Image correction

Once the two spline functions have been calculated, they

can be saved and reused to correct the acquisitions by the

detector system. To perform the image correction, the

displacement for each pixel is calculated first:

Xc ¼ X þ splxðX;YÞ

Yc ¼ Y þ splyðX;YÞ



ð14Þ

where X and Y are the coordinates matrix of all the pixels, Xc

and Yc are the displaced coordinates, and splx and sply are the

displacement splines along x and y, respectively.

Of course, there is no reason why all pixels should be moved

by an integer number of pixels. In the general case, one pixel is

spread over four pixels (see Fig. 3). The intensity from the

initial pixel is weighted by the area covered by the displaced

pixel on the new pixel. The weight of each new pixel is

normalized so that the sum of weights on each pixel is equal to

1, i.e. the area of each pixel is equivalent.

In practical implementation, the images are converted to

indexed vectors and the transformation is a sparse matrix.

Non-null elements in this matrix at position (i, j) are the

contribution weight of pixel i of the raw image to pixel j of the

corrected image. Finally, to apply the correction, a matrix

multiplication between the raw-image indexed vector and this

sparse transformation matrix is performed. If N is the number

of pixels in the images, the transformation-matrix size is

N � N and the matrix has at most 4N non-null elements.

4. Discussion

Spatial distortion is only one among many corrections that

need to be carried out on 2D detectors. In particular, any

intensity correction needs to be performed before spatial-

distortion correction, because this correction rebins the image

(see Section 3.6) and the effective pixel area is changed.

Corrections such as (but not limited to) dark-image subtrac-

tion, flat-field correction and hot-pixel masking also have to be

performed before spatial-distortion correction.

The method used to interpolate the distortion map over all

the pixels on the detector using splines has the advantage of

smoothing the sampled map, and then being less sensitive to

the exact determination of the bright-spot center. However,

this prevents sharp transition in the distortion function. For

sharp transitions such as misalignment of modules in a

modular detector, the spatial distortion has to be measured on

the whole detector but the spline functions need to be deter-

mined for each module, allowing discontinuities between

them.

5. Practical software implementation

The ideas presented above have been implemented in a

Python software named SpatDistCalib (Chèvremont, 2022),

with the help of NumPy (Oliphant, 2021), SciPy (Virtanen et

al., 2020) and Matplotlib (Hunter & Droettboom, 2021)

libraries. The FabIO (Knudsen et al., 2013) library is also used

to read the raw image from a file. This library can read various

file formats from a large range of detectors. Once read, the

image is transformed into a NumPy array, allowing one to use

the functions of this software with images from almost any

source.

The user is requested to provide the origin and the base

vectors by clicking on the origin (O), O + e1 and O + e2. The

user input is refined by the method described in Section 3.2.

The software then displays the regular grid, as well as the

actual grid detected on the image.

The user is then requested to provide the physical length of

the base vectors, d1 and d2, as well as the angle between

them, in order to deduce the pixel size in both directions. If

pixel-size correction is enabled, the software will introduce the
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Figure 3
Pixel displacement and intensity redistribution according to area covered
on an undistorted image.



enlargement or contraction to correct the pixel size to the

ideal pixel size. After that, the software displays the displace-

ment maps, the splines computed and the errors, as well as the

calibration image corrected by the splines, with the regular

grid superimposed. The splines can be saved in text format,

which is usable by online data-reduction software, such as

SPD (Boesecke, 2007), FIT2D (Hammersley, 2016) or PyFAI

(Kieffer & Karkoulis, 2013; Kieffer & Wright, 2013).

6. Result of calibration correction

A full example of distortion correction applied on a SAXS

pattern taken using a FReLoN detector at the ID02 beamline

at ESRF (Narayanan et al., 2018; Labiche et al., 2007) is

available in Appendix A.

Fig. 4 shows the 1D curve determined from azimuthal

regrouping before and after applying the distortion correction

for a sample of uniform spherical particles (polystyrene latex).

The shaded areas represent the standard deviation of the

average from azimuthal regrouping. For display purposes, the

curve without distortion correction has been shifted upwards.

