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Two data evaluation concepts for X-ray stress analysis based on energy-

dispersive diffraction on polycrystalline materials with cubic crystal structure,

almost random crystallographic texture and strong single-crystal elastic

anisotropy are subjected to comparative assessment. The aim is the study of

the residual stress state in hard-to-reach measurement points, for which the

sin2 method is not applicable due to beam shadowing at larger sample tilting.

This makes the approaches attractive for stress analysis in engineering parts with

complex shapes, for example. Both approaches are based on the assumption of a

biaxial stress state within the irradiated sample volume. They exploit in different

ways the elastic anisotropy of individual crystallites acting at the microscopic

scale and the anisotropy imposed on the material by the near-surface stress state

at the macroscopic scale. They therefore complement each other, in terms of

both their preconditions and their results. The first approach is based on the

evaluation of strain differences, which makes it less sensitive to variations in the

strain-free lattice parameter a0. Since it assumes a homogeneous stress state

within the irradiated sample volume, it provides an average value of the in-plane

stresses. The second approach exploits the sensitivity of the lattice strain to

changes in a0. Consequently, it assumes a homogeneous chemical composition

but provides a stress profile within the information depth. Experimental

examples from different fields in materials science, namely shot peening of

austenitic steel and in situ stress analysis during welding, are presented to

demonstrate the suitability of the proposed methods.

1. Introduction

In most cases, X-ray stress analysis (XSA) of polycrystalline

materials targets the investigation of the highly stressed near-

surface zone. In the past few decades, numerous methods have

been developed based on the measurement of the lattice strain

for many different orientations with respect to a sample

reference system. The strain data form the input for the

fundamental equation of XSA (Stickforth, 1966; Evenschor &

Hauk, 1975) to calculate the individual components of the

(residual) stress tensor. An overview of the current status in

this respect can be found, for example, in the textbooks by

Noyan & Cohen (1987), Hauk (1997), Mittemeijer & Welzel

(2013) and Spieß et al. (2019).

Almost all methods developed for near-surface stress

analysis are based on measurements in reflection geometry

and are limited in their applicability to freely accessible

measuring points, and thus to simple specimen geometries

with flat or convexly curved surfaces, in order to avoid beam
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shadowing during specimen tilting. Only the ‘strain scanning’

techniques (Withers & Webster, 2001) do not require sample

tilting. However, if the measurements are performed in

reflection mode (through surface strain scanning; Webster et

al., 1996), the results are mostly limited to lattice strain

distributions perpendicular to the surface, since uncertainties

in the strain-free lattice parameter lead to large errors in the

stress calculation.

A review of the literature reveals that there is currently a

lack of XSA methods that allow non-destructive analysis of

the near-surface stress state on engineering parts and

components with complex shapes, where the measurement

points are difficult to access and prevent high specimen tilt. On

the other hand, there is a high demand for such measurements,

especially from industry, since failure-critical residual stresses

are often expected at positions featuring strong concave

curvatures, such as the tooth base of gears, sharp bends in

formed components or the inner wall of boreholes. For this

last case, we have recently presented an evaluation concept

based on energy-dispersive (ED) diffraction (Genzel et al.,

2021) which takes into account the influence of the strongly

curved surface but still allows the use of the sin2 method

(Macherauch & Müller, 1961) due to the very small diffraction

angles. However, for measurement points in notches and other

positions with a very small opening angle, the sin2 -based

measurement and evaluation strategies are no longer applicable.

The evaluation strategies introduced in this article aim to

provide solutions for such problems. They are based on

measurements performed in the ED diffraction mode

exploiting high-energy synchrotron radiation or the Brems-

strahlung emitted by high-flux laboratory X-ray sources. In

addition to its large information depth, the ED method offers

some further features that make it attractive for residual stress

analysis. Bragg’s law in its ED form reads (Giessen & Gordon,

1968; Buras et al., 1968)

Ehkl ðkeVÞ ¼
6:199

sin �

1

dhkl ðÅÞ
: ð1Þ

ED diffraction provides complete diffrac-

tion patterns with a multitude of diffrac-

tion lines Ehkl under a fixed but freely

selectable Bragg angle �, which can be used

to tune the diffraction-line position on the

energy scale in order to adapt the infor-

mation depth to different regions below

the surface (Genzel & Klaus, 2017).

Furthermore, each diffraction line Ehkl

originates from another average depth,

which is an additional parameter available

for a depth-resolved analysis. Pioneering

work in the field of near-surface ED-XSA

was carried out by Ruppersberg and co-

workers. Their universal plot method

(Ruppersberg et al., 1989, 1991; Ruppers-

berg, 1997), in addition to other XSA

methods modified for ED diffraction (e.g.

Genzel et al., 2013), is the basis of data

evaluation tools offered on dedicated ED synchrotron

beamlines, such as EDDI at BESSY II (up to 2018) and P61A

at PETRA III, for depth-resolved residual stress analysis

(Apel et al., 2020).

The present paper addresses another issue related to ED-

XSA, which has not been considered in detail so far. The

proposed data evaluation strategies exploit two facts:

(i) Depending on the Miller indices hkl, the individual ED

diffraction lines Ehkl are affected differently by the material’s

inherent elastic (and plastic) anisotropy. This feature was

exploited by Daymond & Johnson (2001) to determine the

strain-free lattice parameter a0 from time-of-flight neutron

experiments performed on uniaxially stressed austenitic steel.

(ii) In the near-surface region, which is the transition zone

from the biaxial surface to the triaxial volume residual stress

state (Hanabusa et al., 1983; Ruppersberg, 1997), the average

phase homogeneous residual stresses generate anisotropic

strain fields on the macroscopic scale. It must be emphasized

that this kind of macroscopic anisotropy imposed on the

material by the residual stress state should not be confused

with the macroscopic elastic anisotropy present in a single

crystal or a material with strong crystallographic texture,

which is excluded in the present case. Concepts for XSA on

materials featuring a nearly single-crystalline (mosaic) struc-

ture were discussed by Hollmann et al. (2021).

