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This article is the second part of a series dealing with the description and

visualization of mathematical functions used to describe a powder diffraction

pattern for teaching and education purposes. The first part dealt with the

instrumental and sample contributions to the profile of a Bragg peak [Dinnebier

& Scardi (2021). J. Appl. Cryst. 54, 1811–1831]. The second part, here, deals with

the mathematics and physics of the intensity in X-ray powder diffraction.

Scholarly scripts are again provided using the Wolfram language in

Mathematica.

1. Introduction

This series of papers deals with the description and visuali-

zation of mathematical functions used to describe a powder

pattern. Accompanying each part is a collection of user-

friendly, interactive and freely distributable Mathematica (Wol-

fram Research, https://mathworld.wolfram.com/) teaching

scripts. All scripts have been written in Wolfram Mathematica,

version 13.0.0.0, and are constantly updated. They are freely

available at the website https://www.fkf.mpg.de/xray. Non-

subscribers of Mathematica can run the scripts using the freely

available Wolfram Player at https://www.wolfram.com/player/.

Bugs and problems should be reported to r.dinnebier@fkf.mpg.de.

In particular, the ‘Manipulate’ command is extensively used to

visualize the impact of parameters in an interactive manner.

When possible, parameter values from real-life examples are

given as the default inputs. The idea is to ‘learn by doing’; one

may gain intuition for how a given mathematical model

performs for describing diffraction peaks in an experimental

powder pattern and what the limitations of the said model are.

Every model is an oversimplification of the underlying physics,

but different models can be useful for studying various

phenomena or increasing the precision of the investigation.

We begin by introducing the scripts that visualize the

complex atomic form factor for angular- and energy-dispersive

X-ray diffraction and the displacement factor due to thermal

motion. This is followed by a discussion of the complex

structure factor and the effect of thermal diffuse scattering on

a powder pattern. Then, a series of correction factors for step-

scan and integrated intensities are discussed in detail,

including the Lorentz and polarization factors, multiplicity,

various absorption effects, the overspill effect, and preferred

orientation. Finally, the intensity distribution of a powder

pattern is demonstrated for a nanocrystalline material,

following two alternative approaches based on (i) the struc-

ture factor and common volume function (CVF), including the

effect of small-angle scattering for spherical particles, and (ii)
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total scattering from a single crystallite, with atomic distances

used in the Debye scattering equation.

In general, the scattering vector is given as d*, q or s, which

are used interchangeably given the following relations:

d� ¼ 2s ¼
q

2�
: ð1Þ

The corresponding lengths are defined as

d� ¼
2 sin �

�
; s ¼

sin �

�
; q ¼

4� sin �

�
: ð2Þ

The scattering angle is 2� and � is the wavelength of the X-ray

beam. At a Bragg reflection, the Bragg condition is given as

d�hkl ¼ h a� þ k b� þ l c� ð3Þ

with the integer indices hkl (called Miller indices if coprime)

and the reciprocal-lattice parameters a*, b* and c*.

2. The atomic form factor

The atomic form (or scattering) factor fj describes the scat-

tering power of an atom or ion j as a function of the length of

the scattering vector assuming spherical symmetry of the

electron cloud. In the case of X-rays, the form factor depends

strongly on s with a marked decrease at higher values. The

value at s = 0 is normalized to the number of electrons of the

scatterer (atom or ion). The difference between the ionic and

atomic form factors is small and barely visible in powder

diffraction patterns, except for compounds showing mainly

ionic character and containing lighter elements like Na+, F�,

O2� or Al3+. The form factor consists of a term that depends

on the distance in reciprocal space (normal scattering) and a

complex part depending only on the wavelength (anomalous

scattering):

fjðsÞ ¼ f 0
j ðsÞ þ�f 0j ð�Þ þ i�f 0 ij ð�Þ: ð4Þ

The real part [the term �f 0j ð�Þ] of the anomalous scattering

factor has a phase shift of � with respect to the normal scat-

tering factor, thus keeping the original phase angle of f 0
j ðsÞ.

Since the value is predominantly negative, it reduces the

scattering power in most cases. [For light elements and away

from absorption edges �f 0j ð�Þ can be (small) positive.] In

contrast, the imaginary part [the term i�f 0 ij ð�Þ] has a phase

shift of �/2 (Fig. 1), leading to both a change in the absolute

value of the form factor

jfjðsÞj ¼ f 0
j ðsÞ þ�f 0j ð�Þ

� �2
þ �f 0 ij ð�Þ
� �2

n o1=2

ð5Þ

and a shift of the original phase of f 0
j ðsÞ by

�’ ¼ arctan
�f 0 ij ð�Þ

f 0
j ðsÞ þ�f 0j ð�Þ

" #
: ð6Þ

The functional dependence of the form factors for all common

atoms and ions has been parameterized by an empirical linear

combination of five Gaussian functions:

f 0
j ðsÞ ¼ c

j
0 þ

P5

k¼1

a
j
k expð�b

j
ks2Þ; ð7Þ

with the 11 parameters a1 . . . a5, b1 . . . b5 and c0 tabulated e.g.

by Waasmaier & Kirfel (1995). The resulting form factors are

valid over the scattering range 0 � s � 6 Å�1 (Fig. 2).

Anomalous scattering effects are often disregarded for

simplicity, but they become extremely important if the wave-

length used is in the vicinity of an absorption edge of an

atomic species in the sample. For a strong scatterer, the change

in scattering power can amount to the equivalent of several

electrons and anomalous dispersion measurements can be

used to give extra element-specific information about the

structure (Fig. 2).

When using an energy-dispersive measurement geometry

with a fixed 2� angle, equation (4) becomes especially

important if the powder pattern runs over absorption edges

(Fig. 3), which is a likely occurrence. The conversion between

the length of the scattering vector and the energy in eV is

given as

d�ðÅÞ ¼
2EðeVÞ sin �

12398
: ð8Þ

The Mathematica script also allows the simultaneous repre-

sentation of the scattering factors, anomalous dispersion

factors and phase shifts for all elements ranging from H to U

(Fig. 4).

