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A pseudosymmetric description of the crystal lattice derived from a single wide-

angle Kikuchi pattern can have several causes. The small size (<15%) of the

sector covered by an electron backscatter diffraction pattern, the limited

precision of the projection centre position and the Kikuchi band definition are

crucial. Inherent pseudosymmetries of the crystal lattice and/or structure also

pose a challenge in the analysis of Kikuchi patterns. To eliminate experimental

errors as much as possible, simulated Kikuchi patterns of 350 phases have been

analysed using the software CALM [Nolze et al. (2021). J. Appl. Cryst. 54, 1012–

1022] in order to estimate the frequency of and reasons for pseudosymmetric

crystal lattice descriptions. Misinterpretations occur in particular when the

atomic scattering factors of non-equivalent positions are too similar and

reciprocal-lattice points are systematically missing. As an example, a

pseudosymmetry prediction depending on the elements involved is discussed

for binary AB compounds with B1 and B2 structure types. However, since this is

impossible for more complicated phases, this approach cannot be directly

applied to compounds of arbitrary composition and structure.

1. Introduction

Symmetry is a fundamental concept in crystallography that

combines rotations and/or rotoinversions within the crystal

structure with the omnipresent translational periodicity of a

crystal lattice. The point-group symmetry is a minimal

symmetry requirement in every physical property and also

theoretically in a captured signal like an electron diffraction

pattern. Unfortunately, the ideal crystal symmetry is often

overlaid by an asymmetry caused by the measurement setup,

which, strictly speaking, leads to its loss. In the case of an

electron backscatter diffraction (EBSD) signal, this asym-

metry is the consequence of the distinct direction of the

primary electron beam and the tilt of the sample, which

produces, among other things like a high gnomonic distortion,

significant excess-deficiency phenomena and a comparatively

strong radial intensity decay in the EBSD pattern. After

background correction a backscattered Kikuchi diffraction

(BKD) pattern results, which may look nearly perfect at first

glance. A closer look shows a radial decrease in the signal-to-

noise ratio, which is of course inconsistent with the crystal

symmetry of the pattern-forming phase, and which addition-

ally varies with the projection centre (PC) position and a

possibly existing microscopic surface topography.
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Although the solid angle reflected from a typical wide-angle

BKD pattern is considered quite large compared with electron

channelling patterns, the acquired image still represents <15%

of the total diffraction signal given by a simulated master

pattern. This considerably reduces at least the purely visual

detectability of symmetry for non-cubic phases. The incom-

plete signal also affects the reliability of the extracted infor-

mation such as the lattice parameters, because even mirror-

symmetric band profiles of centrosymmetric phases become

highly asymmetric due to the large missing part of the bands

[Part I of this series, Nolze et al. (2023a)]. This also happens for

physics-based BKD pattern simulation, although they are at

least not affected by excess-deficiency effects and the already-

mentioned gradually changing signal-to-noise ratio.

Such discrepancies from theoretically highly symmetrical

signals are particularly disturbing when small symmetry

deviations are to be investigated. They are referred to as

pseudosymmetry, which describes any state in which the

difference from another symmetry is so small that neither

higher nor lower symmetry can be clearly distinguished with

the measurement technique applied.

Therefore, in the context of the determination of lattice para-

meters from individual BKD patterns, the causes of pseudo-

symmetry may be mainly classed as one of the following:
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Figure 1
(a) The BKD signal collected on zincblende (ZnS) very likely twinned || {111}. The twinned part of the signal is identifiable by 14 faint but clearly visible
additional bands. Their band edges are indicated by dashed red lines, and for bands invisible to the eye the lattice plane traces are plotted as solid red
lines. (b) The marked bands in panel (a) are shown as red spheres and are responsible for the sketched hexagonal reciprocal cell with (0001) || (111)c.
Without the red spheres the correct (centred) cubic cell results (projection k ½110�c). The reciprocal-lattice points at the corners of the cubic unit cell are
highlighted in light green, while the dark-green spheres display centred positions. (c) The simulated pattern of zincblende and (d) the overlaid signal of
two twinned ZnS crystals with an intensity ratio of 100:60, where one clearly visible false Kikuchi band marked by red dashed lines is missing in panel (c)
but included in (a).



(i) Phase specific. Pseudosymmetry indicates a state of

apparently higher symmetry density, i.e. an apparent increase

in the number of symmetry operators per unit-cell volume.

Thus, either the lattice point density (translationengleiche or t

supergroups) or the point-group symmetry of each individual

lattice point (klassengleiche or k supergroups) appears higher

than it actually is [see e.g. Hahn (2005), Section 8.3.3.3, p. 735,

or Wondratschek & Müller (2004), Section 2.1.6, p. 63]. In

practice, however, the two processes often interfere. For

example, superstructures are the result of any kind of atomic

rearrangement during diffusive, reactive or thermo-

dynamically controlled processes that do not simply reduce

the lattice point density; they are also responsible for addi-

tional, often very small, lattice distortions that may eliminate

previously existing symmetry operators (Howard & Stokes,

2005; Capillas et al., 2005, 2011).

(ii) Microstructure specific. Pseudosymmetry may also

appear as a consequence of specific microstructures or struc-

ture defects, e.g. caused by micro- or nano-twinning, antiphase

boundaries, stacking faults etc. (Fischer et al., 2021). In such

cases, perfectly aligned BKD patterns overlap (Lenthe et al.,

2020). Because of high lattice correlations the resulting BKD

pattern may reflect a pronounced pseudosymmetry, which may

effectively also result in a lower symmetry. In Fig. 1, cubic ZnS

is misinterpreted as some bands do not fit the cubic lattice.

However, all of them fit to a hexagonal superlattice.

(iii) Method specific. Whether or not a phase is considered

pseudosymmetric depends on the limitations of the analysis or

post-processing method used. For example, a lattice distortion

which is easily identifiable by interference splitting in X-ray

powder diffraction can end in a merely pseudosymmetric

description by less angular resolving techniques like optical

reflection goniometry or EBSD [from the different angular

resolution limits it already follows that EBSD cannot produce

more accurate results than X-ray diffraction (XRD)].