The situation is illustrated in Fig. 1. On the microscopic (i.e.

crystallite) scale the elastic anisotropy can be represented by

the directional Young modulus, Yhkl, which is given for cubic

materials by (Paufler, 1986)

Yhkl ¼ s11 �
2
3 s0 3�hkl

� ��1
; ð2Þ

with s0 ¼ s11 � s12 �
1
2 s44 (sij are the single-crystal elastic

moduli) and the orientation factor 3�hkl = 3(h2k2 + k2l2 + l2h2)/

(h2 + k2 + l2)2. Thus, isotropic behaviour corresponds to s0� 0,

research papers

J. Appl. Cryst. (2023). 56, 526–538 Christoph Genzel et al. � ED X-ray stress analysis under geometric constraints 527

Figure 1
(a) Single-crystal (microscopic) and (b) stress-imposed (macroscopic) anisotropy in ED-XSA of
materials possessing cubic crystal symmetry. {C} and {S} denote the crystal and the sample
reference systems, respectively. Yhkl is the directional single-crystal Young modulus (illustrated
here using the example of austenitic steel). For further details see text.



which is equivalent to A = 2c44/(c11� c12) = 2(s11� s12)/s44� 1

(cij are the single-crystal constants). A is the Zener factor,

which is used to quantify the single-crystal anisotropy of cubic

materials by a single number (Zener, 1948; Chung & Buessem,

1967). From Fig. 1(a) it can be seen that, due to the single-

crystal elastic anisotropy, different reflections hkl in an ED

diffraction spectrum will detect different lattice strains "hkl

within the crystal reference system {C}, even for the same

measurement direction within the sample reference system {S}.

On the macroscopic scale the lattice strain "hkl
’ additionally

depends on the measurement direction (’,  ) in the sample

reference system [Fig. 1(b)]. This direction dependency is

exploited by those XSA methods which evaluate the stress by

regression from strains obtained for various orientations.

These include the classical sin2 method and approaches

based on it such as LIBAD (low incidence beam angle

diffraction) (van Acker et al., 1994; Mohrbacher et al., 1996;

Marciszko-Wiackowska et al., 2019) and the mixed-mode

methods (Kumar et al., 2006; Erbacher et al., 2008), as well as

methods based on two-dimensional X-ray diffraction (2D-

XRD) like the cos�method (Sasaki, 2014; Miyazaki & Sasaki,

2016) and other 2D-XRD techniques (Keckes et al., 2018; He,

2018).

For polycrystalline materials featuring a random crystal-

lographic texture, the experimentally obtained lattice strain

"hkl
’ is translated into stress by means of the diffraction elastic

constants (DECs) Shkl
1 and 1

2 Shkl
2 , which are the link between

the microscopic and macroscopic scales. For all crystallites

which fulfil the Bragg condition within the irradiated sample

volume, the DECs determine the degree of the anisotropic

(i.e. hkl-dependent) deformation in response to the imposed

residual stress field. They can be determined experimentally in

loading tests or calculated using models that make different

assumptions about the grain interaction. The best-known

models go back to Voigt (homogeneous deformation in all

crystallites; Voigt, 1910), Reuss (homogeneous stress; Reuss,

1929), Eshelby/Kröner (elastic polarizability of the crystallites;

Eshelby, 1957; Kröner, 1958) and Hill/Neerfeld (arithmetic

mean of Reuss and Voigt; Neerfeld, 1942; Hill, 1952). The

quasi-isotropic character of the DECs on the macroscopic

scale results from the fact that they do not depend on the

measurement direction (’,  ) with respect to the sample

reference system {S}.

In the present paper, the hkl dependency of the DECs is

used to introduce two methods which allow ED-XSA

experiments to be performed under geometric constraints.

The paper is structured as follows. In Section 2 the theoretical

background of the proposed methods is given and the

preconditions for their applicability are defined. Sections 3

and 4 are dedicated to experimental examples from different

fields in materials science. The examples are chosen so that the

results achieved by the methods introduced here can be

compared with those obtained by established techniques such

as the sin2 method. The sample material in this paper serves

only as a means to an end to introduce and compare the two

XSA methods by practical examples. For detailed material-

specific background information on manufacturing and

processing, reference is made at the appropriate point to

further literature. The discussion in Section 5 is devoted to a

critical assessment of the presented methods with respect to

their applicability to specific issues of X-ray stress analysis.

2. Theoretical background

2.1. The extended transverse contraction method

We assume a uniform biaxial residual stress state within the

information depth accessible to the X-rays used for

measurement, i.e. stress depth gradients are assumed to be

negligible. The fundamental equation of XSA (Stickforth,

1966; Evenschor & Hauk, 1975) then takes the following form:

"hkl
’ ¼

ahkl
’ � a0

a0

¼ 1
2 Shkl

2 �’ sin2  þ 2Shkl
1 �k; ð3Þ

where a0 is the strain-free lattice parameter for cubic materials

and ahkl
’ = dhkl

’ ðh
2 þ k2 þ l2Þ

1=2 is the d spacing normalized to

the edge length of the unit cell, a100. The stresses �’ =

�11 cos2 ’þ �22 sin2 ’þ �12 sin 2’ and �k = 1
2 ð�11 þ �22Þ denote

the in-plane stress component in the azimuth direction ’ and

the average in-plane stress, respectively.

The concept of the extended transverse contraction method

consists of the evaluation of differences �"ði;jÞ’ n
= "hikili

’ n
� "

hjkjlj
’ n

of lattice strains1 that were obtained for a series of P evaluable

reflections hkl in the diffraction pattern (i.e. i, j = 1 . . . P) for

the same inclination angle  n (n = 1 . . . N). Such data sets are

available from a sin2 measurement performed in the ED

diffraction mode (Fig. 2). Due to the single-crystal elastic

anisotropy of the material, the "hkl
’ �sin2  distributions

obtained for different reflections hkl feature different slopes.