3. Atomic displacement parameter

At any temperature, atoms vibrate about their equilibrium

position. Moreover, static local atomic displacements may

exist in disordered structures like solid solutions or deformed

crystals. The corresponding displacements lead to a decrease

in peak intensities and an increase in the background due to

thermal diffuse scattering. The decrease in peak intensity is

described by multiplying the atomic form factor with either an

isotropic or an anisotropic correction factor, depending on the

scattering length or scattering vector. For the isotropic case,

the displacement factor (Debye–Waller factor) for the entire
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Figure 1
Vector (pointer) representation of the complex atomic scattering factor f
with normal scattering (f0) and real (�f 0) and imaginary (�f 0 i) parts of
anomalous scattering [from Dinnebier et al. (2018)]. �f 0 is assumed to be
negative. The phase angle ’ changes in the presence of a non-negligible
imaginary (�f 0 i) component of the anomalous scattering.



crystal structure, groups of atoms or an individual atom is

defined with a dependence on the scattering length s as

tðsÞ ¼ expð�Bs2
Þ; ð9Þ

where B is the isotropic displacement parameter (typically in

Å2). The displacement factor is multiplied by the form factor,

thus further reducing the scattering power. With single-crystal

data, or sometimes with extremely high quality powder

diffraction data measured over an extended s range, it may be

possible to refine anisotropic displacement parameters for the

strong scatterers in the crystal structure. The anisotropic

displacement parameter can be geometrically described as a

three-axis ellipsoid and can be described in terms of a

symmetric second-rank tensor:
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Figure 2
Screenshot of a Mathematica script for determining the individual atomic form factor for fixed-wavelength data for atoms ranging from order number 1
(H) to 92 (U) [e.g. iron (Z = 26) is shown here]. Upper chart: absolute form factor without correction for anomalous scattering (red line), corrected for
anomalous scattering (blue line), corrected for Debye–Waller factor (introduced in Section 3) (red dashed line), the real part of the anomalous
dispersion coefficient (green line) and the imaginary part of the anomalous dispersion coefficient (orange line) depending on the scattering length s.
Lower charts: real and imaginary parts of the anomalous dispersion coefficient and the complex phase shift introduced by the imaginary part of the
anomalous dispersion coefficient. The non-accessible range for selected wavelength and angular ranges is shaded in gray.



Bij ¼

B11 B12 B13

B12 B22 B23

B13 B23 B33

0
@

1
A: ð10Þ

The isotropic analog can be calculated as 1/3 of the tensor’s

trace ignoring the off-diagonal parts:

B ¼
B11 þ B22 þ B33

3
: ð11Þ

The anisotropic displacement factor depends on the direction

of the scattering vector:

tðhklÞ ¼ exp½�0:25ðB11h2a�2 þ B22k2b�2 þ B33l2c�2

þ 2B12hka�b� þ 2B13hla�c� þ 2B23klb�c�Þ�; ð12Þ

or, in a dimensionless fashion,

tðhklÞ ¼ exp½�ð�11h2
þ �22k2

þ �33l2
þ 2�12hkþ 2�hl

þ 2�23klÞ�: ð13Þ

The physical meaning of B is given by

B ¼ 8�2
hu2
i; ð14Þ
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Figure 3
Like Fig. 2, but as a function of energy.



where hu2
i is the mean-square deviation from the equilibrium

position of the atom or group of atoms, projected along the

scattering vector s. In the anisotropic case, this leads to

tðhklÞ ¼ exp½�2�2
ðu11h2a�2 þ u22k2b�2 þ u33l2c�2

þ 2u12hka�b� þ 2u13hla�c� þ 2u23klb�c�Þ�: ð15Þ

In order to prevent physically meaningless results, the uij (or

Bij or �ij) matrix must be kept positive definite, which can be

achieved with the following boundary conditions:

uii > 0;

uiiujj > u2
ij;

u11u22u33 þ u2
12u2

13u2
23 > u11u2

23 þ u22u2
13 þ u33u2

12:

ð16Þ
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Figure 4
Screenshot of a Mathematica script for determining the individual atomic form factor for fixed-wavelength data for atoms ranging from order number 1
(H) to 92 (U) displayed simultaneously. Upper chart: absolute form factor without correction for anomalous scattering depending on the scattering
length s. Lower charts: real and imaginary parts of the anomalous dispersion coefficient and the complex phase shift introduced by the imaginary part of
the anomalous dispersion coefficient.



All descriptions of the thermal effects, whether one uses B, �
or u, in isotropic or anisotropic forms, are time averages since

the sampling frequency in diffraction measurements is much

lower than the characteristic vibrational frequencies.

In order to determine individual displacement parameters

with good precision from powder data, a large range of s must

be covered. Great care must be taken in interpreting the

resulting values, because the s dependence of the intensity

reduction (Fig. 5) is similar to that of many other correction

factors, which are often poorly treated. (It should be noted

that the use of neutrons may give more reliable results.)

Debye’s equation (9) uses the most common and simple

approach with the underlying assumption of harmonicity and

independent vibrations. Higher levels of complexity using an

anharmonic approximation of the atomic displacement para-

meters are not of relevance for powder diffraction, except in

very special cases (e.g. Wahlberg et al., 2016).

4. The structure factor

The structure factor of a Bragg reflection is defined as a

complex sum over all atoms j in the unit cell (Fig. 6):

F d�hklð Þ ¼
P

j

tjoj fjðsÞ expð2�id�hkl � xjÞ
� �

: ð17Þ

[Commonly, the structure factor is calculated for the Bragg

position of the peaks, thus Fðd�hklÞ and not F(d*). This choice is

discussed further later – see equation (57) and related text.]

The positional vector xj of an atom j in the unit cell is defined

by the fractional crystal coordinates:
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Figure 5
Screenshot of a Mathematica script for determining the intensity reduction as a function of s and scattering angle for isotropic or anisotropic
displacement parameters (B, �, hu2

i). The three-axis ellipsoid representing the anisotropic and the corresponding spherical isotropic displacement
parameters is also shown.

Figure 6
Graphical representation of the complex structure factor as a vector sum
(right) of the individual form factors (left) [from Dinnebier et al. (2018)].



xj ¼

x

y

z

0
@

1
A: ð18Þ

Equation (17) includes for every atom j its displacement factor

tj [equation (9)] and a factor oj denoting the relative occu-

pancy of the atomic site. Both factors are set to unity in the

following for simplicity.

Using the Euler identity, the real and complex parts of the

structure factor can be separated (Fig. 7):

F d�hklð Þ ¼
P

j

fjðsÞ cos 2�d�hkl � xj

� �� �
þ i

P
j

fjðsÞ sin 2�d�hkl � xj

� �� �
¼ A d�hklð Þ þ iB d�hklð Þ: ð19Þ

If anomalous scattering is taken into account, the structure-

factor amplitude becomes

F d�hklð Þ ¼
P

j

½f 0
j ðsÞ þ�f 0j ð�Þ þ i�f 0 ij ð�Þ� cosð2�d�hkl � xjÞ

� �
þ i

P
j

½f 0
j ðsÞ þ�f 0j ð�Þ þ i�f 0 ij ð�Þ� sinð2�d�hkl � xjÞ

� �
: ð20Þ

After separating the real and imaginary parts, this further

turns into

F d�hklð Þ ¼

P
j

½f 0
j ðsÞ þ�f 0j ð�Þ� cosð2�d�hkl � xjÞ

� �
�
P

j

½ð�f 0 ij ð�Þ� sinð2�d�hkl � xjÞ
� �

0
B@

1
CA

þ i

P
j

½f 0
j ðsÞ þ�f 0j ð�Þ� sinð2�d�hkl � xjÞ

� �
þ
P

j

½�f 0 ij ð�Þ� cosð2�d�hkl � xjÞ
� �

0
B@

1
CA

¼ A01 d�hklð Þ � B11 d�hklð Þ
� �

þ i B01 d�hklð Þ þ A11 d�hklð Þ
� �

¼ A d�hklð Þ þ iB d�hklð Þ: ð21Þ

5. The intensity of a Bragg reflection

The (integrated) intensity of a Bragg reflection is proportional

to the structure factor multiplied by its complex conjugate,

which is equivalent to the squared absolute value of the

structure-factor amplitude jFðd�hklÞj:

