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CX-ASAP is a new open-source software project designed to greatly reduce the

time required to analyse crystallographic data collected under varying

conditions. Scripted in Python3, CX-ASAP can automatically refine, finalize

and analyse data collections with wide-ranging temperatures, pressures etc. This

is achieved using a reference structure, allowing for quick identification of

problems, phase changes and even model comparison. The modular design

means that new features and customized scripts can be easily added, tailoring

the capabilities to the specific needs of the user. It is envisioned that CX-ASAP

will help to close the growing gap between fast collection times and slow data

finalization.

1. Introduction

Recent developments in X-ray detector and source technology

are causing a step change in the practice of crystallography

both at major facilities and in the home laboratory. The time

required to collect a structure has reduced from hours/days to

seconds/minutes, allowing for the rapid collection of data sets

under varying conditions such as temperature or pressure.

Though the data collection time is traditionally the slowest

step of the crystallographic process (assuming samples are in

hand), the advances in technology have moved the bottleneck

to post-collection data processing and analysis.

It is now possible to collect more data than we can

reasonably handle. For example, with robotic sample

mounting it is common for synchrotron beamlines to generate

more than 400 crystal structures in an 8 h shift, and single

structures in as little as 1 s. There is a strong need for further

software tools to assist with post-collection processes.

The challenges for large data sets in crystallography

(Helliwell, 2019) and the necessity of aligning crystallographic

data with the FAIR (findable, accessible, interoperable and

reusable; Wilkinson et al., 2016) and FACT (fairness, accuracy,

confidentiality and transparency; van der Aalst et al., 2017)

principles are being increasingly recognized. These principles

revolve around making data accessible, reusable and trans-

parent, allowing for other researchers to easily validate find-

ings. For instance, accessible diffraction images for published

data sets would allow for external structure validation. The

same ideals apply to crystallographic software. There is no

need for everyone to write their own customized code to be a

‘black-box’ because collaborative open-source projects align

better with these principles. In this article, we introduce a new
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open-source project with the aim of automating the serial

refinement of crystallographic experiments.

1.1. Dynamic crystallographic experiments

The study of dynamic crystal systems is critical to under-

standing their properties. Many materials in crystalline form

experience a structural change on the application of external

stimuli such as temperature (Zuluaga et al., 2020), pressure

(Moggach et al., 2009), light (Bushuyev et al., 2014), force

(Thompson, Worthy et al., 2021) and more. Experiments

investigating such changes typically involve the collection of

multiple data sets on the same crystal as these conditions are

varied. To obtain the most statistically significant insight into

such changes, a large collection of data points is preferred.

Additionally, pinpointing the precise condition for any struc-

tural change is a valuable characterization. This also may

require collection of a large number of data sets. As a result,

these types of experiments have traditionally been limited by

data collection times.

Faster collection times on home sources are now making

these experiments more common. For example, one recent

investigation into a spin cross-over material yielded more than

200 crystal structures, with each individual data collection

requiring an average of only 20 minutes for a complete data

set (Zuluaga et al., 2020). Depositions in the Cambridge

Structural Database (CSD; Groom et al., 2016) show that the

number of papers including multiple crystal structures of the

same material is increasing exponentially [Fig. 1(a)]. Though

instrument technology has advanced, the software required to

handle such large data sets has not progressed to the same

extent, as highlighted by the average number of structures in

such papers not yet demonstrating significant growth

[Fig. 1(b)]. The time required to manually model large

collections of data sets is not inconsequential; considering

many of the structures may be near identical, it is not an

efficient use of time for any researcher. Clearly, for dynamic

crystallographic experiments to become widely viable, simple

and freely available data processing analysis software is

required to complement the current state of hardware devel-

opment.

1.2. Reference structures for multiple refinements

Our approach to automating the analysis of serial experi-

ments is the use of a reference structure. For cases where the

only difference in the crystal structure is a subtle change of the

unit cell axis, the same model can be refined independently

against the reflection files from all data sets collected. This

eliminates the requirement for manual model building and

instead allows for time-saving automation. Many dynamic

experiments, however, also include changes of symmetry or

the extent of disorder within the structure. In such cases, one

reference structure is not appropriate, but this is easily solved

by utilizing multiple reference structures. For example, this

could be a different reference for each crystallographic phase,

or one model with disorder and one without. Refining all

output reflection files from a serial collection against multiple

references allows for automation to still be executed to

account for variations across data sets. This also highlights the

potential to compare multiple models quickly and efficiently

across a series of data sets to identify points of interest or

allow the crystallographer to decide which model best suits

each data set. Given that significant work has already been

undertaken in the development of auto-processing software

for both home sources (Agilent, 2014) and synchrotrons

(Winter et al., 2018), our efforts in automating dynamic

experiments are initially focused on post-data-reduction

analysis, where refinement using reference structures is a key

aspect for automation.