Therefore, a sin2 measurement carried out even for a

(strongly) restricted  range allows for the evaluation of
1
2 PðP� 1Þ lattice strain differences for any inclination angle

 n . This leads to the following system of equations:

�"ði;jÞ’ 1
¼� 1

2 S
ði;jÞ
2 sin2  1 �’ þ�S

ði;jÞ
1 2�k;

�"ði;jÞ’ 2
¼� 1

2 S
ði;jÞ
2 sin2  2 �’ þ�S

ði;jÞ
1 2�k;

..

.

�"ði;jÞ’ N
¼� 1

2 S
ði;jÞ
2 sin2  N �’ þ�S

ði;jÞ
1 2�k:

ð4Þ

The DEC differences can be written as (see Appendix A)

�S
ði;jÞ
1 ¼

1
3 s0 r �3�ði;jÞ; ð5aÞ

� 1
2 S
ði;jÞ
2 ¼ �s0 r �3�ði;jÞ; ð5bÞ

where r is the Reuss ratio in the grain interaction model used

to calculate the DECs. According to equations (5a) and (5b),

the system of equations (4) can be rewritten as
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1 Differences between quantities such as the DECs S1 and 1
2 S2 and the

orientation factor 3�, which all depend on the Miller indices hikili and hjkjlj ,

are marked in the following by a superscript (i, j), i.e. S
hiki li
1 � S

hjkj lj
1 = �S

ði;jÞ
1 etc.



�"ði;jÞ’ n

s0 r
¼ 2

3 �k � �’ sin2  n

� �
�3�ði;jÞ

¼m n
�3�ði;jÞ ðn ¼ 1 . . . NÞ: ð6Þ

This expression represents a set of N linear equations of type

y = mx where y contains the lattice strain differences �"ði;jÞ’ n
,

which may be understood as ‘relative’ strains. In contrast to

the ‘absolute’ lattice strain "hkl
’ , the ‘relative’ strain is much less

sensitive to uncertainties in the strain-free lattice parameter

a0, which can be shown by a Taylor series expansion. More-

over, the stress term in the brackets of equation (6) is not

obtained from a single lattice strain difference itself, but from

the slope m n
of the regression line fitted to the

½�"ði;jÞ’ n
=s0r� ��3�ði;jÞ distributions. This justifies the use of a

lattice parameter for a0 which is obtained from averaging all

measured lattice spacings. From Figs. 2(b) and 2(c) it can be

seen that the slopes m n
depend on  . Note that the five

reflections considered in the example result in a total of ten

possible combinations for the calculation of strain differences.

For the assumptions made (i.e. negligible stress gradient),

pairs of reflections featuring the same orientation factor 3�
(e.g. 3�111 = 3�222 = 1) would result in a strain difference

�"ði;jÞ’ n
= 0 and consequently these data points should be

located at the coordinate origin of the ½�"ði;jÞ’ n
=s0r� ��3�ði;jÞ

diagram. Significant deviations from this position can have

various causes, such as stress gradients or plastic deformation.

For a sin2 measurement in the azimuth direction ’ = 0�,

equation (6) takes the form

�"ði;jÞ0 n

s0 r
¼m n

�3�ði;jÞ

¼ ��11 sin2  n þ
1
3 �11 þ �22ð Þ

� �
�3�ði;jÞ; ð7Þ

with

m n
¼ ��11 sin2  n þ

1
3 �11 þ �22ð Þ: ð8Þ

It can be seen from Fig. 3 that the m –sin2 plot contains

some interesting points on the abscissa for which linear

combinations of the in-plane stress components can be

obtained on the ordinate axis. However, since the approach

presented here is aimed at problems where the accessible  
range is (severely) limited, only points up to about sin2  ¼ 1

3

(which would give the stress component �22 in the transverse

direction) will be of practical interest. For measurements

which can only be performed under  = 0�, the method

provides the average in-plane stress, i.e. m ¼0 = 1
3 ð�11 þ �22Þ =

2
3 �k (see Section 4.2).

2.2. The optimization method

This approach was theoretically presented by Klaus &

Genzel (2019), but given its complementarity to the method

presented in the previous section, the main features will be

briefly summarized again here. Taking into account the depth

dependence of the residual stress state and following

Ruppersberg et al. (1989), equation (3) can be rewritten as

�k �
hkl
 

� �
¼ 1

2 �11 �
hkl
 

� �
þ �22 �

hkl
 

� �� �

¼

1
2 ahkl

0 �hkl
 

� �
þ ahkl

90 �
hkl
 

� �� �
� a0

a0
1
2 Shkl

2 sin2  þ 2Shkl
1

� � ; ð9Þ

where �hkl
 ¼ sin � cos =2�ðEhklÞ is the information depth for

XSA measurements performed in the symmetrical � mode

and �ðEhklÞ is the energy-dependent absorption coefficient.

Equation (9) is of ‘universal’ nature, since its right-hand side

contains the pure experimental information (independent of

the radiation used and/or reflections hkl), whereas the

unknown residual stresses are on the left-hand side. Note that

the experimentally accessible stresses �(�) are usually

different from the stresses in real space �(z), due to the
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Figure 3
A schematic view of the m –sin2 plot according to equation (8). Special
values of sin2 are marked for which m yields sums and differences,
respectively, of the in-plane stress components.

Figure 2
(a) The principle of the extended transverse contraction method. The
material’s elastic anisotropy is illustrated by the various symbols, which
mark different directions in the crystal reference system {C} featuring
different Young moduli Yhkl (calculated for austenitic steel). The slopes
of the individual "hkl

’ �sin2  distributions vary within a range limited by
the ‘hardest’ (filled triangles) and ‘softest’ (filled squares) crystal
directions. (b), (c) Examples of plots calculated according to equation
(6). For further details see text.



exponential attenuation of the X-ray beam by matter. The

relationship between them is given by

�ð�Þ ¼

R
�ðzÞ exp ð�z=�Þ dzR

exp ð�z=�Þ dz
: ð10Þ

Since this equation has the form of a Laplace transform, the

�(�) stress depth profiles are called Laplace stresses.