I d�hklð Þ / F d�hklð ÞF� d�hklð Þ ¼ F d�hklð Þ
�� ��2: ð22Þ

For practical purposes, it is easier to separate the real and

imaginary parts of the structure factor (Fig. 7), leading to

F d�hklð Þ
�� ��2 ¼ A d�hklð Þ

2
þ B d�hklð Þ

2

¼ A d�hklð Þ
�� ��þ i B d�hklð Þ

�� ��� �
A d�hklð Þ
�� ��� i B d�hklð Þ

�� ��� �
¼ A01 d�hklð Þ

2
þ B01 d�hklð Þ

2
þ A11 d�hklð Þ

2
þ B11 d�hklð Þ

2

þ 2B01 d�hklð ÞA11 d�hklð Þ � 2A01 d�hklð ÞB11 d�hklð Þ: ð23Þ

The phase angle of the structure factor can be directly

deduced from Fig. 7 as

’ d�hklð Þ ¼ arctan
B d�hklð Þ
�� ��
A d�hklð Þ
�� ��

 !
: ð24Þ

6. Thermal diffuse scattering

As the Debye–Waller (DW) coefficient increases, intensity

from the Bragg peaks is transferred to the thermal diffuse

scattering (TDS). Here a simple TDS model assuming

Einstein (independent) oscillators is used (Warren, 1953;

Beyerlein et al., 2012). For the case of spherical monoatomic

nanocrystals of Nat atoms, the contribution to the background

depending on q can be simulated by

TDSðqÞ ¼ Natjf ðqÞj
2 1� exp �2Biso

q

4�

	 
2
� � �

: ð25Þ

The effect of the isotropic DW factor on peak intensity and of

TDS on the background exemplified in the powder pattern of

spherical face-centered cubic (f.c.c.) nanocrystalline copper is

illustrated in the Mathematica script represented in Fig. 8. The

simple TDS model here has been chosen to illustrate that

‘what is lost’ in the Bragg intensity due to the Debye–Waller

factor is transferred to the TDS. This shows that TDS is not

‘background’, but physical information, and that intensity is

not ‘lost’.

7. Intensity correction factors

The intensities visible in a powder diffraction pattern are

altered by a series of correction factors, depending on

diffraction geometry, sample preparation and the investigated

material. Some correction factors depend on d�hkl (integrated

Bragg intensities) and are therefore constant over the profile

of a Bragg reflection. Other corrections can have a d*

dependency (step-scan intensities). Taking account of the d*

dependency is usually only needed for samples with very

broad peaks extending over a wide d* range. Examples of the

first type include the multiplicity of a reflection given by the
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Figure 7
Vector (pointer) representation of the structure factor and its complex
conjugate [from Dinnebier et al. (2018)].



lattice symmetry or the existence of preferred orientation of

crystallites in the sample scattering volume. Examples of the

second type include the absorption correction, the (solely

geometrical) Lorentz–polarization factor and the overspill

effect. In the following, the most relevant correction factors

are discussed in detail.

7.1. Multiplicity

Because of projection of the three-dimensional reciprocal

space onto a direction in reciprocal space, a one-dimensional

d* axis in powder diffraction, all planes with identical inter-

planar spacing will result in an exact superposition of their

intensity contributions. This results in a single observed peak.

Among these superpositions are ‘systematic overlaps’, which

denote symmetry-equivalent reflections with identical inten-

sities. The corresponding factor, called the multiplicity, is an

integer which depends on the type of reflection and the Laue

group (Giacovazzo et al., 2011). Because of the overlap of

Friedel pairs (Giacovazzo et al., 2011), the observed intensity

is always doubled, corresponding to a minimum value of 2 for

the reflection multiplicity for all crystal systems. In addition,

for symmetries higher than triclinic, the multiplicity lies

between 2 and 48. As an example, the h00 reflection for cubic

Laue symmetry is a face of a cube. Since all six faces of the

cube are symmetry equivalent (h00, h00, 0h0, 0h0, 00h, 00h),

the multiplicity is 6. In general, the symmetry-equivalent

planes can be visualized as faces in either open or closed

polyhedra. A table of all multiplicities for all Laue groups is

given e.g. by Klug & Alexander (1974) and Rouse & Cooper

(1977). Multiplicities depending on Laue group and lattice

parameters as a function of 2� for a given wavelength are

shown in Fig. 9. The corresponding closed geometric forms of

the Bragg reflections are shown for the case of a cubic crystal

system.

7.2. Lorentz–polarization factor

7.2.1. Lorentz factor. The Lorentz factor is a purely

geometric factor that depends on the scattering angle. It has

three contributions (L1, L2, L3), of which two are specific for

powder diffraction (L2, L3). The single-crystal Lorentz factor

teaching and education
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Figure 8
Screenshot of a Mathematica script for determining the effect of the isotropic DW factor on peak intensity and of TDS on the background of the powder
pattern of spherical f.c.c. copper nanoparticles. The TDS [equation (25)] is the ‘Debye TDS’, which is a TDS model for Einstein oscillators. The powder
pattern is calculated with the common volume function [equation (57)] for a fully (linearly) polarized beam and corrected by the Lorentz factor [equation
(30)] and an isotropic Debye–Waller factor [equation (9)]. A term to account for small-angle X-ray scattering (SAXS) is applied. A description of these
terms is found later in the text.



L1 for the integrated intensity takes into account the inter-

section between sampling step (the ‘bin’ size in real space) and

the finite thickness of the Ewald sphere, and is given as

L1 �0ð Þ /
1

sin 2�0

¼
1

2 sin �0 cos �0

; ð26Þ

with �0 being the angular position of the Bragg reflection.