In the following, we will focus exclusively on the pseudo-

symmetry caused by the phase itself.

Typical pseudosymmetry limitations that appear during the

analysis of BKD patterns are discussed e.g. by Zambaldi et al.

(2009), Nolze et al. (2015, 2016), Schmidt et al. (2016), Call-

ahan et al. (2018), Jackson et al. (2018), De Graef et al. (2019),

Pang et al. (2020), Lachmann et al. (2020) and Martin et al.

(2022). Despite different approaches, the goal is almost always

to eliminate as much as possible the observed pseudo-

symmetry of a phase in orientation maps. Depending on the

strength of the pseudosymmetry, this is achieved either with

very moderate means or with considerable effort. In very

complicated cases, detection often involves additional assump-

tions, such as a PC known to be perfect, the exclusion of any

distortion in the BKD pattern or the use of Kikuchi bands that

are virtually invisible to the naked eye (Martin et al., 2022).

Sometimes, an improper pattern interpretation setup during

orientation mapping can also lead to multiple solutions of the

same BKD pattern. This is also sometimes called pseudo-

symmetry of actually non-pseudosymmetric phases (Nowell &

Wright, 2005; Vaudin, 2005; Karthikeyan et al., 2013); it can,

however, easily be avoided.

1.1. Crystallographic pseudosymmetry

1.1.1. Crystal lattice metric. Pseudosymmetry is very often

assumed to be equivalent to minimal lattice distortions. These

lead to either slightly different lattice parameter ratios or

(mostly) integer multiples,1 and/or to somewhat deviating

angles between apparently equivalent lattice directions. Fig. 2

displays some relationships between higher symmetric Bravais

lattices using the ratios a/b and c/b and the angle � [which is

also used as the monoclinic angle (unique axis c)].

If no symmetry and only the lattice metric is known, lattice

parameters are defined by a � b, i.e. a/b � 1. In contrast, c/b >

0 can have any size, since for the considered Bravais lattices

c � b or c> b. Like a/b, � is also restricted: 0 < � � 120�, so

that the maximum is given by �/90� = 4/3. For most considered

Bravais lattices � = � = 90�, except for hR where � = � = �.

Fig. 2 is intended to show that small deviations from the

highlighted plane (oP), displayed arrows (for tP, hP and hR)

or single points (cP, ‘cF’, ‘cI’) bear the danger of pseudo-

symmetric lattice interpretations. If for the monoclinic angle

�/90� ’ 1, the lattices are assumed to be oP, which changes to

tP if additionally a/b ’ 1. If also c/b ’ 1 the lattice is accepted

to be cP.

Not quite so obvious are pseudosymmetries of centred

lattices, as shown by the example of oChP , which is an alter-

native but non-primitive description of hP. Since the lattice

parameter ratio of oChP is described by (a/b)o = 1/
ffiffiffi
3
p

, then

also (c/b)o = (c/b)h/
ffiffiffi
3
p

. Equivalent basis vector ratios are

illustrated by three example pairs of points along hP and oChp

whose connection leads to n ¼ 4
3� 1=ð3�

ffiffiffi
3
p
Þ.

For � ’ 60� or � ’ 109.5� and a ’ b ’ c, lattices will be

interpreted as primitive descriptions of centred cubic cells.

In fact, the symmetry or pseudosymmetry of a phase is not

determined by the lattice metric at all but by the crystal

structure. The lattice only has to follow this symmetry but can

be higher symmetric. Generally, trigonal phases such as quartz

(�-SiO2) are represented by the higher-symmetric hexagonal
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Figure 2
The relationships between non-triclinic primitive Bravais lattices using
a/b, c/b and �. The primitive cell descriptions of cI and cF are displayed,
as well as oChP as an alternative orthorhombic (centred) description of
hP.

1 A typical example is cubic sphalerite (ZnS) versus tetragonal chalcopyrite
(CuFeS2) with c/a ’ 2, but many others are described by Müller (2013).



lattice, but, as just discussed, monoclinic phases with � ’ 90�,

tetragonal phases with a ’ c or orthorhombic phases with a ’

b ’ c are also considered higher symmetric.

Vice versa, a phase with a = b = c and � = � = � = 90�

matches to any crystal symmetry except hexagonal (but see

Fig. 3 when lattice points are systematically vacant). However,

the probability is very high that not only does the lattice

system look isometric but also the crystal system of the

corresponding phase is cubic. Unfortunately, the crystal

structure as an exclusively relevant physical quantity cannot

yet be derived from BKD patterns, despite initial attempts

(Lühr et al., 2016). The structure influence can be very

complex, which manifests itself for example in some

compounds with numerous polytypes (superstructures) or

modifications (Michael & Eades, 2000; Kogure & Bunno, 2004;

Kogure et al., 2005; Kościewicz et al., 2010). Their differences

are often minimal in the BKD pattern and of the order of

magnitude of the experimental band detection error. At

present, such small BKD signal differences can often only be

distinguished using comparatively sophisticated pattern

matching techniques (Martin et al., 2022). However, this

assumes that the available pattern simulation is unquestion-

ably suitable for this purpose and, furthermore, that other

experimental uncertainties can be excluded. Still, this is purely

hypothetical, especially in the case of unknown phases and

typically unpredictable experimental conditions, like landing

electron energy or image distortions in BKD patterns,

requiring a correspondingly critical review of the results.

1.1.2. Reciprocal lattice of centred unit cells. The deriva-

tion of the lattice metric from a single BKD pattern is based

on a correlative analysis of the reciprocal lattice (Li & Han,

2015; Nolze et al., 2023a). For primitive lattices this is

comparatively straightforward. Unfortunately, many techni-

cally relevant phases are described by non-primitive Bravais

lattices, such as ferrite and austenite, i.e. �-Fe and �-Fe,

respectively. Since the impact of unit-cell centring on the

reciprocal lattice usually receives little attention, it is briefly

summarized in Appendix A.