The fundamental idea of the optimization concept consists

of exploiting the strong sensitivity of the lattice strain to

variation in the strain-free lattice parameter a0. We write khkl
 =

ð12 Shkl
2 sin2  þ 2Shkl

1 Þ
�1 and expand equation (9) into a Taylor

series up to the first order regarding an uncertainty � in a0

(Klaus & Genzel, 2019):

�k �
hkl
 

� �
¼ khkl

 

ahkl
 �hkl

 

� �
� ða0 þ �Þ

a0 þ �
¼ �true

k �hkl
 

� �
�

khkl
 

a0

�:

ð11Þ

�true
k ð�

hkl
 Þ is the residual stress depth profile evaluated with the

actual strain-free lattice parameter a0. Fig. 4 shows that each

residual stress value �kð�
hkl
 Þ responds differently to changes in

a0 (via �). This is due to the term khkl
 , which causes the slope of

the linear equation (11) to depend on hkl and  on the

microscopic and the macroscopic scale, respectively. The point

where all straight lines intersect corresponds to the minimum

of the path length �ð�Þ� that results when neighbouring points

in the discrete �kð�
hkl
 Þ plot are connected,

�ð�Þ� ¼
P

��k �
hkl
 

� �� �2
þ ��hkl

 

� �2
n o1=2

¼ Min: ð12Þ

The optimization procedure can be applied even to a data set

measured only under  = 0�. In this case, however, it provides

only the average �k of the longitudinal and transverse residual

stress components �11 and �22 .

2.3. The influence of the grain interaction model

Since the approaches introduced in the previous sections

exploit the material’s anisotropy, the choice of grain inter-

action model used to calculate the DECs Shkl
1 and 1

2 Shkl
2 is

essential. This applies in particular to the extended transverse

contraction method, which is based on the anisotropy term

s0r�3�(i, j) introduced in equations (5a) and (5b).Very recently

it was shown that the frequently used Eshelby/Kröner model is

not necessarily the appropriate model to describe grain

interaction in the material’s near-surface region (Marciszko-

Wiackowska et al., 2022), but should be

replaced by a gradient model which takes into

account a possible variation from the Eshelby/

Kröner model (volume) to the Reuss model or

to the direction-dependent ‘free-surface’

model (Baczmanski et al., 2008) close to the

surface.

In the present paper, the DECs are assumed

to be constant within the X-ray information

depth. The model applied for their calculation

is defined by an optimization procedure similar

to that described in the previous section. It is

also based on minimizing the path length �ðrÞ� , but here the

variable used to find the minimum is the Reuss ratio r in the

grain interaction model defined by equations (5a) and (5b),

�ðrÞ� ¼
P

�� �hkl
0

� �� �2
þ ��hkl

0

� �2
n o1=2

¼ Min: ð13Þ

Note that the stress values �ð�hkl
0 Þ are not obtained from a

single strain value [such as the stress values �ð�hkl
 Þ in equation

(9)]. Rather they are the average result of a linear regression

from the ahkl
’ �sin2  distributions for any reflection hkl in the

diffraction spectrum which can be assigned to the maximum

information depth �hkl
0 = �hkl

 ¼0 = sin �=2�ðEhklÞ. Klaus & Genzel

(2019) showed that the �ð�hkl
0 Þ data only form a smooth curve

without jumps in Laplace space if the correct grain interaction

model is taken for stress evaluation.

3. Experimental

3.1. Sample material

3.1.1. Superheater tubes. The investigated sample origi-

nates from a seamless tube of austenitic stainless steel of type

TP347H (ASTM A213), which is commercially applied for

superheaters in thermal power plants. The overall chemical

composition and a dedicated solution treatment for grain

refinement provide good oxidation resistance at high

temperatures in steam, which is further promoted by shot

peening on the steam side of the tubes. Shot peening on the

steam side, thus the inner side, of the tubes is routinely carried

out in industry. Although details about the shot-peening

process are not disclosed, its influence on microstructure and

hardness is clearly evident and has been investigated thor-

oughly. The beneficial effect of shot peening on reducing

steamside oxidation has been revealed both on the laboratory

scale mimicking real industrial conditions and after long-term

exposure of shot-peened test segments in a Danish thermal

power plant (Rosser et al., 2012; Pantleon et al., 2020; Kurley &

Pint, 2020).

Seamless superheater tubes with an outer diameter of

33 mm and a wall thickness of 5.6 mm were received, with

average grain sizes of about 22 mm in the bulk. The inner

surface of the tubes, thus the steam side with concave curva-

ture, was shot peened. Shot peening resulted in nanocrystal-

line grains at the surface and a microhardness of more than

400 HV, with a corresponding hardness depth profile within a

region of about 250 mm beneath the shot-peened surface
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Figure 4
Driving forces in the optimization procedure. Exploitation of (a) the microscopic and
(b) the macroscopic material anisotropy. (c) Minimization of the total path length �ð�Þ�

according to equation (12) in the �kð�
hkl
 Þ plot (Klaus & Genzel, 2019). See text for further

details.



towards the unaffected bulk with a microhardness of 180 HV.

The shot-peened tube was cut into rings of 10 mm thickness,

which were further cut into segments for energy-dispersive

diffraction on the concave surface, thus the steamside of the

superheater tubes. X-ray texture analysis did not reveal a

pronounced preferred orientation. Further information on the

material’s microstructure is provided by Pantleon et al. (2020).

3.1.2. Weld sample. For the investigation of stress evolution

during welding the metastable high-alloy austenitic steel

X2CrNi18-9 was used. Detailed information on the chemical

composition, the preparatory heat treatment of the sample

and the preliminary microstructure investigations is given by

Hempel (2022). Neutron diffraction revealed a negligible

rolling texture.

For welding, sheet metal sections of size 200 � 150 mm

were used (Fig. 5). The heat was applied by a mechanized TIG

(tungsten inert gas) welding process without filler metal, i.e.

the base metal was melted locally. The translational speed of

the welding torch was vs = 3.33 mm s�1. The weld was placed

in the centre of the specimen parallel to its long side, with the

start and stop positions each 5 mm from the specimen edge.

During welding, the specimen was placed on three balls made

of ZrO2 , which allowed defined thermal and mechanical

boundary conditions.