In powder diffraction, the second contribution to the

Lorentz factor is derived from the angular dependence of the

number of observable crystalline particles. The integrated

intensity is proportional to the factor

L2 �ð Þ / cos �: ð27Þ

The last contributing factor normalizes the different radii of

the Debye–Scherrer rings. The fraction of the diffraction cone

that intersects the detector is highest at low angles and at very

high angles (backscattering):

L3 �ð Þ /
1

sin 2�
¼

1

2 sin � cos �
: ð28Þ

As a result, the Lorentz correction for the area of a powder

diffraction peak reads as follows:

L4 �ð Þ / L1 �ð ÞL2 �ð ÞL3 �ð Þ /
1

2 sin �0 cos �0

cos �
1

2 sin � cos �

/
1

sin �0 sin � cos �0

; ð29Þ

where any constant factor gets absorbed by the overall scale

factor. The cosine term in the denominator comes from the

conversion between 2� space and reciprocal (length) space,

ðcos �Þ=�, which is the first term in a Taylor expansion. Such

expansion is appropriate to the sampling step, but not to the

width of broad peaks. Therefore, the Lorentz factor which

should be applied in powder diffraction (Yinghua, 1987;

Warren, 1978; Ino & Minami, 1984) is

L5 �ð Þ /
1

sin �0 sin �
: ð30Þ

[Ino & Minami (1984) also show in a rather general way that

the powder diffraction intensity of a given Bragg peak should

be written with two terms: the main one is the usual line profile

(Fourier transform of the CVF), centered on the Bragg posi-

tion 2�, and the second term is an identical line profile

centered on �2�. This second term has the effect of avoiding

the divergence at 2� = 0 of the Lorentz ð1= sin �Þ factor.]
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Figure 9
Screenshot of a Mathematica script for determining multiplicities – they are given depending on Laue group and lattice parameters as a function of 2� for
a given wavelength. The corresponding closed geometric forms of the Bragg reflections are given for a cubic crystal system.

Figure 10
Normalized Voigtian nanocrystalline diffraction peak (FWHM of
approximately 13� 2�) multiplied pointwise by the correct Lorentz factor
[equation (30)], by the approximated Lorentz factor [equation (31)] and
by the Lorentz factor used for the peak area [equation (29)]. The
difference between correct and approximated Lorentz factors is discussed
in the text.



For relatively narrow peaks at medium–large 2� values, this

can be simplified to

L6 �ð Þ /
1

sin2�
: ð31Þ

The difference between the two definitions [equations (29)

and (30)] becomes apparent for nanocrystalline materials

where the Bragg peaks span a large range of the diffraction

angle, particularly for peaks at high diffraction angles, where

the cosine function varies significantly (Fig. 10). In such cases,

peak width, peak shape and peak position change. All in all,

equations (29) and (31) are approximations that one should

not use in the case of small crystalline domains.

For energy-dispersive powder diffraction, the Lorentz

factor is proportional to �3 (Fig. 11) and therefore constant.

[Note that for neutron time-of-flight (TOF) data the Lorentz

factor is proportional to the fourth power of d (Zhang et al.,

2023).]

7.2.2. Polarization factor. The purely geometric polariza-

tion factor originates from partial polarization of the scattered

electromagnetic wave. It is given by the intensity ratio

between the diffracted and the primary beam as

P �ð Þ ¼
I

I0

¼
1þ cos2 2�

2
: ð32Þ

This equation is valid for unpolarized radiation from a

laboratory X-ray tube. When a primary or secondary beam

monochromator is present, a more general equation is given

by

P �ð Þ ¼
1þ cos2 2� cos 2�m

1þ cos2 2�m

: ð33Þ

(Not all terms are shown, since the constants are absorbed in a

general scale factor when theoretical expressions are used to

match experimental data. Which factors are retained depends

on which textbook is used. This holds for all expressions in this

section.) Here 2�m is the Bragg angle of the reflection from the

monochromator, which is calculated by means of the Bragg

equation as

2�m ¼ 2 arcsin
�

2dm

: ð34Þ

The d value of the Bragg reflection comes from the mono-

chromator crystal dm. For unpolarized radiation, 2�m can be

set to 0� (e.g. X-ray diffractometers without any mono-

chromator), for fully polarized radiation 2�m can be set to 90�

(e.g. synchrotron radiation or constant-wavelength neutron

diffraction) (Fig. 12). In reality, synchrotron radiation is 95–

97% polarized. In order to account for fractional polarization

of the beam, a factor K can be introduced, with K = 0.5 for

circularly polarized X-rays (i.e. laboratory X-ray tubes), K = 0

for fully polarized X-rays (ideal synchrotron source) and K 	

0.05 for a ‘real’ synchrotron source:

P �ð Þ ¼
1� K þ K cos2 2� cos2 2�mð Þ

4
: ð35Þ

For practical reasons, the Lorentz and polarization factors are

often combined into a single Lorentz–polarization factor (Lp

factor). For the simplest case of angular-dispersive laboratory

X-ray diffraction used for pointwise correction of the powder

patterns, using equations (31) and (32) and dropping the ‘2’ in

the denominator results in

Lp �ð Þ ¼
1þ cos2 2�

sin2�
: ð36Þ

A screenshot of the full Mathematica script dealing with all

aspects of the Lorentz and polarization corrections for

different diffraction geometries is shown in Fig. 13.

7.3. Absorption correction

When passing through matter, X-rays in the keV range are

absorbed by both the photoelectric and Compton effects. For

accurate powder diffraction work, it is important to consider

the effects of absorption on experimental intensities (Maslen,

2006). Absorption depends on the investigated material, but

also on experimental geometry and sample preparation (e.g.

packing density). Instead of the linear absorption coefficient
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Figure 11
Lorentz and polarization factors for energy-dispersive diffraction.

Figure 12
Polarization, Lorentz and combined Lorentz–polarization factors for
angular-dispersive laboratory powder diffraction.



�, an effective linear absorption coefficient �eff should be

used to account for the lower packing density of a loose

powder. In the following, the correction factors commonly

employed in Rietveld analysis for asymmetric/symmetric

Bragg–Brentano geometry, Debye–Scherrer, asymmetric/

symmetric thin-plate transmission geometry and surface

roughness are given.

For direct transmission through a polycrystalline bulk

material, the transmitted intensity I with respect to the initial

intensity I0 depends on the thickness t of the material and its

effective linear absorption coefficient �eff (Lambert–Beer

law):

I �eff; tð Þ ¼ I0 expð��efftÞ: ð37Þ

The appropriate absorption correction factor (transmission

factor) for calculated intensities (Fig. 14) therefore is

A �eff; tð Þ ¼ I=I0 ¼ expð��efftÞ: ð38Þ

The linear absorption coefficient depends strongly on the

energy (wavelength) of the radiation used and also changes

rapidly close to the absorption edges.

A comprehensive review of absorption corrections for

various diffraction geometries, from which the following

formulas were taken, has been given by Rowles & Buckley

(2017). The incoming beam is always approximated as parallel.