A comparison between the curves shows that the spatial-

distortion correction enhances the data quality obtained by

reducing the smearing as well as the standard deviation. The

oscillations are better resolved and the relative amplitude

seems constant over a wide dynamic range. For the lowest

scattering vector magnitude q, the number of pixels is small

and the pixels are closer, so they should be less sensitive to

spatial distortion. Even here, the standard deviation is clearly

improved. As the curve goes higher in q, the smearing effect of

spatial distortion is more and more pronounced, and the

relative standard deviation increases. On the other hand, the

relative standard deviation seems to stay more constant after

the spatial-distortion correction.

7. Conclusions

In this article, a method to measure image deformation and

calibrate 2D detectors using a calibration grid has been

described in detail. The proposed method is able to correct

low-frequency deformations of an image, measure effective

pixel size and correct the size to the theoretical one, so that the

corrected image is like that taken by a virtual perfect sensor at

the calibration-grid position. The only hypothesis on the

calibration grid is that it is a regular grid, described by two

base vectors.

This method has been implemented and provided to the

user community as a Python software package. The method

has been tested on a 2D detector that exhibits image defor-

mation, FReLoN 4M at ID02 beamline, ESRF, demonstrating

how the calibration grid can be reshaped as a regular grid

using spatial-distortion correction splines. The correction has

also been used on monodisperse polystyrene beads, which

show a large number of oscillations. Applying this correction

clearly improves the resolution of these oscillations and

reduces the standard deviation of the averaged 1D curve.

To conclude, this software provides a standalone alternative

to generate displacement files for the spatial calibration of 2D

detectors. This software also allows one to use any kind of

regular grid for the calibration, not just orthogonal ones. The

Python source code is available for the community and can be

easily extended or improved for specific needs. The spline files

generated by this software can be used directly with software

like FIT2D, SPD or pyFAI for distortion correction. The

calibration has been demonstrated to work well using tria-

gonal calibration grids, and the spatial-distortion correction,

when applied on samples exhibiting oscillations over a wide

dynamic range, has been shown to recover them accurately on

the 1D azimuthal reduced curve.

APPENDIX A
Results of calibration correction

The concepts and software implementation presented above

have been applied to the distortion correction of isotropic

small-angle scattering data taken with a custom FReLoN

camera, used on the ID02 beamline of ESRF (Narayanan et

al., 2018; Labiche et al., 2007). This camera has 24 mm square

pixels, which are almost 1:1 coupled with a fiber-optics face-

plate. This faceplate is the main source of image distortion.

The calibration grid is a 0.350 mm thick nickel plate with

0.290 � 0.010 mm diameter holes, which are organized in a

regular triagonal pattern. The deviation of each hole from an

ideal circle is typically 0.010 mm, never exceeding 0.030 mm.

The distance between edges is 0.710 � 0.010 mm. So, the

distance between hole centers is 1 mm. The grid parameters

have been determined using optical microscopy and �2750

holes are visible on the image.

A1. Displacement-function determination

Fig. 5 shows an image of the grid illuminated by X-rays at

12 230 eV, broadened by the diffusion pattern of a dilute
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Figure 4
One-dimensional SAXS curves before and after distortion correction.
Shaded areas represent the standard deviation estimated from azimuthal
regrouping. For display purposes, the curve without distortion correction
has been shifted upward. The inset shows the curves without standard
deviation or shift.



colloidal suspension at 10 m from the detector. At the center

of the image, the beamstop covers some holes, which leads to

missing and cut bright spots. In the two zoomed areas, the

regular-grid position as well as the measured position of each

peak is displayed. The bright spots are well separated from

each other. For the bright spots with lower intensity (further

away from the center), a tail is visible. However, the intensity

of this tail is below the threshold used to determine the bright-

spot position and therefore does not disturb the measurement.

Several different origins have been tested. Unless the main

axes contain a lot of ill-determined bright spots (cut by the

beamstop, detector defects, very large displacement, . . . ), all

displacement maps determined have very similar shapes, and

the values only differ by a constant, since the origin (O) fixes

the origin of the grid with no displacement. The pixel size

determined with different origins is not sensitive to the origin

taken.

Fig. 6 shows the measured displacement along x and y [(a)

and (b)] and the computed splines for these displacement

interpolations [(c) and (d)]. On the x displacement map, a

corner has a large displacement, caused by cutting of the fiber-

optics plate. The displacements along x and y seem completely

decoupled.

The spline function reflects the general shape and ampli-

tude of the displacement map. However, splines are known to

exhibit larger discrepancy close to the domain border. This is

why the shape of the large deformation that is bottom right on

the x displacement map is not very well described.