3.2. X-ray stress analysis

The ED-XSA experiments reported

here were carried out some years ago

on the materials science synchrotron

beamline EDDI at BESSY II. The

technical parameters of this beamline,

which closed in 2018, can be found in

the report by Genzel et al. (2007). The

high-energy white photon beam, with a

usable energy range between about 8

and 120 keV, was provided by a super-

conducting 7 T multipole wiggler. The

primary beam was confined by slits to a

cross section of 1 � 1 mm. The fixed

diffraction angle 2� was chosen as 14�

for the shot-peened austenitic super-

heater tube and 10.25� for the in situ

welding of austenitic steel. The equatorial divergence of the

diffracted beam, which was recorded by a multi-channel

germanium detector (Canberra, model GL0110), was confined

by double-slit systems with an aperture of 30 mm to values of

�2� < 0.01�. The area effectively seen by the detector on the

sample surface thus has a lateral extension of about 300 mm.

XSA on the superheater tubes was performed in the

symmetrical � mode within a  range of 0–60� with a step

width of � = 5�. The counting time per spectrum was 180 s.

The diffraction angle of 14� was chosen to place a large

number (nine) of diffraction lines within the usable energy

range provided by the multiple wiggler. The setup for the in

situ welding experiments is shown in Fig. 5. The plate was

inclined by an angle � = 5� against the incoming beam, and the

exit angle between the plate surface and the diffracted beam

was defined by � = 5.25� to ensure nearly symmetrical

diffraction conditions. The in situ experiments were performed

under fixed geometric conditions, i.e. without any sample tilt

or rotation.

The measurements were taken at the mid-length of the weld

seam at a lateral distance of 7 mm from the weld centre line

(Fig. 5), i.e. in the base material close to the molten zone. The

measured diffraction spectra (raw data) were corrected for

various effects such as the wiggler spectrum, detector dead

time and absorption effects, as well as for background

subtraction. The individual diffraction lines were least-squares

fitted by pseudo-Voigt functions.

4. Results

4.1. X-ray stress analysis on the superheater tube material

4.1.1. Conventional analysis and DEC model evaluation.

The segmentation of the tubes allowed the application of the

conventional sin2 method, since tilting the sample along the

circumferential direction without beam shading was possible

up to  = 60�. The results were used as the basis for the

validation of the two approaches introduced in this paper.

Fig. 6(a) shows almost linear ahkl
 �sin2  distributions, indi-

cating the absence of steep stress gradients of some hundred
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Figure 5
A schematic view of the setup used for the in situ welding experiments
(not to scale). See text for details.

Figure 6
(a) Normalized sin2 distributions obtained for selected reflections hkl of austenite. (b) A sketch of
the diffraction geometry. The designations of the individual stress components take into account the
cylindrical specimen symmetry: �		 , �zz and �rr denote the circumferential, axial and radial stress
components, respectively. ghkl

 and N denote the diffraction vector and the surface normal,
respectively. PB and DB mark the primary and diffracted beams, respectively.



megapascals per micrometre that would result in significant

curvature for large  angles (Klaus et al., 2009). Furthermore,

it is clear that the slope of the regression lines fitted to the data

depends on the amount of the Young modulus Yhkl in the

individual single-crystal directions (Fig. 2). ‘Hard’ directions

(here [111]) offer greater resistance to the stresses than

‘softer’ directions (here [400] and [311]), which is reflected in

the flatter slope of the regression line.

For the evaluation of the sin2 data the formalism intro-

duced by Klaus & Genzel (2019) was used (see Fig. 7 and

Section 2.3). The ‘optimized’ DEC model applied to the

further analyses in this section was calculated according to

equations (15a) and (15b) using the Reuss ratio r = 0.56.

Figs. 7(c)–7(e) reveal that a smooth residual stress depth

profile without (physically unrealistic) jumps is obtained if a

grain interaction model is applied which is close to the Hill/

Neerfeld model (Hill, 1952; Neerfeld, 1942) (arithmetic mean

of Reuss and Voigt, i.e. r = 0.5). Note that those stress values

which are obtained for reflections hkl near the model-inde-

pendent orientation 3�* according to equation (17) (circled in

the diagrams) hardly change their position on the ordinate

axis.

Concerning the sin2 analysis performed on samples

featuring a cylindrical shape (as in the present case), the near-

surface residual stress state must be considered multi-axial,

even if it does not depend on the axial and circumferential

directions, i.e. @/@	 = @/@z = 0 [note that 	, in contrast to ’
(azimuth angle in the Cartesian sample coordinate system),

denotes the circumferential direction in the cylindrical coor-

dinate system], and if shear stresses are absent, i.e. �r	 = �z	 =

�zr = 0. This is due to the remaining coupling term @�rr/@r +

(�rr � �		)/r = 0 in the differential equilibrium conditions

(Timoshenko & Goodier, 1951). Therefore, the slope of the

sin2 regression line, strictly speaking, yields the stress

difference �		 � �rr [Fig. 6(b)]. Since we found no evidence

for the occurrence of a radial stress component in our

experimental investigations (see Fig. 8), we will confine the

considerations in the following to a biaxial stress state, i.e. the

stress component �rr is omitted in the axis labels.

The discrete �		ð�
hkl
0 Þ Laplace stress data in Fig. 7(d) can be

used to evaluate continuous actual (real space) and Laplace

stress depth profiles, �		(z) and �		(�), respectively. Fig. 8(a)

shows an almost uniform compressive residual stress level for

the �		 component within the information depth of the X-rays,

so that the two profiles nearly coincide. The same applies to
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Figure 7
Evaluation of the residual stress depth profile for the circumferential stress component �		 and of the grain interaction model. (a) Minimization of the
total path length �ðrÞ� required to connect the individual values �		ð�

hkl
0 Þ [see equation (13)]. (b) DEC 1

2 Shkl
2 of austenitic steel calculated for different

grain interaction models (single-crystal elastic constants taken from Landoldt–Börnstein tables; Hellwege, 1984). (c)–(e) Discrete Laplace stress depth
profiles calculated for different grain interaction models. See text for further details.