1.1.3. Pseudo-integral absences. For the description of

reciprocal-lattice points, Laue indices hkl are used which

permit any combination of integers for h, k and l. Systematic

absences or higher-order interferences reflecting major

Kikuchi band edges may indicate another Bravais lattice type

if they have the character of integral reflection conditions.

Thus, a systematic absence of points in a primitive lattice P*

where each unit-cell corner is actually occupied can suggest a

centred lattice. However, an F* lattice is also a subset of A*,

B* or C*.

This, of course, carries the risk of a pseudosymmetric

interpretation of the Bravais lattice type and can have a very

significant impact on the lattice parameters and ratios (basis

vector definition of superlattices) if Kikuchi bands are

systematically left undetected or low-intensity interference

orders are ignored, as presently in CALM (Nolze et al., 2021).

Fig. 3 illustrates an example where any cubic lattice repre-

sents a special case of a rhombohedral lattice (red cell). A

subset of lattice points even defines a hexagonal sublattice

(green cells) if in each cell the red reciprocal-lattice points

hkl are not described by an equivalent Kikuchi band width.

The resulting lattice parameters in Fig. 3 have, of course, a

very specific relationship to the cubic lattice parameter ac

(Table 1).
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Figure 3
The reciprocal lattices of cP, cI and cF. (a) cP*$ hR�r $ hR�h. (b) cI *, hR�r $ hR�h. (c) cF *, hR�r $ hR�h. The equally drawn reciprocal unit cells for
P�, I � and F � are red in (a) but dark grey in (b) and (c). I � and F � have an incomplete occupation of the corners with reciprocal-lattice points. Therefore,
the reciprocal-lattice point arrangement appears like a face-centred lattice for I � in panel (b) but like a body-centred lattice for cF � in panel (c). The red
frame represents in each panel the primitive cell, which is rhombohedral in (b) and (c). The hexagonal cell (green) results in a primitive superlattice when
the red centred reciprocal-lattice points have not been discovered by Kikuchi bands.



Because of the limited size of the diffraction signal captured

by a BKD pattern, but also because of restrictions regarding

usable band widths, only a limited part of the reciprocal lattice

can be derived. Therefore, there is always a risk of system-

atically missing reciprocal-lattice points. This risk, along with

statistical reasons, is another motivation for finding as many

Kikuchi bands as possible.

Summarizing, different aspects can each play a role in the

misinterpretation of a lattice type. From a purely theoretical

point of view, for a centred cell the symmetry density increases

with the number of lattice points per unit cell, i.e. even a false

Bravais lattice type with identical lattice parameters also

represents pseudosymmetry, e.g. F instead of P. Thereby, the

reliability of the derived Bravais lattice type is never 100%

certain, simply because of calibration limitations or the

accuracy of the Kikuchi band positioning (Li & Han, 2015;

Nolze et al., 2021). In addition, there is the not entirely inde-

pendent issue of symmetry, which is inherent in each lattice

point itself.

1.1.4. Crystal structure. As mentioned already, during

phase transformations order/disorder phenomena in the

structures also trigger lattice distortions. Thus, practically any

change in the crystal structure results in lattice variations.

Nevertheless, since the crystal lattice is much easier to monitor

than the crystal structure, the lattice parameters serve as de

facto fingerprints in phase identification.

However, small changes in the crystal structure and lattice

are often also associated with changes affecting at least part of

the symmetry. Crystallographic subgroup relationships

between the initial and resulting crystal structures exist

(Müller, 2013), with some symmetry preserved while some is

lost. Derived subgroup diagrams indicate the closest crystal-

lographic relationships (maximal subgroups) between parent

and child phases only (Zwart et al., 2008; Capillas et al., 2011;

Ivantchev et al., 2000). Because of the strong relationship,

simple transformations exist between basis vectors that allow a

description of the unit cell according to the new symmetry or

sublattice (Hornfeck & Harbrecht, 2009). Unfortunately, the

group–subgroup concept is not generally applicable. Simple

examples are metal structures like Fe. The transformation of

the face-centred cubic (f.c.c.) into a body-centred cubic (b.c.c.)

phase is explained by a noticeable shearing of the structure.

The relationship between adjacent atoms during the trans-

formation does not get lost, but their coordination number

reduces from 12 to 8, which is accompanied by a 4%

contraction in the atomic distance. This also requires a

complete realignment of the symmetry elements, although the

(point-group) symmetry before and after the transformation

appears to be the same, and the symmetry density also remains

practically unchanged if one disregards the volume reduction

of �1%.

1.1.5. Crystal symmetry. For discrimination between

phases, symmetry in BKD patterns can be used (Dingley &

Wright, 2009; Peng et al., 2021), but only if their symmetries

are clearly different from each other. An unambiguous proof

of actual symmetry in experimental BKD patterns is only

possible if the lattice does not give rise to any suspicion of

pseudosymmetry. With an unknown phase this cannot be ruled

out at all and measurement uncertainties are unavoidable.

1.2. Imaging and other errors

In addition to phase-specific excess-deficiency effects,

experimental BKD patterns can be affected by local distor-

tions due to detector optics or by electromagnetic interference

fields. These do not have to occur in the selected imaging field

but can be invisible to the observer somewhere on the sample,

around the sample in the scanning electron microscope or

even caused by the EBSD detector itself. Such patterns cannot

be perfectly processed since they do not match the assumed

purely gnomonic projection of the signal.

In contrast, physics-based BKD pattern simulations appear

perfect. However, they have also been shown to reflect

experimental patterns adequately only in terms of quality.

More detailed analysis reveals that the electrons that actually

contribute to the pattern have a slightly lower energy than the

primary electrons assumed in the simulation. In addition, this

effective energy varies very slightly with the scattering angle

(Winkelmann et al., 2019).