2. CX-ASAP

CX-ASAP (Chemical Xtallography – Australian Synchrotron

Auto-Processing) is a modular operating-system-independent

software package written in Python3, designed to increase the

throughput of data processing and analysis for dynamic crys-

tallographic experiments. The architecture of this software can

be broken down into three key categories: configuration files,

modules and pipelines. The configuration files provide

modules and pipelines with information about the operating

system, processing requirements and reference structures.
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Figure 1
(a) Number of papers per year that include multiple structures of the same compound. (b) For the papers that publish multiple structures of the same
compound, the average number of structures in a single paper is plotted against the year. For both of these graphs, ‘the same compound’ is defined as
those having an identical prefix in their refcode within the CSD (i.e ACACCU, ACACCU01, ACACCU02 etc.).



Modules perform various tasks, such as structure refinement

on individual data sets, and are discussed in Section 2.1.

Pipelines call these modules either to execute them for a series

of individual data sets (job-specific pipelines) or to run various

tasks over a series of data sets (overall pipelines). Software

dependencies are given in the supporting information.

These job-specific pipelines feed into overall pipelines,

providing the code with a hierarchical architecture (Fig. 2).

There are several advantages of this kind of modular archi-

tecture: the code is more robust, the experiments can be

tailored and the capabilities of the software package can be

readily expanded.

The focus of CX-ASAP version 1.0.0 is post-data-reduction

analysis (although later releases incorporating data reduction

are planned). It requires a series of reflection/SHELX

instruction files (.hkl/.ins), along with a single reference

structure (.cif, .ins or .res). For cases where multiple

reference structures are required, the code would be executed

multiple times, each time declaring a different reference

structure. Automating this process of using multiple reference

structures is also planned for future releases. Utilizing the full

capabilities of CX-ASAP version 1.0.0 will allow for full

refinement of structures based on the reference, finalization of

CIFs and analysis of the output. The modular design, however,

means that steps may be run individually or be skipped

entirely. For example, if the modelling of a dynamic experi-

ment proved to be problematic, where every structure was in a

different space group, or had greatly varying disorder models,

the refinements may require manual intervention, but the CIF

finalization and analysis modules could still be run to provide

quick examination of the results. The other key advantage of

the modular design is that different pipelines can be scripted

for customized file structures/instrument output systems. This

means that the user is required to configure fewer components

manually. The advantage of making the code open source is

that different users will be able to tailor their own pipelines for

their own in-house configurations.

2.1. Modules

2.1.1. Refinement module. The refinement module handles

the tasks of importing reference structures and executing the

SHELXL program (Sheldrick, 2015) to refine a reflection file

against the reference structure. The reference structure is

defined as all SHELX commands from LATT to END. This

includes the symmetry requirements, any constraints or

restraints, additional commands, and the fractional coordi-

nates of the asymmetric unit cell. Essentially, this section

comprises the entire file except for the dimensions of the unit

cell (excluding TITL, CELL and ZERR). The reference infor-

mation is then combined with the relevant cell information to

form a new instruction file and SHELXL is executed via the

command line. For a structure to be considered fully refined, it

is expected that the weighting scheme is unchanged between

refinement cycles and the shift of model parameters is zero.

The refinement module was designed to automatically refine

to completion, with some exceptions allowing for user

tailoring.

Convergence is defined by two criteria: the weighting

scheme must be unchanging and the average shift of the most

recent ‘X’ cycles must be below a tolerance of ‘Y’, which are

parameters that can be changed by the user. The default

convergence criteria request that the most recent eight cycles

have an average shift below 0.002 (‘X’ = 8 and ‘Y’ = 0.002).

The code was structured in this way to allow for the option of

‘quick and dirty’ refinements to quickly check data quality

prior to committing computer resources to long refinements

(particularly important for structures with large unit cells).

Only a set number of cycles are averaged to avoid the effect of

outliers, as the first cycle will always have a significantly higher

shift value. SHELXL will continue to be called until conver-

gence is reached, or a maximum number of executions have

been run (user-defined limit with a default of 20 runs). Once

convergence or the maximum number of permitted cycles has

been reached, graphical output assists the user in determining

whether their refinement is suitable or not (Fig. 3).