To calculate the reduction of the diffracted intensity, one must

take into account the total path l of the incident and the

diffracted beams in the sample, and integration must be

performed over the entire scattering volume V of the sample.
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Figure 13
Screenshot of the corresponding Mathematica script dealing with Lorentz and polarization factors of different diffraction geometries and sources.

Figure 14
Transmission factor for solid samples in transmission geometry with an
absorption coefficient of 6.9 cm�1. The red arrow shows the value for a
thickness of 1.0 mm (e.g. a capillary diameter).



7.3.1. Thin flat-plate transmission geometry. For a

specimen in asymmetric transmission of thickness t with angle

� between the incident beam and specimen surface, the

correction factor is calculated as [Fig. 15(b)]

A �; �; �eff; tð Þ ¼ 2 exp
��eff t

sin �

� �
sin �

sin�
� 1

� ��1


 exp ��eff t
1

sin �
�

1

sin �

� �� �
� 1

 �
; ð39Þ

with the angle � between the diffracted beam and the

specimen surface defined as

� ¼ 180� ð2� þ �Þ: ð40Þ

This formula is considerably simpler for symmetric transmis-

sion where � = � = 90 � � [Fig. 15(a)]:

A �; �eff; tð Þ ¼
2�efft exp ��efft=cos �ð Þ

cos �
: ð41Þ

7.3.2. Debye–Scherrer geometry. For cylindrical samples

(Debye–Scherrer geometry), the beam must pass through the

entire capillary diameter (= two times the radius R of the

capillary cylinder) at low angles. A reasonable approximation

for an absorption correction factor has been given by Sabine et

al. (1998):

A �; �eff; Rð Þ ¼ AL zð Þ cos2 � þ AB zð Þ sin2 � ð42Þ

with

z ¼ 2�effR: ð43Þ

The absorption factors AL at the Laue condition (� ¼ 0�) and

AB at the Bragg condition (� ¼ 90�) are given by

AL ¼
2 B0 zð Þ � S0 zð Þ � B1 zð Þ � S1 zð Þ
� �

z
;

AB ¼
B1 2 zð Þ � S1 2 zð Þ

z
;

ð44Þ

and Bn(z) is the the modified Bessel function of the first kind,

which for integer n is defined as

Bn zð Þ ¼
1

�

Z�
0

expðz cos �Þ cos n �ð Þ d�: ð45Þ

The modified Struve function Sn(z) is defined as

Sn zð Þ ¼
2 1

2 z
� �n

�1=2� nþ 1
2

� � Z
�=2

0

sinh z cos �ð Þ sin2n � d�; ð46Þ

with the gamma function

� zð Þ ¼

Z1

0

ln
1

t

� �� �z�1

dt: ð47Þ

Equation (42) gives satisfactory results for �effR < 10. A

typical absorption correction factor for �effR = 1.0 is shown in

Fig. 16.
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Figure 15
Absorption correction factor for a sample in thin flat-plate transmission
geometry as a function of scattering angle for �eff = 21 mm�1 and t =
99 mm. (a) Symmetric case [equation (41)]. (b) Asymmetric case with an
angle between the incident beam and specimen surface of � ¼ 2�

[equation (39)].

Figure 16
Absorption correction factor for cylindrical samples as a function of
scattering angle for �effR = 1.0 [equation (42)].



A more rigorous treatment using radial symmetry for the

calculation of cylindrical absorption coefficients, taking the

capillary loading into account, was published by Khalifah

(2015).

7.3.3. Reflection (Bragg–Brentano) geometry. One impor-

tant consideration in reflection geometry is the requirement

that the sample is ‘infinitely thick’, meaning that a negligible

fraction of the beam passes straight through the sample. One

way to estimate the minimum sample thickness, tmin, required

to meet this criterion is to calculate the sample depth required

for the incident beam to be reduced to 10�3 of its initial

intensity. We set tmin ¼ 2t sin �max and I(surface)/I(tmin) = 1000

in equation (37), which simplifies to give

tmin ffi
3:45 sin �max

�eff

: ð48Þ

For Ni powder tmin’ 0.013 cm and for a typical organic sample

tmin ’ 1.3 cm at � = 90� using Cu K� radiation, which makes it

unlikely that an organic material will meet the infinite thick-

ness criterion.

For a specimen in asymmetric reflection with angle �
between the incident beam and specimen surface, the

correction factor is calculated as [Fig. 17(b)]

A 2�; �eff; tð Þ ¼ 2 1þ
sin �

sin 2� � �ð Þ

� ��1


 1� exp ��eff t
1

sin �
þ

1

sinð2� � �Þ

� � �� �
: ð49Þ

For symmetric reflection � = � = � (Bragg–Brentano

geometry), this simplifies significantly for non-infinitely thick

samples to [Fig. 17(a)]

A 2�; �eff; tð Þ ¼ 1� exp ��eff t
2

sin �

� �� �
: ð50Þ

7.3.4. Surface roughness. If the packing density in Bragg–

Brentano geometry varies with depth, thus creating a ‘rough

surface’, the so-called porosity effect reduces the intensity at

low Bragg angles. This is also a kind of absorption effect. A

common correction function is given by Suortti (1972):

A 2�ð Þ ¼
a1 þ 1� a1ð Þ expð�a2= sin �Þ

a1 þ 1� a1ð Þ expð�a2Þ
; ð51Þ

where a1 and a2 are refinable parameters (Fig. 18).

A screenshot of the full Mathematica script dealing with all

aspects of absorption correction for different diffraction

geometries and its influence on the intensity of a Bragg peak is

shown in Fig. 19.

7.4. Overspill effect

In many diffraction geometries, it is important that the

incident beam remains smaller than the sample area at all

angles in order to ensure the constant illumination volume

condition (in the case of an infinitely thick specimen). This is

particularly important in Bragg–Brentano geometry. Never-

theless, at low angles it is common for the irradiated area to
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Figure 17
Absorption correction factor for Bragg–Brentano reflection geometry as
a function of scattering angle for �eff = 10 cm�1 and t = 25 mm. (a)
Symmetric case [equation (50)]. (b) Asymmetric case with an angle
between the incident beam and specimen surface of � ¼ 2� [equation
(49)].

Figure 18
Correction factor for the porosity effect in Bragg–Brentano geometry
according to Suortti (1972) as a function of diffraction angle [equation
(51) with a1 = a2 = 0.05].



become greater than the area covered by the sample on the

sample holder. This ‘overspilling’ reduces the intensities up to

the diffraction angle at which the two areas are identical

(Fig. 20).