The pixel size that is computed using the physical para-

meters of the grid is 23.83 � 24.17 mm (H � V). As explained

in Section 3.4, this non-squareness correction can be added to

the displacement map, or taken into account when calculating

the scattering vector magnitude (q) of each pixel. The first

option is usually more convenient, as this simplifies the

calculation of q and reduces the pixel size to a single value,

which can be set to the theoretical one.

Fig. 7 shows the error (i.e. the difference) between the

measured displacement and the spline that interpolates the

measurements. For both functions, the error stays below one

pixel for most of the central area. For the x displacement error,

one value is higher in the middle, but this value is due to a

bright spot that is partially hidden by the beamstop but not

removed by the algorithm. The largest values occur at the

domain boundary but stay reasonable. The maximum error is

2.4 pixels for the bottom-right y displacement.

Fig. 8 shows the initial calibration grid corrected using the

spline functions that have been determined. The regular grid is

superimposed on the image without any further adjustment.

The position of all the bright spots now matchs the regular

grid, even in the place where the error was large (Fig. 8,

bottom right).

A2. Application to a scattering pattern

Once the detector spatial distortion has been described, the

correction can be applied to images of real data. Here, an

isotropic SAXS pattern of 2 mm polystyrene beads is used to
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Figure 5
An image of the calibration grid. The colors represent pixel intensity on a
log scale. The green axes are the main axes along which e1 and e2 are
estimated. Regular grid refers to the grid generated using the base
vectors. Measured grid is the bright-spot positions determined using the
peak-search method. The grid is illuminated by monochromatic 12 230 eV
X-rays, broadened using diffusion of a dilute colloidal suspension, 10 m
away from the detector.

Figure 6
(a) Measured displacement along x. (b) Measured displacement along y.
(c) The spline function for displacement along x. (d) The spline function
for displacement along y. All units are in pixels.

Figure 7
(a) Errors between the spline function and displacement measured along
x. (b) Errors between the spline function and displacement measured
along y.



demonstrate the quality of correction (see Fig. 9, which is

dark-image subtracted and flat-field corrected). The scattering

pattern shows oscillations over a wide dynamic range. In order

to resolve as many oscillations as possible, a large beamstop

was used to avoid saturating the CCD detector close to the

primary beam, and a long exposure time of 3 s was applied. A

large number of oscillations can be seen by eye, from very

close to the beamstop to the corner of the image. The incident-

beam position is almost at the center of the image and is

visible through the beamstop.

Fig. 10 shows the azimuthal regrouping of Fig. 9, before

spatial-distortion correction (left) and after correction (right).

The distorted raw and corrected patterns are both azimuthally

regrouped, averaged and compared. Even though the center

has been carefully determined before and after correction, the

azimuthal regrouping still exhibits waves before correction.

These waves prevent averaging of the regrouped data over all

angles in order to get a high-resolution 1D curve. On the right

side, the azimuthal regrouping exhibits much straighter

vertical lines. As the beam center might be shifted by applying

the distortion correction, the beam position after spatial-

distortion correction has to be determined again.
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Gorini, J., Claustre, L., Sever, F., Morse, J. & Boesecke, P. (2018). J.
Appl. Cryst. 51, 1511–1524.

Oliphant, T. E. (2021). NumPy. Version 1.21.4. https://pypi.org/
project/numpy/.

Spector, S. S., Brookeman, V. A., Kylstra, C. D. & Diaz, N. J. (1972). J.
Nucl. Med. 13, 307–312.

Stanton, M., Phillips, W. C., Li, Y. & Kalata, K. (1992). J. Appl. Cryst.
25, 549–558.

Tate, M. W., Chamberlain, D. & Gruner, S. M. (2005). Rev. Sci.
Instrum. 76, 081301.

Vijayan Asari, K., Kumar, S. & Radhakrishnan, D. (1999). IEEE
Trans. Med. Imaging, 18, 345–354.

computer programs
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Figure 9
A SAXS pattern of 2 mm polystyrene beads, taken at a sample-to-
detector distance of 10 m, with an exposure time of 3 s (after dark-image
subtraction and flat-field correction). A large beamstop (12 mm) is used
for measuring the intensities at larger scattering angles with high
accuracy.

Figure 10
An azimuthally regrouped SAXS pattern of polystyrene beads, before
(left) and after (right) distortion correction.

Figure 8
The calibration-grid image corrected by the splines, with the regular grid
superimposed.
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