Figure 8
(a) Real and Laplace stress depth profiles determined by fitting the �		(�)
function to the discrete �		ð�

hkl
0 Þ data in Fig. 7(d). (b) Normalized lattice

parameters obtained from the sin2 regression lines (Fig. 6) in the strain-
free directions  �;hkl = arcsinð�2Shkl

1 = 1
2 Shkl

2 Þ
1=2 of the biaxial residual

stress state, fitted by a linear function.



the lattice parameters ahkl
 � determined from the strain-free

direction for the biaxial stress state [Fig. 8(b)]. The absence of

a pronounced gradient justifies the assumption of a biaxial

residual stress state within the information depth, i.e. the

presence of the stress component �rr normal to the surface can

be excluded. Averaged over all reflections hkl, a lattice para-

meter of hahkl
 � i = 3.5877 	 0.0018 Å results, which can be

regarded as the strain-free lattice parameter a0 under the

assumptions made.

4.1.2. Analysis using advanced approaches. In the

following, we apply the methods introduced in Sections 2.1

(extended transverse contraction method) and 2.2 (optimiza-

tion method) to highly reduced ahkl
 �sin2  data sets. By

limiting the tilt range to  
 20� (sin2  
 0:12), it is possible

to simulate measurement conditions in samples with complex

shapes, where a larger sample tilt would lead to beam shading

(e.g. measurements in narrow boreholes or at the tooth base of

gears). The results achieved in the previous section by means

of the conventional well established methods will serve to

assess the suitability of the new approaches.

Fig. 9 depicts the essential steps in the data evaluation

concept by means of the extended transverse contraction

method, which provides average values for the circumferential

and axial stress components, �		 and �zz, respectively. The

value obtained for �		 fits well into the residual stress depth

profile shown in Fig. 8. Furthermore, from the fact that the

results obtained for both stress components agree within the

error margins, it can be concluded that the shot-peening

treatment has an in-plane direction-independent effect.

Considering only the data measured under  = 0� [Fig. 9(a)]

does not allow separation of the circumferential and axial

stress components, but provides a good approximation for the

average in-plane stress.

From the slope m ¼0� in Fig. 9(a) a value of �k =
1
2 ð�		 þ �zzÞ = �0.67 	 0.04 GPa can be deduced. However, it

should be explicitly pointed out that the direct determination

of the stress component �		 from the slope dm’=d sin2  
should be treated with caution. From the example shown in

Fig. 9(c) the recommendation can be derived to exploit fully

the  angle range accessible by measurement (cut-off at  =

20� in the present case). This area should be covered with as

many measurement points as possible to achieve a good

statistical validation. If the investigated angular range is too

small (in the present case about 10�) the evaluation should be

limited to the data obtained under  = 0�, which gives the

mean value of the longitudinal and transverse stresses.

The reduced sin2 data set shown in Fig. 9(d) can be used in

a further way that provides a depth profile of the in-plane

residual stress state. Based on the universal plot method

(Ruppersberg et al., 1989), the optimization concept intro-

duced by Klaus & Genzel (2019) (see Section 2.2) represents

an extension, in particular by exploiting the high sensitivity of

the lattice strains to changes in the strain-free lattice para-

meter a0, in order to obtain discrete stress depth distributions

in Laplace space with the smallest offset between the indivi-

dual data points. Fig. 10 shows that the variation in a0 leads to
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Figure 9
Application of the extended transverse contraction method. (a), (b) Examples of strain difference plots according to equation (6). The nine diffraction
lines taken into account result in 36 pairs of strain differences �"ði;jÞ’ n

. The error bars are smaller than the plot symbols. (c) Plot of the slopes m versus
sin2 according to equation (8). (d) Reduced sin2 data set used in the evaluation procedure.



both considerable absolute shifts of the �kð�
hkl
0 Þ profiles on the

ordinate axis and relative shifts between the individual data

points in one and the same profile.

The discrete stress profile obtained for the optimized strain-

free lattice parameter a
opt
0 may provide the basis for a least-

squares fit to calculate continuous functions for �k(�) and

�k(z), respectively. The corresponding results are depicted in

Fig. 11 and can be compared with the profiles shown in Fig. 8.

It is noteworthy that, despite the different evaluation histories

of the underlying discrete residual stress depth distributions,

the two cases yield nearly coincident profiles in both real and

Laplace space. The low scatter in the �		ð�
hkl
0 Þ distribution in

Fig. 8 is due to the fact that each individual stress value is the

result of a sin2 regression, which means that scatters of

individual strains are averaged out. In contrast, the values in

the �kð�
hkl
0 Þ distribution in Fig. 11 originate from only a single

strain "hkl
 ¼0 = ðahkl

 ¼0 � a
opt
0 Þ=a

opt
0 each [cf. equation (11)], which

explains the much larger scatter. Finally, note that the depth

profiles shown in Fig. 8 are associated with the directional

residual stress component �		 , while the depth profiles in

Fig. 11 correspond to the in-plane residual stress �k ¼
1
2 ð�		 þ �zzÞ averaged over the circumferential and axial

directions. The very good agreement of the depth profiles

depicted in Figs. 8 and 11 thus confirms the finding gained

from Fig. 9 that the shot-peening process induced an almost

direction-independent in-plane residual stress state in the

near-surface region of the inner wall of the specimen.

4.2. In situ study of stress evolution during welding

The example in this section is to demonstrate that the data

evaluation method introduced in Section 2.1 can be applied to

study stress evolution during fast in situ experiments such as

welding. Fig. 12 shows that the high-flux white synchrotron

X-ray beam provided by the 7 T multipole wiggler of the

beamline EDDI at BESSY II allowed the acquisition of ED

diffraction spectra in a fast sequence of 1 s. The first five

diffraction lines were identified as evaluable in further
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Figure 10
Optimization procedure according to equation (11) applied to the ahkl

 ¼0 data set [Fig 9(d)]. (a) Discrete �kð�
hkl
0 Þ profiles using different values taken

for the strain-free lattice parameter. (b) The optimized value a
opt
0 = 3.5868 Å results in the shortest average path length �ð�Þ� required to connect the

individual data points.