2. Software used

For the physics-based BKD pattern simulations, the program

DynamicS (Bruker Nano, Berlin, Germany) has been used

(Winkelmann et al., 2007). Diffraction ray tracing in DynamicS

is based on a square grid on a cube surface. Correctly

assembled, the projection cube satisfies the requirements of all

relevant symmetries [see e.g. Nolze (2013)].2

In the present investigations, about a thousand hkl were

considered for each phase in the simulation of the master

patterns. An electron energy of 20 keV was used for the

relativistic calculation of the electron wavelength. For

simplicity, a single plane of the projection cube was analysed,

representing �17% of the total master pattern. It displayed

the standard projection, i.e. [001] was always located at the

pattern centre. The crystallographic description of the lattice

plane traces has been derived from the definition of the

coordinate systems (lattice parameters used for the simula-

tion, projection centre, crystal orientation). The trace posi-

tioning and band profile extraction are described for example

by Day (2008) and Nolze et al. (2021, 2023a).
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Table 1
Rhombohedral and hexagonal descriptions of the reciprocal lattices of
cubic Bravais lattice types.

The derived lattice parameters refer to the cubic ac parameter.

Lattice a�r �� a�h c�h

cP* 1/ac 90�
ffiffiffi
2
p

/ac

ffiffiffi
3
p

/ac

cI*
ffiffiffi
2
p

/ac 60�
ffiffiffi
2
p

/ac 2
ffiffiffi
3
p

/ac

cF*
ffiffiffi
3
p

/ac 109.5� 2
ffiffiffi
2
p

/ac

ffiffiffi
3
p

/ac

2 Hexagonal phases are treated like trigonal ones, i.e. the fundamental sector is
generated twice, independently and with different resolution.



For the determination of the lattice parameters CALM

(Version 1.5.2) was used, which exclusively evaluates the

angular position of the strongest extrema of the first derivative

of the band profiles (Nolze et al., 2021). For the extrema

determination smoothing level 7 was chosen. Only bands

whose band widths Whkl are in the range of 4 � Whkl � 9� are

considered for the determination of the mean lattice para-

meter and the standard deviation. Since the trace positions of

the diffracting {hkl} were calculated and the PC was known,

both can be ruled out as even partial causes of the deviations

discussed below.

3. Results

In the present analysis, simulated BKD patterns of about 350

phases were studied. The selection of phases is not repre-

sentative, nor can it be. They were specifically chosen to assess

the limitations of determining lattice parameters when

analysing individual BKD patterns in CALM. Thus, phases

with particularly small or comparatively large lattice para-

meters or lattice parameter ratios were selected, as were

phases with heavy, light or very similar element combinations.

Phases with an ordered structure or pseudosymmetric lattice

were also considered. These difficult conditions describe

rather exceptional situations and are intended to point out the

limitations that other experimental techniques such as XRD

also have, albeit to a different extent. For example, the crystal

lattice of troilite (FeS) as derived by CALM is the same as that

initially described by Alsén (1925). This outdated crystal

structure description is still listed in current databases,

although later XRD analyses discovered an element ordering

which caused a multiple size of the unit cell: a = |a1 + a2| =ffiffiffi
3
p

a0, c = 2c0 (Bertaut, 1954).

3.1. Binary compounds with simple structures

The current approach in CALM of using only bands that are

uniquely identifiable by more or less symmetric band edge

positions, ignoring unclear superpositions and not caring

about the specific interference order of a band edge, reduces

the uncertainty of a solution. However, it also bears the risk of

deriving a pseudolattice by neglecting lower interference

orders. Reciprocal-lattice points are then systematically

omitted or an insufficient number of bands are considered

during the analysis. A supercell in reciprocal space results,

which is the equivalent of a smaller unit cell in real space.

For element structures, assigning a pseudosymmetry is

practically impossible. For compounds, especially where the

atomic positions are identical to the lattice point positions, it is

quite conceivable. The structure types B1 (NaCl) and B2

(CsCl) show an increased susceptibility to misinterpretation of

the Bravais lattice type. As proof, Table 2 lists 52 phases with

B1 and 35 phases with B2 structure type.

As Table 2 shows, CALM does not extract the correct

Bravais lattice type for almost half of the phases. For B1 a P

lattice with halved lattice parameter is derived. For B2, instead

of the correct P lattice an I lattice results, but with identical

lattice parameter (see also Table 3). Both false solutions have

twice as many lattice points, i.e. in reciprocal space certain

lattice points remain systematically undetected.

3.2. More complicated structures

Using automatic band width detection in CALM, 28 of 144

phases characterized with crystal structures more complicated

than B1–B4 were described by a pseudosymmetric lattice

(Table 3). In practice, both reasons for pseudosymmetry come

into play.

Minimal distortion of the lattice while preserving the lattice

point density (m’ 1) requires a very precise description of the
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Table 2
Bravais lattices derived in CALM for phases with B1 and B2 structures.

Single lower interference orders n are either invisible, visible but not
automatically detectable, or automatically detectable leading to the correct
lattice.

Wrong Bravais lattice

Lower n invisible Lower n visible Correct Bravais lattice

B1 KCl, BaTe, GdSb,
ErSb, TmSb,
PbTe, BiTb, BiHo,
BoTe, CaS, CsSe,
SrTe, SrSe, MgS

NaCl, BaSe, PrAs,
NdAs, GdAs,
GdSc, TbAs,
HoAs, TmAs,
PbSe, BiSe

FiF, KF, CaO, TiC, TiN,
MnO, CoO, NiO, NaBr,
ZrO, NbC, CdO, CaTe, BaO,
BaS, EuS, GdN, TbN, HoN,
ErN, YbO, HfC, TaC, PbS,
SrS, SrO, MgSe

B2 FeTi, FeV, AgIn,
CdCe, CdPr,
AgSm, DyAg,
AgTm, TiI

CuPd, PdTi, AgZn,
CsBr, ZnCe,
AuZn, AuCd,
TlBr, SrTl, ThTe

BeCo, NiAl, BeCu, RbCl,
MgSr, BePd, AgMg, LiAg,
CsCl, MgCe, MgPr, AlNd,
OsSi, AuMg, TlCl, CaTl

Table 3
Pseudosymmetric Bravais lattices found during the analysis of simulated
BKD patterns.

The found Bravais lattice is given with respect to the true lattice parameter
and Bravais lattice type. 1

2a means that the found lattice parameter a is half the
true one. However, for orthorhombic phases a can also be b or c and is
therefore given in parentheses after the phase name. The last column indicates
that the lattice point density is m times higher due to pseudosymmetry.