For divergent-beam Bragg–Brentano geometries with a

tube opening angle ’, which is determined by the divergence

slit, the irradiated length is calculated as (Fischer, 1996;

Krüger & Fischer, 2004; Pecharsky & Zavalij, 2008)

L ¼ l1 þ l2 ¼
R sinð’=2Þ

sin � þ ð’=2Þ½ �
þ

R sinð’=2Þ

sin � � ð’=2Þ½ �
ffi

R ’ ðradÞ

sin �

ð52Þ

with the goniometer radius R (Fig. 20). The approximation is

only valid for very small ’=2 and � � ’=2. In the case of small

divergence, the beam can be regarded as quasi-parallel and

the term R’ (rad) corresponds to the thickness of the beam

(Fig. 20).

An intensity correction factor as a function of the diffrac-

tion angle can thus be calculated using the approximation in

equation (52) for a sample length S:

Ov �; S;Lð Þ ¼
S

L
¼

S sin �

R’ radð Þ
;

for 0 � 2� radð Þ � 2arcsin R
’

S

	 

: ð53Þ

A screenshot of the Mathematica script dealing with the

overspill effect in Bragg–Brentano geometry, showing the

irradiated length and the corresponding intensity correction

factor, is shown in Fig. 21.

teaching and education

J. Appl. Cryst. (2023). 56, 834–853 Dinnebier and Scardi � X-ray powder diffraction in education. Part II 847

Figure 19
Screenshot of a general Mathematica script dealing with different kinds of absorption effects for different diffraction geometries. The intensity
modification depending on diffraction angle and the effect on the intensity of a Voigt peak are shown.

Figure 20
Irradiated length on the surface of a flat-plate sample in Bragg–Brentano
geometry for a divergent beam [from Dinnebier et al. (2018 )].



8. Preferred orientation

Fibers, foils, thin films etc. typically show texture due to

oriented particles. A similar effect may occur in powders

which are not statistically oriented in all directions but show

preferred orientation(s). Here we confine our attention to the

question of how to account for the expected effects as related

to powder diffraction; we do not discuss methods for deter-

mining texture. If non-spherical crystallites are prepared in

flat-plate sample holders for reflection geometry or between

foils for transmission geometry, the crystallites tend to align

themselves in one or more preferred orientation(s). If the

corresponding lattice planes are in the reflection condition,

their intensities are strongly increased. A detailed introduc-

tion to this topic is given by Pecharsky & Zavalij (2008).

The most general way to model the effect of preferred

orientation in three dimensions as a complex radial distribu-

tion is a symmetry-adapted spherical harmonic expansion

(Bunge, 1982). The spherical harmonic functions can be

expanded in a series to describe, in principle, any direction

(�, ’) dependent function. � and ’ are the coordinates of a

spherical surface representing the spherical coordinates of the

reciprocal-lattice vector s of each Bragg reflection normal to

the hkl plane. They are similar to latitude and longitude except

that � goes from 0 to � and ’ goes from 0 to 2�. In general, the

spherical harmonics Ylm(�, ’) are a complete and orthogonal

set of solutions of the angular part of Laplace’s equation in

three dimensions. Since the spherical harmonic functions are

orthogonal, the integral of the product of two different

harmonics over the surface of the sphere is zero. For powder

diffraction, the symmetrized and normalized real spherical

harmonics of even order (due to the inversion center intro-

duced by diffraction) are the most important. The functions

are normalized such that the maximum value of each

component is unity (Järvinen, 1993). Therefore, the simplest

normalized spherical harmonic represents a unity sphere:

Y0;0 �; ’ð Þ ¼ 1: ð54Þ

The normalized real components of second-order spherical

harmonics become

Y2;0 �; ’ð Þ ¼ 1
2 3 cos2 � � 1ð Þ;

Y2;1 �; ’ð Þ ¼ 2 cos’ cos � sin �;

Y2;�1 �; ’ð Þ ¼ 2 sin ’ cos � sin �;

Y2;2 �; ’ð Þ ¼ cos 2’ð Þ sin2 �;

Y2;�2 �; ’ð Þ ¼ sin 2’ð Þ sin2 �;

ð55Þ

which are visualized in Fig. 22.

The preferred orientation factor Thkl is proportional to the

probability of the point of the reciprocal lattice, hkl, being in

the reflecting position (i.e. the probability of being located on
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Figure 21
Screenshot of the Mathematica script dealing with the overspill effect in Bragg–Brentano geometry, showing the left and right components of the
irradiated length and their sum [equation (52)], as well as the corresponding intensity correction factor [equation (53)] for a sample length of 10 mm and
an opening of the divergence slit of 1�.



the surface of the Ewald sphere). In other words, this multi-

plier is proportional to the number of crystallites with hkl

planes parallel to the surface of the flat sample:

Thkl ¼
PL
l¼0

Pl

m¼�l

Cl;mYl;m �hkl; ’hklð ÞPlðcos �Þ
� � �

; ð56Þ

where C0,0 = 1, Cl,m are Rietveld refinable parameters,

Yl,m(�hkl, ’hkl) are the symmetry-adapted spherical harmonics

of even order L, � corresponds to the angle in degrees

between the polar axis and the scattering vector, and Plðcos�Þ
is a Legendre polynomial (Järvinen, 1993). For the most

common case of symmetric reflection, � = 0 and Pl(1) = 1. In

practice, orders higher than L = 8 are rarely used (Fig. 23).

9. Intensity distribution in a powder pattern

The intensity distribution in a powder pattern is strongly

influenced by the size and shape of the crystallites. In prin-

ciple, there are two different approaches for calculation: (i)

assuming an ensemble of identical crystallites, with a given
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Figure 22
Graphical visualization of the normalized real components of zero-
[Y0, 0(�, ’) top], second- [Y2, 0(�, ’), Y2, 1(�, ’), Y2, 2(�, ’) middle] and
fourth- [Y4, 0(�, ’), Y4, 1(�, ’), Y4, 2(�, ’), Y4, 3(�, ’), Y4, 4(�, ’) bottom]
order spherical harmonics.

Figure 23
Screenshot of the general representation of symmetry-adapted spherical harmonics up to eighth order for all Laue symmetries as used e.g. to describe
preferred orientation in reciprocal space. The graphics show the three-dimensional representation, a two-dimensional slice at a given � value and the
two-dimensional spherical projection.



CVF involving a structure factor, or (ii) considering the scat-

tering from the total atom-pair distribution in a discrete

crystallite (Debye scattering equation). The intensities are

then modified by the correction factors described above.