Figure 11
Real and Laplace stress depth profiles determined by fitting the �k(�)
function to the optimized �kð�

hkl
0 Þ distribution shown in Fig. 10(a). See

text for details.

Figure 12
Energy-dispersive diffraction pattern recorded during in situ welding of
austenitic steel X2CrNi18-9 (Section 3.1.2). Only the part of the spectrum
containing evaluable diffraction lines is shown.



analysis, which results in ten strain differences in the indivi-

dual ½�"ði;jÞ’ n
=s0r���3�ði;jÞ plots.

The examples in Fig. 13 reveal a sharp transition from a

compressive stress state (indicated by the negative slope of the

regression line) to a tensile stress state (positive slope) within

a few seconds. The stress evolution during the welding process

is shown in Fig. 14. Starting from an almost residual-stress-free

state, a rapid increase in compressive stresses can be observed,

reaching their highest level at about the maximum tempera-

ture, i.e. at the time when the welding torch passes the position

next to the measurement point. The temperature then

decreases very quickly, which leads to a change in the sign of

the stresses within a few seconds (Fig. 13). The maximum

amount of tensile stress generated is slightly less than the

amount of the maximum compressive stress before.

Similar to the investigations on the superheater tubes

presented in Section 4.1, the results obtained in situ in the

present case by the transverse contraction method were

subsequently verified and confirmed by conventional sin2 
analyses. For this purpose, ex situ measurements were

performed in the azimuths parallel and perpendicular to the

weld seam and then averaged by taking �k = 1
2 ð�11 þ �22Þ.

Additionally, the in-plane stresses �k were evaluated by means

of the transverse contraction method using the same data, but

taking only the lattice strains determined for  = 0. The results

obtained with these two approaches show good agreement

and, moreover, are consistent with the results received from in

situ measurements for t > 1000 s when room temperature was

again reached (Hempel, 2022).

5. Discussion

The methods introduced in this paper aim to accomplish X-ray

(residual) stress analysis under difficult constraints in terms of

accessibility of measurement directions which would be

required for the application of conventional sin2 -based

techniques. The experimental examples in the previous section

have shown that the proposed approaches allow the deter-

mination of at least the average in-plane stress state from

energy-dispersive measurements performed with  = 0.

However, their applicability depends on a number of

preconditions that must be fulfilled by the material to be

investigated.

The restriction to materials with cubic crystal structure is

necessary for two reasons:

(i) Normalization of the lattice spacings to one reference

parameter a100 is required.

(ii) For random crystallographic texture, the elastic material

behaviour described by the orientation factor 3�hkl can be

quantified independently of the measurement direction (’,  )

in the sample reference system by a single parameter, the

Reuss factor r, which can be determined by at least one of the

proposed approaches (optimization method, Fig. 7).

Since both methods are based on the evaluation of lattice

strains in crystal directions with different elastic behaviour

(anisotropy), they require input data in the form of all

reflections hkl with different 3�hkl which are evaluable within

the diffraction pattern.

Furthermore, both methods should only be applied to

materials with pronounced single-crystal elastic anisotropy

defined by the Zener factor A, such as ferritic (A = 2.5) and

austenitic steel (A = 3.5), copper (A = 3.2) or nickel (A = 2.6).

For materials featuring weak elastic anisotropy such as

aluminium (A = 1.2) or TiN (A = 0.9), its role as a driving force

is missing in the extended transverse contraction method

(Fig. 2) and the optimization method [Fig. 4(a)]. However,

there is no sharp limit with respect to the Zener factor from

which or up to which the methods introduced here are

applicable. Since many technical components with complex

shapes and hard-to-access measuring points (e.g. gears, or

parts with boreholes or sharp bends) are made of steel or

nickel-based alloys, there are a wide range of applications.

Another requirement that must be met for both methods is

the absence of significant nonlinear sin2 distributions, which

can occur as a result of very steep stress gradients, strong
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Figure 13
Examples of strain difference plots which represent the average in-plane
stress state at different times of the welding process. The individual lattice
strains were determined from X-ray diffraction spectra integrated over
3 s each. For the evaluation a Reuss ratio of r = 0.64 was applied, which
had been obtained by an X-ray load stress analysis to determine the
DECs Shkl

1 and 1
2 Shkl

2 (Hempel, 2022).

Figure 14
Evolution of the average in-plane stress state during the welding process.
Each data point is the result of a regression analysis according to equation
(7) for  = 0. The points marked by the filled and empty triangles and
boxes correspond to the diagrams shown in Fig. 13. The dashed line
depicts the local temporal temperature profile at the measurement point.



plastic deformation or pronounced crystallographic texture.

These nonlinearities would disturb the indirectly proportional

relation between the magnitude of Young’s modulus Yhkl and

the increase in the respective sin2 distribution for the

reflection hkl [Fig. 6(a)]. The formalisms described in Sections

2.1 and 2.2 would no longer be applicable in this case. For the

two examples presented in this paper, this point could be

excluded, since the sin2 measurements performed (for the

weld specimens afterwards) had not revealed any non-

linearities in this respect.

In general, to exclude such effects, ‘twin experiments’

should be performed on (partially) destroyed samples on

which sin2 measurements are possible. However, it should be

noted that cutting the specimen will release some of the

residual stresses. Care should also be taken if the methods are

to be applied to multi-phase materials. In these cases, the

criteria described by Hanabusa et al. (1983) and Ruppersberg

(1997) should be used to estimate whether triaxial residual

stress states are to be expected in the depth range covered.

The two methods also differ in terms of some preconditions

and the information content, making them complementary for

practical applications (see Table 1). If, as in the case of the

superheater tubes (Section 4.1), all preconditions are fulfilled

(i.e. both stress and composition gradients are negligible),

both approaches can be applied and give comparable results

with respect to the near-surface residual stress state. In prac-

tice, however, more or less pronounced depth gradients of one

kind or another will often occur. Since in the case of strongly

restricted possibilities for specimen tilting (e.g. at the tooth

base of gears or in narrow bores) an independent verification

(as in Section 4.1) is not possible, it is recommended to eval-

uate the data with both approaches and then compare the

results. This is possible in principle, provided that high-quality

data are available in the form of a large number of diffraction

lines with sufficient counting statistics that simultaneously

reflect the full range of elastic anisotropy by covering ‘hard’

and ‘soft’ crystal directions.