Found True Phases m

oP 1
2cPa oP Al2SiO4 (c), V2C (b), FeSi2Ti (c) 2

oS† 1
2cPa oP Ni3Nb (b), Mo2C (b) 4

oS oP KPrF4 (b), PbCO3 (a) 2
tP 1

4cPa tP Al5Ti3 16
tP oP‡ Sb2S3 1
tI tP SnO2 2
hP (1/

ffiffiffi
3
p

)a§ hP W2C, FeS 3
hP 1

2c hP PtB 2
cP oP} CoAsS 1
cP 1

2 a cP Ca2TiSiO6 8
cP 1

2 a cI Ca3Te2Zn3O12 4
cP 1

2 a cF Some B1 structures 2
cI oI†† Fe(OH)3 1
cI cP Some B2 structures, SrZrO3, BaSnO3, SnTaO3 2
cI 1

2 a cI YCu3Mn4O12 8
cI 1

2 a cF AlCu2Mn, GaMn2V 4
cF cP Na3OCl, Cu2O, Mn3InC, FePt3, PbZrO3 4

† oS is the base-centred orthorhombic lattice, i.e. either A, B or C. ‡ |c/b � 1| ’
0.005. § 	 |a1 + a2|. } |a/b � 1| < 0.001, |c/b � 1| < 0.004. †† |a/b � 1| < 0.003,
|c/b � 1| < 0.001, i.e. pseudo-cubic or pseudo-tetragonal.



trace positions and the position of the PC, cf. the pseudocubic

or pseudotetragonal Sb2S3 , CoAsS and Fe(OH)3 . This

increases the symmetry of the lattice system but keeps the

Bravais lattice type: oP ! cP. More frequently, as for the

already discussed B1 and B2 structures, an apparently higher

number of lattice points are found, which increases the lattice

point density because of the smaller unit-cell volume. In

Table 3 these are phases with m > 1.

It is more common than expected that phases still carry a

relationship to higher-temperature modifications whose

symmetry is usually higher. Orthorhombic phases such as

Mo2C or Ni3Nb, which show only a minimal deviation from a

hexagonal metric, are typical representatives. Such phases are

often identified in CALM by their higher-symmetric coun-

terpart. For simulated patterns, a known PC and calculated

trace positions, acceptable maximum deviations can be

reduced to minimum values (0.1%), which can rule out the

hexagonal solution. However, for experimental patterns with

excessive-deficiency effects, significant noise, an imperfect PC

and refined trace positions, maximum deviations should not

realistically be less than 1%. Moreover, for polytypes such as

Co3W, discussed by Nolze et al. (2017), it turns out that m need

not necessarily be integer as Table 3 suggests.

In summary, the danger of deriving a pseudosymmetric

solution for a lattice from a single wide-angle BKD pattern is

definitely present, even if the correct lattices were determined

for the majority of the phases studied. We assume that the risk

of finding superlattices is much higher than when using

selected-area electron diffraction (SAED) in transmission

electron microscopy (TEM), mainly because of the super-

imposing bands in BKD patterns. Superstructure reflections,

which appear as weak spots between main reflections in

SAED, are at most guessable in a BKD pattern. For instru-

mental reasons, of course, the risk of finding superlattices is

also higher than for XRD, whose reflection splitting should be

better by about two orders of magnitude despite super-

position. Nevertheless, BKD patterns provide very fast and

convenient access to the translation lattice, where possible

pseudosymmetries can be excluded with additional analyses in

TEM. However, it should be remembered that the derived

lattices can be converted into each other relatively easily, since

either points are systematically missing or individual lattice

points have been determined erroneously. The majority of the

reciprocal-lattice points, on the other hand, are correctly

derived. They are a subset of the true lattice.

4. Discussion

4.1. Pseudosymmetry in BKD patterns

Since in typical BKD patterns more than 85% of the total

signal is not captured and, in addition, information is super-

imposed, it cannot be completely ruled out that this signifi-

cantly affects the description of the extractable crystal lattice.

Superposition is difficult to predict or interpret since several

factors influence the quality and quantity of extractable data.

The crystal structure containing all atomic coordinates

[xj, yj, zj] within the unit cell defines the structure factor,

Fhkl ¼
Pn
j¼1

f j exp 2�iðhxj þ kyj þ lzjÞ
� �

: ð1Þ

It controls the kinematic intensity Ihkl of an interference hkl

which is, for BKD patterns, proportional to the structure

amplitude (Winkelmann et al., 2016),

Ihkl / jFhklj: ð2Þ

For phases described by an invariant set of atomic positions

[xj, yj, zj], as in structure types like NaCl, CsCl, ZnS (zinc-

blende) or CaF2 , the exponential term is identical. From this

one might conclude that the BKD patterns of all isostructural

phases should look very similar, but this is only true to a rough

approximation. There are several parameters that determine

the visual appearance of Kikuchi bands. First, the translation

lattice in combination with the electron energy controls the

band widths and thus the purely geometric superposition of

bands. In combination with the limited size of the captured

sector, this leads to an asymmetric position of the band edges.

For the first derivatives of a considerable number of bands

�asym = |�min| � |�max| 6¼ 0 holds. Kikuchi bands are not

considered in the lattice parameter analysis if |�asym| > 0.2� or

the extracted band width deviates by more than 0.2� from the

geometrically predicted value (Nolze et al., 2023a). Second,

the chemical composition in terms of the atomic scattering

factor f affects the band edge profile. The smaller the mean f j,

the sharper the band edges appear [Part II of this series, Nolze

et al. (2023b)]. Third, larger f j increase the overall intensity.

However, this does not necessarily lead to a better processable

diffraction signal, since the background formed by numerous

higher-indexed bands with appreciable intensity also increases

(Nolze et al., 2023b).

Regardless of the specific reason, when band edge profiles

effectively become more blurred, the precision and accuracy

of the Bragg angles, and thus of the lattice parameters, dete-

riorate. This reduces the chance of detecting small distortions

or more narrow but weaker bands caused by superstructures.