Each output consists of four graphs describing how various

statistics changed throughout the refinement. The top two

graphs show how the weighting scheme converged. As this is

typically represented by two numbers in SHELXL, it has been

displayed over two graphs. The top two graphs clearly show

some refinement of the weighting scheme, which appears to

have converged. The bottom-left graph shows the shift values

converging and the bottom-right graph shows how the R factor

changes during refinement. This module also keeps track of

which structures have been successfully refined, so when it is

used over multiple data sets the user can quickly see which

structures worked and if any failed. When executed over a

series of data sets in a job-specific pipeline, the software will

output a text file summarizing which data sets successfully

refined and which (if any) failed.

2.1.2. CIF finalization module. With the automatic

refinement of data sets and the capability of SHELXL to

computer programs

560 Amy J. Thompson et al. � CX-ASAP: high-throughput serial refinement and analysis J. Appl. Cryst. (2023). 56, 558–564

Figure 2
Hierarchy of the modular architecture of CX-ASAP. Modules perform
single tasks on a single structure. They feed into job-specific pipelines
which execute the module over a series of structures. In turn, this feeds
into overall pipelines which execute multiple job-specific pipelines.
System files and configuration files are fed into all types. Flowcharts for
the refinement module and the general pipeline are given in Figs. S1 and
S2 of the supporting information, with additional flowcharts for the
remaining modules and pipelines available on the CX-ASAP website
(https://cx-asap.github.io/FLOWCHART.html)



automatically write the CIF on completion, it was a natural

extension of CX-ASAP to finalize these files as well. The

initial CIF written by SHELXL contains the required struc-

ture information but lacks details about the diffractometer

and various parameters used during data collection. These can

be provided in the form of a reference CIF, from which the

code can extract the instrumentation information, assuming it

was the same for all data sets. Alternatively, there is also the

capability for the code to merge the structure CIF with an

instrument CIF tailored for each data set, with the user able to

define additional parameters such as crystal size, colour, habit

etc. Ultimately, the quality of the output files is entirely

defined by the quality of the crystallographer input. If a high-

quality, complete reference is used and nothing unexpected

occurs during data refinement, then the resulting CIFs could

be ready for publication, although they should always be

checked carefully by the user prior to doing so. CX-ASAP

provides the tools to do this, by generating an automatic

checkCIF report using the software package PLATON (Spek,

2020), as well as graphical depictions of the structure quality

statistics. Ultimately, even in cases where the CIFs are not

ready for publication, they provide an ideal medium for quick

comparison via the analysis modules, which easily extract

information for comparison across data sets.

2.1.3. Analysis modules. A series of analysis modules is

included within the CX-ASAP package to provide fast

visualization and analysis of large data sets. This is critical to

ensure that any discrepancies or properties are not over-

looked. For instance, a structure refined in the incorrect

symmetry setting will generally display worse quality statistics

or a change in trend to assist with identification. The analysis

modules help with ascertaining the success of the experiment

by extracting the desired parameters from the output CIFs,

providing them in a convenient spreadsheet format (.csv

file) and displaying them in graphical format. Usually, the cell

parameters, quality statistics and structural information are

extracted, but these can be tailored by the user to pull out any

desired parameter. Some of the graphs included show how the

unit cell changes (Fig. 4), or how the statistics change across

the experiment.

2.2. General post-data-reduction pipeline

The combination of these modules results in a general post-

data-reduction pipeline. When provided with a series of .ins/

.hkl files within separate folders, as well as a reference CIF,

CX-ASAP will run the modules in the required order to

perform fully automated finalization of the data. For cases

where the user does not already have their data in the correct
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Figure 3
Example output graphs from the refinement module using a test data set included in the CX-ASAP package. They show how various statistics change
during the refinement cycles. Top left: first number in the weighting scheme. Top right: second number in the weighting scheme. Bottom left: shift value.
Bottom right: R1 factor.



file structure, the file tree can be set up for the user using

additional optional steps. This is also the case for users who

may not have a reference CIF, but rather provide the required

instrumentation details manually for finalization. Note that

there is currently no way to automatically generate a reference

structure, as this has the potential of introducing significant

errors into the output. A well refined, manually generated

reference structure remains the best way to aim for publica-

tion-quality output. Though this general pipeline is the only

overall pipeline included in this initial release of CX-ASAP,

the modular design means that other pipelines can be

configured for specific applications to increase the level of

automation. For example, other pipelines under development

include those that take the output of files from the current

Australian Synchrotron auto-processing pipeline to automate

the entire process on macromolecular crystallography beam-

lines (Aragão et al., 2018, Cowieson et al., 2015). Others are

also under active development for home-source diffract-

ometers, which will likely be the most common use for this

software.

2.3. Experiment configuration

CX-ASAP operates through a command line interface.