10. Common volume function

The intensity from a powder sample made of M identical

crystallites can be written as (Ino & Minami, 1984; Beyerlein et

al., 2011)

I d�ð Þ ¼
corr d�ð ÞM Nat

4�Z Vuc

X
hkl

mhkljF d�; d�hkl

� �
j
2

d� d�hkl

� d�; d�hklð Þ: ð57Þ

Here, Nat is the number of atoms in a crystallite and Vuc the

unit-cell volume; Z is the number of formula units in the unit

cell; mhkl is the multiplicity (structure factor, multiplicity,

Lorentz factor, polarization factor, absorption and tempera-

ture effects are explained in detail in this paper) of the Bragg

reflection with the Miller indices hkl; corr(d*) is a known

function of d*, typically including effects of polarization,

absorption and temperature; 1=ðd�d�hklÞ is the Lorentz factor of

equation (30), 1=ðsin � sin �0Þ, including the constant term �2/4;

Fðd�; d�hklÞ is the structure factor of equation (17), explicitly

showing the dependence on d*, for the form factor, and on

d�hkl, for the phase term. This double dependence is consistent

with the ‘random shift treatment’ of Ino & Minami (1979); the

powder actually consists of crystallites with the same size and

shape, each obtained from different shifts of the unit cell

relative to the center of mass of the shape [see also Scardi et al.

(2011)]. �ðd�; d�hklÞ is the line profile function for the size

effect [in this work, we restrict the contribution for the line

profile to the size effect; for instrumental contributions and

the sample-related microstructural effect, see Part 1

(Dinnebier & Scardi, 2021)] normalized to unit area:

� d�; d�hklð Þ ffi 2
RD0
0

AS s; hklð Þ
�

cos 2�ðd� � d�hklÞs
� �

� cos 2�ðd� þ d�hklÞs
� ��

ds: ð58Þ

� depends on D0, the maximum length along the given [hkl]

direction in the crystallite, and on AS, the CVF: the volume of

the intersection between the crystalline domain and the same

domain translated along [hkl] by a distance S, normalized by

the domain volume. As first shown by Patterson (1939) and

then by Warren (1978), equation (58) is exact for a spherical

domain shape, whereas it is just an approximation for any

other shape. As shown by Ino & Minami (1984), equation (58)

is the main term of a series expansion, and the terms following

this are necessary only for small, non-spherical crystalline

domains.

Equations (57) and (58) implicitly assume that the domain

volume, V0, can be written as

V0 ¼ VucNuc ¼ Vuc Nat=Z; ð59Þ

where Nuc is the number of unit cells in the domain. This is

clearly an approximation, considering the inherently discrete

nature of nanocrystals; but equation (59) makes equations

(57) and (58) formally identical to equations (17) and (19) of

Beyerlein et al. (2011), apart from M, the number of crystal-

lites in the powder, which appears in equation (57) but not in

the work of Beyerlein et al. (2011).

The second cosine in equation (58) gives a minor contri-

bution and is negligible unless the domain sizes are very small

(a few nm); it is however correct and useful to eliminate the

divergence of intensity at d* = 0, due to the Lorentz factor

[1=ðd�d�hklÞ]. In most practical applications, where crystalline

domains are not very small and patterns are recorded for

d* >> 0, it is possible to neglect the second cosine and write

� d�; d�hklð Þ ’ 2
RD0
0

AS s; hklð Þ cos 2� d� � d�hkl

� �
s

� �
ds: ð60Þ

Equation (61), first proposed by Stokes & Wilson (1942), was

obtained within the tangent plane approximation (TPA)

originally proposed by Laue (1926). As shown in Part I,

equation (73) (Dinnebier & Scardi, 2021), for a spherical

domain of diameter D,

AS
sph sð Þ ¼

V sð Þ

V0

¼ 1�
3

2

s

D
þ

1

2

s

D

	 
3

: ð61Þ

Equation (60) can be integrated using equation (61).

Considering that in this case D0 = D, integration is straight-

forward and gives

�sph d�; d�hklð Þ

¼
3 1þ 2D2�2x2 � cos 2D�xð Þ � 2D�x sin 2D�xð Þ
� �

8D3�4x4
; ð62Þ

where we set x ¼ ðd� � d�hklÞ, the distance from the Bragg

position in reciprocal space. The complete expression from

equation (58) is

�sph d�; d�hklð Þ

¼
3 1þ 2D2�2x2 � cos 2D�xð Þ � 2D�x sin 2D�xð Þ
� �

8D3�4x4

�
3 1þ 2D2�2y2 � cos 2D�yð Þ � 2D�x sin 2D�yð Þ
� �

8D3�4y4
ð63Þ

with y ¼ ðd� þ d�hklÞ.

Fig. 24 shows a comparison between the TPA equations (62)

and (63) for a powder of spherical domains. As already

pointed out, equation (63) avoids the divergence due to the

Lorentz factor of equation (30).

For a domain of cubic shape and edge D, the normalized

CVF reads

AS
cube s; h; k; lð Þ ¼ 1�

h

h2 þ k2 þ l2ð Þ
1=2

s

D

� �


 1�
k

h2 þ k2 þ l2ð Þ
1=2

s

D

� �


 1�
l

h2 þ k2 þ l2ð Þ
1=2

s

D

� �
; ð64Þ

where the Miller indices must be chosen such that h  k  l.

The integration limit in equations (58) and (60), in this case, is
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D0 ¼
h2 þ k2 þ l2ð Þ

1=2

h
D: ð65Þ

Then, equation (60) gives the following result for the

normalized line profile:

�cub xð Þ ¼
1

4D3h h2 þ k2 þ l2ð Þ
3=2�4x4




 
3h2kl � 2D2 h� kð Þ h� lð Þ h2

þ k2
þ l2

� �
�2x2

� �


 cos
2D h2 þ k2 þ l2ð Þ

1=2
�x

h

" #

þ h

(
�3hkl þ 2D2 hþ kþ lð Þ h2

þ k2
þ l2

� �
�2x2

� 2D h2
þ k2
þ l2

� �1=2
�2kl þ h kþ lð Þ½ ��x


 sin
2D h2 þ k2 þ l2ð Þ

1=2
�x

h

" #)!
ð66Þ

with x ¼ ðd� � d�hklÞ, and always assuming h  k  l.

Examples of line profile functions are shown in Fig. 25:

equation (62) for a powder of spherical crystallites [line

profiles are identical for any (hkl) in d* space] in (a), and

equation (66) for a powder of cubic crystallites of edge

Dc, for different (hkl)s in (b). The sphere diameter is

Ds ¼ Dcð6=�Þ
1=3, so that the sphere and cube have the same

volume.