4.2. Atomic scattering factors

Systematically absent reciprocal-lattice points can be

explained plausibly as a result of either overly similar scat-

terers – e.g. Sr and Zr in SrZrO3 or Ba and Sn in BaSnO3 – or

overly dominant scatterers – e.g. in SnO2 (cassiterite) or PtB.

Both suggest an apparently higher lattice point density.

4.2.1. X-ray scattering. Given the high importance and

widespread use of X-ray diffraction, knowledge of the scat-

tering of X-rays by atoms and ions is one of the fundamentals

in materials science education. Therefore, this aspect will be

briefly recalled for comparison.

In Vol. C of International Tables for Crystallography the

X-ray scattering power of elements is listed either in tabular

form or by a parameter description using ai , bi and ci , valid for

0 < s < 2 Å�1 (Prince, 2004; p. 578):

fX ¼
P4

i¼1

ai exp �bi s2ð Þ þ c: ð3Þ
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Equation (3) describes a monotonic decrease in fX with s, as

shown for example for a few elements in Fig. 4(a). The graphs

are only displayed for the range of s ¼ sin �=� which is rele-

vant for the interpretation of Kikuchi bands (2 < 1
2Whkl < 4.5�),

highlighted in light blue. The vertical lines indicate discrete s =

1/(2dhkl) < 0.9 of all possible hkl for �-Fe. Note that s is directly

proportional to the angular width of the Kikuchi bands. The

light-blue highlighting indicates that 111, 002 and 022, and also

bands which are wider than 335, are excluded during lattice

parameter determination in CALM.

If one considers all elements as in Fig. 4(b), between fX and

Z an approximate proportionality exists. For s = 0 [not

displayed in Fig. 4(a)] the atomic scattering factor for X-rays is

equal to the number of electrons. For elements this means

fX(0) = Z. The higher s – or according to Bragg’s law the

smaller the given d = 1/(2s) – the lower fX becomes. The direct

proportionality between fX and Z remains roughly unchanged.

In summary, it follows that the different scattering factors

allow elements to be distinguished from one another. Large

differences in the atomic number result in significant differ-

ences in the scattering power, while small differences indicate

elements with similar atomic numbers.

4.2.2. Electron scattering. Vol. C of International Tables for

Crystallography also lists in Table 4.3.2.2 on p. 282 parameters

for calculating elastic atomic scattering factors for electrons

[Prince (2004); note that there are other parameterizations

besides the one used, e.g. Kirkland (2020) and Lobato & Van

Dyck (2014)]. They refer to the original approach presented

by Peng et al. (1996) [with the wrong parameters for Tb

corrected by Prince (2004)] which is based on a similar para-

meterization as given in (3), but with i = 1–5 and no c:

fel ¼
P5

i¼1

ai exp �bi s2ð Þ: ð4Þ

For the same elements as in Fig. 4(a), the expected decreasing

curve plots of the scattering factors with increasing s are

shown in Fig. 5(a). However, in contrast to fX the electron

scattering factors fel of Ba to Pt (Z = 56–78) differ only

insignificantly, cf. also the red dotted line for d = 2.5 Å in

Fig. 5(b).

The peculiar fel jumps3 for larger dhkl are explained by the Z

dependence of the atomic radius (Yamashita et al., 2018).

Fortunately, as dhkl decreases, the jumps smooth out more and

more until fel becomes almost an only monotonically

increasing curve as for fX. Only for narrow but often high-

intensity bands of low-indexed (hkl) might this effect become

relevant.

Nevertheless, it seems much more difficult to distinguish

elements with similar atomic number in a phase by electron

diffraction, especially in BKD patterns and with the simple

band edge determination approach used in CALM. This

will lead to pseudosymmetric interpretations of the crystal
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Figure 4
X-ray atomic scattering factors fX as derived by Cromer & Mann (1968).
(a) The change in fX with s or the interplanar distance d. The positions of
the indexed vertical bars indicate s = sin�/� = 1/(2dhkl) for �-Fe. (b) A plot
showing that fX / Z for constant s. The selected d represent s < 1 (0.05,
0.1, 0.2 and 0.4 Å�1), which represent common band widths in BKD
patterns.

Figure 5
Electron atomic scattering factors fel as derived by Peng et al. (1996). (a)
The change in fel with s = sin�/� = 1/(2dhkl). Since for small Bragg angles
sin � ’ � holds, the numerical value for s for the indexed vertical bars
(�-Fe) also gives about one-tenth of the Kikuchi band width for 20 keV
electrons in degrees. (b) A plot of fel = f(Z), proving that fel / Z can be
assumed only for dhkl > 1.25 Å (s > 0.4 Å�1). The red dotted line indicates
a large Z range for d = 2.5 Å where fel is nearly constant.

3 The curve shape of fel can be also derived from fX using the Mott–Bethe
formula: fel = (d2/10.4455)(Z � fX), including all surprising variations.



lattice, despite the exclusive use of wider band widths only.

According to

Whkl /
sffiffiffiffiffi
E0

p /
�

dhkl

; ð5Þ

a lower electron energy E0 would increase the band widths

even for higher dhkl , but the band edge detection becomes less

reliable and, more importantly, the number of detectable

bands drastically reduces the statistical relevance of the

derived lattice parameters (Nolze et al., 2023a). In any case,

there remains at least the concern that the monotonicity of fel

is lost for the band width range considered with falling elec-

tron energy, which tends to favour a pseudosymmetric inter-

pretation of the derived reciprocal-lattice point arrangement.

4.3. Structure amplitude

4.3.1. Element structures. From equations (1) and (2) it

follows that for element structures the intensity of hkl, if

different from zero, scales with the atomic scattering factor of

the element (Table 4). For the simplest structure types, f.c.c.

and b.c.c., the atomic scattering factor is only multiplied by the

number of lattice points per unit cell. Figs. 4 and 5 also indicate

that for these simple structure types it follows that the higher

the interference order the lower the intensity.