We see two potential areas of application for the methods

proposed in this paper. The first area concerns XSA experi-

ments under difficult conditions where conventional sin2 -

based methods fail for geometric reasons, i.e. samples with

complex shape that cannot be tilted due to beam shadowing.

Under such boundary conditions, the proposed evaluation

strategies appear, to the best of our knowledge, to be currently

the only way of obtaining non-destructive and depth-resolved

(optimization method) information on the near-surface resi-

dual stress state. However, depending on prior knowledge of

the microstructure of the material, the results should be

interpreted with due caution. This may mean that in some

cases only the sign and magnitude of the near-surface (residual

stress) state can be determined in this way. A certain verifi-

cation may be possible in some cases if the sample is subse-

quently cut open to expose the measurement point. In this

case, however, it must be noted that cutting leads to a partial

release of the macro and phase homogeneous residual stresses.

Of the examples presented here, this applies to the super-

heater specimen, where cutting open the tube presumably

released some of the residual stresses in the circumferential

direction.

A second potential field of application could target the

investigation of larger sample series in the sense of an in-

process analysis. In this case, the preconditions for the

applicability of one or the other (or both) of the methods

presented here to the material class to be investigated must be

clarified in advance (see Table 1). The main focus of this

application should be the fast determination of relative

differences in the near-surface residual stress state, which can

occur, for example, due to systematic parameter variation or

even random fluctuations in the production process.

APPENDIX A
Diffraction elastic constants

Fig. 15 depicts the diffraction elastic constant 1
2 Shkl

2 for auste-

nitic steel, which is used as a sample material for the experi-

mental examples in the present paper. The DECs for cubic

materials according to Voigt (V) and Reuss (R) are given by

SV
1 ¼ �

1

2

c11 þ 4c12 � 2c44

ðc11 � c12 þ 3c44Þ ðc11 þ 2c12Þ
;

1
2S

V
2 ¼

5

2

1

c11 � c12 þ 3c44

;

ð14aÞ
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Table 1
Specific features of the methods introduced in this paper.

Extended transverse
contraction method Optimization method

�(z) gradients Excluded Allowed
a0(z) gradients Allowed Excluded
Output Average stress within the

X-ray information depth
(Residual) stress depth profiles,

strain-free lattice parameter

Figure 15
The diffraction elastic constant 1

2 Shkl
2 of austenitic steel calculated on the

basis of the Voigt (V) and Reuss (R) assumptions. W denotes a weighted
model which is an average of Reuss and Voigt with a weighting factor r.
3�* marks the model-independent orientation and mech denotes the
mechanical value, averaged over all orientations.



SR;hkl
1 ¼ s12 þ

1
3 s0 3�hkl; 1

2 SR;hkl
2 ¼ s11 � s12 � s0 3�hkl:

ð14bÞ

The weighted model (W) can be expressed by

SW;hkl
1 ¼ rSR;hkl

1 þ ð1� rÞ SV
1 ¼

1
3 s0r 3�hkl þ rs12 þ ð1� rÞ SV

1 ;

ð15aÞ

1
2 SW;hkl

2 ¼ r 1
2 SR;hkl

2 þ ð1� rÞ 1
2 SV

2 ;

¼ � s0r 3�hkl þ rðs11 � s12Þ þ ð1� rÞ 1
2 SV

1 : ð15bÞ

Taking the difference of the weighted model DECs according

to equations (5a) and (5b), the constant (i.e. hkl-independent)

terms in the above equations are omitted and we get

�S
W;ði;jÞ
1 ¼ 1

3 s0 r �3�ði;jÞ; ð16aÞ

� 1
2 S

W;ði;jÞ
2 ¼ �s0 r �3�ði;jÞ: ð16bÞ

Consequently, the differences in DECs no longer depend on

the elastic moduli themselves, but become a function of the

anisotropy level defined by s0 and the Reuss fraction r (the

weighting factor in Fig. 15) in the model.

The model-independent orientation 3�* for cubic materials

is given by (Klaus & Genzel, 2019)

3�� ¼
s11 � s12 �

1
2 SV

2

s0

¼
s11 � s12

s0 þ
5
6 s44

: ð17Þ

The latter expression is obtained if 1
2 SV

2 is expressed by the

elastic moduli sij . For isotropic materials defined by s0 � 0 or

s11 � s12 = 1
2 s44, one finds 3�* = 0.6. This corresponds to the

mechanical values Smech
1 and 1

2 Smech
2 which are obtained by

averaging not only over the reflecting crystallites but over all

orientations.

Acknowledgements

Open access funding enabled and organized by Projekt

DEAL.

Funding information

Parts of the beamtime were financially supported by the

project CALIPSOplus under grant agreement No. 730872

from the EU Framework Programme for Research and

Innovation HORIZON 2020, by the Danish Natural Science

Research Council via Danscatt, and by the Deutsche

Forschungsgemeinschaft (DFG, German Research Founda-

tion, project No. 273371116).

References

Apel, D., Genzel, M., Meixner, M., Boin, M., Klaus, M. & Genzel, C.
(2020). J. Appl. Cryst. 53, 1130–1137.

Baczmanski, A., Lipinski, P., Tidu, A., Wierzbanowski, K. & Pathiraj,
B. (2008). J. Appl. Cryst. 41, 854–867.

Buras, B., Chwaszczewska, J., Szarras, S. & Szmid, Z. (1968). Fixed-
Angle Scattering (FAS) Method for X-ray Crystal Structure
Determination. Report 894/II/PS. Institute of Nuclear Research,
Warsaw, Poland.

Chung, D. H. & Buessem, W. R. (1967). J. Appl. Phys. 38, 2010–2012.
Daymond, M. R. & Johnson, M. W. (2001). J. Appl. Cryst. 34, 263–270.

Erbacher, T., Wanner, A., Beck, T. & Vöhringer, O. (2008). J. Appl.
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