This interface guides the user through running the code with

computer programs
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Figure 4
Example graphical output for the unit-cell deformation using the test data set included in the CX-ASAP package. Fast examination of the cell parameters
quickly identifies potential issues in the data quality. For instance, in this case the data do not have clear trends for several of the parameters (a axis, b
axis, �), indicating that further investigation is required.



step-by-step instructions. Users can opt to run individual

modules, job-specific pipelines or overall pipelines. Once the

desired procedure has been selected, and the user has been

informed of the software/file dependencies, CX-ASAP

requires configuration. This is carried out by the user editing a

file called conf.yaml. This dictionary-type file allows for

parameters such as the location of the user data to be speci-

fied, alongside other options required for the various modules.

Exactly what is required for each module/pipeline is explained

through the command-line interface. The command-line

interface also contains a ‘test’ function to ensure all software

dependencies are installed correctly and an ‘errors’ command

to display the current error log for troubleshooting.

3. Application of CX-ASAP

A recent study investigating the spin-crossover behaviour of

an Fe(III) complex co-crystallized with 1,3,5-triiodotrifluoro-

benzene demonstrated unique spin-crossover switching

behaviour driven by single-crystal-to-single-crystal phase

transitions on solvation/desolvation (Zuluaga et al., 2020).

One of the methods used to investigate this behaviour was a

range of variable-temperature single-crystal diffraction

experiments. In one variable-temperature experiment, 64

individual data sets were collected using the strategy in Table 1.

The authors indicated that they required approximately 400

working hours to manually perform the full refinement and

finalization of these structures. The combined CIF for this

study (1�IFB�MeOH) was downloaded from the CSD and run

through CX-ASAP.

As described in the publication, desolvation occurs above

350 K. As such, the individual CIFs for the first and last data

sets were extracted to cover both solvated and desolvated

structures. CX-ASAP was run for both reference structures

individually. In doing so, many of the structures failed to refine

against either reference. On quick inspection, we found that

some of the structures were in different settings of the triclinic

unit cell. Two additional reference CIFs (solvated and desol-

vated) in the alternative unit-cell setting were chosen, and the

code was run an additional two times using the new references.

Overall, the entire pipeline was executed four times, one for

each reference structure, and the outputs were compared to

see which reference was required for each data set to

successfully refine. At this point, all structures were success-

fully refined, with the only checkCIF alerts present matching

the kinds of alerts present in the original structures. This took

approximately 45 min of computation time (see supporting

information for hardware used) and only 15 min of manual

time to configure the code and identify the need for new

references. Not only is this substantially faster, but it also
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Figure 5
(a) Change in the � angle over the variable-temperature experiment. The two different settings are clearly visualized because of the large changes
between solvated and desolvated cell settings. (b) Change in unit-cell volume over the variable-temperature experiment, demonstrating the hysteresis
and spin-crossover behaviour. (c) Changes in bond lengths within the Fe(III) coordination sphere which further highlight the spin-crossover behaviour.

Table 1
Variable-temperature collection strategy employed to investigate single-
crystal-to-single-crystal phase transitions (Zuluaga et al., 2020).

Temperature range (K) Step size (K)

150–300 5
290–180 10
300–400 50
350–180 10

Total No. of structures 64



highlights the power of the code to quickly identify problems

across multiple data sets.

Owing to the range of references involved as the unit cells

were in different settings, the data required manual combi-

nation to graph the changes in unit-cell parameters. This was

fast and efficient due to the output of these data in .csv

format. From here, the data sets could be quickly copied and

pasted into a new spreadsheet to visualize the unit-cell trends.

The bond lengths within the Fe(III) coordination sphere, key

indicators of the spin state, were also automatically extracted

from the CIFs and graphed similarly (Fig. 5).

4. Conclusions and installation

The collection of multiple data sets on dynamic systems is

important to probe material characterization and fundamental

crystallographic understanding. CX-ASAP is a new open-

source tool to analyse these experiments efficiently. The use of

a publication-standard reference structure empowers scien-

tists to automatically refine multiple data sets from dynamic

experiments to completion and quickly identify problematic

areas. The code can be downloaded from GitHub (https://

github.com/cx-asap/CX-ASAP) and the current release runs

on Linux, OSX and Windows, although many new features

under development require a Unix-style architecture. Instal-

lation instructions are contained within the README.md text

file contained within the downloaded package along with a list

of software dependencies. A test data set (Brock et al., 2018) is

also included to troubleshoot installation requirements. This

software package has been successfully deployed to quickly

investigate crystalline properties (Bhandary et al., 2020;

Thompson, Price et al., 2021), and it is envisioned that wider

deployment will assist with in-depth understanding of crys-

talline properties.
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