For more complicated element structures (structure types

Ax with x 
 3), where more than a single atom is described by

a lattice point, various rules for |Fhkl| result for different

combinations of h, k, l which again contain as a factor the

number of lattice points per unit cell. In Table 4, hexagonal

closed packed (h.c.p.) or diamond are most prominent. A

comprehensive compilation of crystallographic prototypes

containing other element structure types can be found in the

work of Mehl et al. (2017) and Hicks et al. (2019, 2021).

The occupation of exclusively special positions in the unit

cell leads to few uniform |Fhkl| calculation formulas in Table 4.

The presence of two or three explicit formulas means that

there are only two or three vertically shifted proportional |Fhkl|

curves for an element, which decay with increasing s similar to

one of the fel curves displayed in Fig. 5(a). Therefore, for

element structures, pseudosymmetry misinterpretations might

arise only from minimal distortions of the lattice, as illustrated

in Fig. 2.

4.3.2. Binary compounds of type AB. Considering binary

compounds with 1:1 stochiometry, differences occur in addi-

tion to sums of atomic scattering factors (Table 5). Since a

lattice plane has several interference orders, for example in

the case of structure type B2, then the intensity of an odd

order hkl with h + k + l = 2n + 1 is determined by the

difference between the atomic scattering factors, while all

even orders are described by their sum. Therefore, for element

combinations with very similar fel odd interference orders are

difficult to detect in BKD patterns of phases with the B2

structure. Similar conditions also exist for phases with the B1

structure type.

In contrast, no pseudosymmetry was detected for 16 binary

compounds with the zincblende structure (B3, hP) or for eight

with the wurtzite structure (B4, cF). The reason is that the

corresponding element structure types of Mg (A3, hP) and

diamond (A4, cF) have the same lattice types.

4.4. The impact of global extrema for band width detection

One of the drawbacks of the first derivative used for band

edge detection in CALM is that only the global extrema are

currently applied. In Fig. 6, the resulting consequences are

shown by comparing (113) band profiles derived from simu-

lated BKD patterns of five Ba compounds with the B1 struc-

ture.

The accumulated band profile intensity I in Fig. 6(a) shows

that with decreasing �Z = |ZBa � ZB| the first interference

orders at �/�113 = �1 diminish. Therefore, CALM recognizes

along the reciprocal-lattice direction [113]* as the first reci-

procal-lattice point 226, since 113 is either of minor intensity

or practically invisible.

The reciprocal-lattice point distribution derived from all

discovered band profiles and projected along [010]* is shown

for BaO as an example in Fig. 7(a). If not all first interference

orders h1l described by the dark-green (centred) reciprocal-

lattice points are discovered, the actual reciprocal F* lattice is

only described by the light-green points, which suggest a P*

lattice having half the lattice parameter compared with a of

the true F lattice. Since narrow bands are excluded because of

their limited accuracy, reciprocal-lattice points close to the red

origin are missing in Fig. 7(a). However, from translation

symmetry it follows that there must also be centring lattice

points at these empty locations.

For the Ba compounds compared in Fig. 6(b) an unques-

tionable characterization only follows for BaO. For BaS the
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Table 5
Structure amplitudes jFhklj / Iel

hkl of some structure types of AB
compounds.

If h, k, l do not satisfy any of the specified conditions, |Fhkl| = 0.

Structure type Lattice |Fhkl| Conditions

B1, NaCl F 4(fA + fB) h, k, l even
4(fA � fB) h, k, l odd

B2, CsCl P fA + fB h + k + l = 2n
fA � fB h + k + l = 2n + 1

B3, zincblende
(ZnS)

F 4(fA + fB) h, k, l even and h + k + l = 4n
4(fA � fB) h, k, l even and h + k + l = 4n + 2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

A þ f 2
B

p
f h, k, l odd

Table 4
Structure amplitudes jFhklj / Iel

hkl for element structure types.

If h, k, l do not satisfy any of the specified conditions, |Fhkl| = 0.

Structure type Lattice |Fhkl| Conditions

A1, Cu (f.c.c.) F 4( f ) h, k, l odd/even
A2, W (b.c.c.) I 2( f ) h + k + l = 2n
A3, Mg (h.c.p.) P 1(2 f ) h + 2k = 3n and l even

1( f ) h + 2k = 3n � 1 and l even
1(

ffiffiffi
3
p

f ) h + 2k = 3n � 1 and l odd
A4, diamond F 4(2f ) h + k + l = 4n

4(
ffiffiffi
2
p

f ) h, k, l odd



global minimum (right) indicates the edge of band 113, but the

global maximum (left) marks the band edge of 226, which is

slightly stronger than 113. During automated processing,

CALM ignores bands with such asymmetric descriptions.

Fortunately, there are other bands in BaS which only have a

visible first order and deliver centred lattice points. The band

profile of BaSe in Fig. 6(b) shows slight intensity minima at

113, but its first derivative in Fig. 6(b) provides only weak

extrema. They are ignored in the automatic band edge search

currently used. Nevertheless, the band edges for BaS and BaSe

can be corrected manually by assigning the automatically

found ones to a higher interference order. However, for BaTe,

regardless of the Kikuchi band chosen, there is no evidence of

a lower interference order and thus of a superlattice. The

consequence is a unit cell whose edge length is only half the

size of the real one.

Fig. 7(b) illustrates the reason for misinterpretation of the

lattice for phases with the CsCl structure. The systematic

absence of reciprocal-lattice points turns a P* lattice into an I*

lattice. In principle, in each layer of the reciprocal lattice (at

least) every second point is missing.

4.5. Lattice or sublattice?

In addition to small lattice distortions as for the phases in

Table 3 with m = 1, the evaluation of BKD patterns adds the

problem that reciprocal-lattice points are systematically not

recognized. This happens when the corresponding Kikuchi

bands are too weak or cannot be reliably detected for other

reasons. The result is always a perfectly fitting reciprocal

sublattice, suggesting a higher lattice point density in the

crystal lattice. Typical examples are ordered or disordered

structures, heavy elements with apparently or actually higher

site symmetry, or simply phases whose constituents scatter

similarly.