11. Debye scattering equation

The Debye scattering equation (DSE) gives the powder

pattern intensity from a single crystallite consisting of Nat

atoms:

ID d�ð Þ ¼ corr d�ð Þ
XNat

j¼1

XNat

k¼1

fj d�ð Þf �k d�ð Þ
sin 2�d� rjk

� �
2�d� rjk

" #
; ð67Þ

where f is the atomic scattering factor and rjk the distance

between any two atoms in the scattering domain. Derivations

of the Debye formula can be found in the work of Debye

(1915) or in textbooks, e.g. Warren (1990), Guinier (1963) and

Dinnebier et al. (2018). Note that the Lorentz factor is auto-

matically included in the formalism. For simplicity, if we refer
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Figure 24
(a) Comparison between equations (62) (blue) and (63) (orange) for a
powder of spherical domains of diameter Ds = 12.4 and d�hkl ¼ 0:3 (units
are defined according to those of the abscissa d*, e.g. nm/nm�1 or Å/Å�1);
(b) same comparison but multiplied by the Lorentz factor [1=ðd�d�hklÞ].
The second term in equation (64) avoids the divergence for d* = 0.

Figure 25
Line profile functions for a powder of (a) spherical crystallites and (b)
cubic crystallites: (111) blue; (200) orange; (220) green. The diameter of
the sphere is chosen to have the same volume as the cube: Dc = 10 and
Ds = 12.4. The abscissa is x ¼ ðd� � d�hklÞ. Units are coherent, i.e. if Dc, Ds

are in nm or Å, x is in nm�1 or Å�1.



to a single-element phase, like a metal, the DSE can be written

as

ID d�ð Þ ¼ corr d�ð Þ f d�ð Þ
�� ��2XNat

j¼1

XNat

k¼1

sin 2� d� rjk

� �
2� d� rjk

¼ corr d�ð Þ f d�ð Þ
�� ��2 Nat þ 2

XNat

j¼1

XNat

k>1

sin 2� d� rjk

� �
2�d� rjk

" #
: ð68Þ

The DSE is computationally demanding due to the double

sum that appears in equations (67) and (68), which involves

the computation of N2
at=2 terms for each step of d*. For

practical purposes, a viable approximation first proposed by

Germer & White (1941) is binning similar distances. This

reduces the complexity to a single sum:

ID d�ð Þ ’ corr d�ð Þ f d�ð Þ
�� ��2 Nat þ 2

XNbins

k¼1

nk

sin 2� d� rkð Þ

2�d� rk

" #
; ð69Þ

where a histogram of distances for each pair of atomic species

is calculated first and then divided into Nbins bins with nk the

number of pairs of distance rk corresponding to the kth bin.

This approach can easily be encoded in programs like Debyer

(Wojdyr, 2011).

12. Comparison of DSE and CVF for copper
nanoparticles

In the following Mathematica script, powder patterns are

simulated using DSE and CVF for f.c.c. Cu nanoparticles

(unit-cell parameter a = 3.615 Å) of different sizes (from 1 to

25 nm) and shapes (spheres, cubes) (Fig. 26). The standard

output of the Debyer software used to simulate the powder

patterns with the DSE is (q, I/Nat), that is q = 2�d* in Å�1 and

the intensity/number of atoms in the crystallite. Expressions

derived from the CVF presented above, equation (57), give

the intensity for a powder of M crystallites. Therefore, to

compare patterns the DSE intensity is multiplied by Nat, while

M = 1 in equation (57). For both expressions corr(d*) = 1, as

we assume linear polarization. In the Mathematica script,

equation (57) is written for 2�, with a wavelength � = 1.5406 Å,

or for q in Å�1. The structure-factor square modulus in

equation (57) can be written as jFðd�; d�hklÞj
2
¼ 16 |f(d*)|2, and

Z = 4 for the f.c.c. unit cell. Then equation (57) is
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Figure 26
Screenshot of a Mathematica script for simulation of powder patterns on linear and log scales using the DSE [calculation done by Debyer (Wojdyr, 2011)]
and CVF for f.c.c. Cu nanoparticles (unit-cell parameter a = 3.615 Å) of different sizes (from 1 to 25 nm) and shapes (spheres, cubes) with or without the
SAXS term for spheres. (The visible fluctuations in the DSE pattern, which are amplified by the logarithmic scale, are the result of limits in the numerical
precision used in the simulation software.)



ICu d�ð Þ ¼
Nat

�a3
f 2�d�ð Þ
�� ��2X

hkl

mhkl

d� d�hkl

� d�; d�hklð Þ; ð70Þ

with d�hkl ¼ ðh
2 þ k2 þ l2Þ

1=2=a, or

ICu 2�ð Þ ¼
Nat �

2

4� a3
f 4� sin 2�=2ð Þ=�½ �
�� ��2



X
hkl

mhkl

sin 2�=2ð Þ � d�hkl=2
� 2 sin 2�=2ð Þ=�; d�hkl

� �
; ð71Þ

where sin �hkl is written as � d�hkl=2, or

ICu qð Þ ¼
2 Nat

a3
f qð Þ
�� ��2X

hkl

mhkl

q d�hkl

�
q

2�
; d�hkl

	 

: ð72Þ

The DSE and CVF can never give identical results. The DSE is

intrinsically based on a discrete structure, and is used for a well

defined nanoparticle, in which the coordinates of all the atoms

are known. On the other hand, the CVF approach, with the

‘random shift treatment’ of Ino & Minami (1984), generates a

pattern referring to an average of nominally similar but not

identical nanoparticles. Additionally, the DSE generates the

small-angle X-ray scattering (SAXS) signal for the discrete

nanoparticle. However, for practical purposes, besides typi-

cally having a distribution of different shapes/sizes, the

nanoparticles are packed together in powdered samples, thus

modifying or destroying the SAXS components that might

otherwise be observed for monodisperse crystallites in dilute

solution.

Nevertheless, in order to compare the DSE and CVF

approaches for a powder of identical nanocrystals, a SAXS

contribution can be added to equation (57). For a sphere, the

Rayleigh formula (Rayleigh, 1910) is

ISAXS
sph qð Þ ¼ N2

at f qð Þ
�� ��2 3

sin Dq=2ð Þ � ðDq=2Þ cos Dq=2ð Þ

Dq=2ð Þ
3

� �2

;

ð73Þ

whereas for a cubic shape

ISAXS
cub qð Þ ¼ N2

at f qð Þ
�� ��2 2

�

Z�=2

0

d�

Z�=2

0

d�
sin Dq sin � cos�ð Þ

Dq sin � cos�

� �2



sin Dq cos�ð Þ

Dq cos �
sin �: ð74Þ

Equation (74) is computationally demanding, and increasingly

so for larger nanoparticles.

Equations (57), (63) and (73) should provide a near-perfect

match with the DSE result for spherical domains. The agree-

ment is much lower for cubic nanoparticles for which equation

(58) provides only a first-order approximation. However, it is

important to underline that what is shown in this last part

concerns powders and polycrystalline materials with crystal-

line domains at the nanoscale, and is really useful and

necessary when these domains have a well defined shape. In all

other cases, and even when microstructural information is not

of primary interest, the empirical approach based on adaptive

functions, such as Voigt curves, represents a valid and much

simpler alternative.
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