In order to assess better the influence of different scatterers,

52 phases with the NaCl structure (B1) and 35 phases with the

CsCl structure (B2) have been investigated as examples. For

these binary phases of simplest stochiometry AB, the differ-

ence in scattering power �fel = |fA � fB| can be drawn as a

function of the mean scattering power f ¼ 1
2 ðfA þ fBÞ (Fig. 8).

As expected, phases with comparatively small �fel generate

a Kikuchi signal which hides the true lattice and suggests a
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Figure 6
(a) Band profiles and (b) their first derivatives of one and the same (113)
from simulated BKD patterns for five different Ba compounds with the
B1 structure. Using �/�113 as the abscissa normalizes the band widths for
all phases. The integers indicate the interference orders. The profiles in
panel (a) vary mainly with the atomic number of the second element.

Figure 7
Derived reciprocal-lattice points hkl from (a) a B1 phase and (b) a B2
phase indicating a false lattice description, projected along [010]*. The
indices only distinguish between reciprocal-lattice points with k = 0 or k =
1 in order to illustrate the layered arrangement. The distribution in panel
(a) describes an I* lattice. Because of the systematic lack of hkl in panel
(b), the actual P* lattice is misinterpreted as an F* (I) lattice, cf. the
incorrect unit-cell edges drawn by the turquoise frame. Note that centred
reciprocal-lattice points are shown smaller and darker than those sitting
at the corners of the assumed unit cell.

Figure 8
The difference in the scattering power �fel between the two elements in a
binary compound for 52 B1 phases and 35 B2 phases as a function of the
mean scattering power f . fA and fB are computed for d = 1.25 Å which is
equivalent to s = 0.4 Å�1. This represents the narrowest bands considered
in CALM for 20 keV electrons. Black symbols indicate phases where the
extrema of the first derivative yield the correct lattice type. Blue symbols
represent phases where further interference orders were evident, leading
to the correct lattice type. Red symbols illustrate phases where no
indication of the correct superlattice existed.



pseudosymmetric lattice (superlattice) with a higher lattice

point density. This means that the correct solution is a

subgroup of the discovered lattice. These phases are repre-

sented by red symbols.

Only the black symbols in Fig. 8 indicate phases for which

the correct lattice description results immediately, even with a

fully automatic search of band positions and widths. When

automated band width detection is used, the blue element

combinations drawn in Fig. 8 also result in a pseudosymmetric

superlattice. However, a manual correction of those bands

which display lower interference orders of weak intensity

enables a correct description of the Bravais lattice type and

the corresponding unit-cell dimension.

Since the three regions in Fig. 8 do not appear to overlap, a

purely empirical separator line can be defined. It follows an

analytical description using x = 4 for the red and x = 2 for the

blue line:

�fel ¼
1

xþ fo

f

� �2

þ fo: ð6Þ

Unfortunately, both x and the offset fo at f ¼ 0 are dependent

on the selected d or s.

Therefore, a correlation with the atomic number Z, which is

defined independently of d and s, seems more appropriate. In

Fig. 9, the difference in the atomic numbers weighted by the

mass fraction ci ,

�Z ¼ jc1Z1 � c2Z2j ’
Z2

1 � Z2
2

�� ��
Z1 þ Z2

; ð7Þ

is plotted against the mean atomic number estimated by

Z ¼ c1Z1 þ c2Z2 ’
Z2

1 þ Z2
2

Z1 þ Z2

¼

P
Z2

iP
Zi

ð8Þ

(Müller, 1954; Lloyd, 1987). The colours used for the symbols

in Fig. 9 have the same meaning as in Fig. 8.

For the purely empirical red line (y = 6.5) and blue line (y =

3.8) drawn as separators between the black, blue and red

symbols we propose

�Z ¼
1

y
Z

4=3
: ð9Þ

As the single red B1 symbol for CaSe in the blue region at

Z ’ 29 shows, equation (9) does not always provide a reliable

prediction. However, Kikuchi band profiles of 430 (indexed

for a pseudosymmetric unit cell with half the lattice para-

meter) in BKD patterns of CaSe indicate an order with half

the Bragg angle, so the red symbol could also be blue. This

shows how sensitively the lattice description sometimes

depends on individual Kikuchi bands.

In summary, the examples in Figs. 8 and 9, and especially

those in Table 3, show that pseudosymmetry can become a

significant problem in the crystal lattice interpretation of

individual BKD patterns. Even if the crystal system has been

correctly discovered, there is a probability that the Bravais

lattice type is wrong. There is little recourse to rules based on

the elements contained in the phases. The only certainty is that

elements with very similar atomic numbers are, as expected,

hardly distinguishable and favour a pseudosymmetric

description of the lattice. However, this does not only concern

directly neighbouring elements in the periodic table, as the

symbols marked in red prove. As a first approximation, for the

AB phases considered here, the distance between the elements

should be at least 1
3 Z. A distance of 2

3 Z seems to be safe.

5. Summary and conclusions

In the present work, the occurrence of pseudosymmetric

solutions during interpretation of the crystal lattice from

individual BKD patterns and possible reasons for it have been

discussed. Due to the erroneous determinability of existing

diffraction features, both lattice and reciprocal-lattice uncer-

tainties arise, which can only be minimized. In order to

exclude experimental influences as far as possible, simulated

BKD patterns of about 350 phases have been used to estimate

the feasibility limits. The lattice parameter ratios and angles

can be reproduced exactly as expected when using calculated

band positions in combination with a perfect projection

centre. Only for phases whose lattice deviation is smaller than

a declared maximal deviation is a higher-symmetric inter-

pretation preferred as the solution.

The analysis shows that deviations occur even under perfect

conditions for simulated BKD patterns, a known projection

centre and calculated trace positions of lattice planes. The

limited size of a simulated BKD pattern always leads, purely

mathematically, to a symmetry reduction in the position, width

and shape of the band profiles. If one imagines further

experimental influences such as excess deficiency, a highly

accurate but not exact projection centre, erroneous band

positions due to image noise etc., the deviations increase

further and require a critical error discussion. This raises the

question of whether the deviations are the result of a true

symmetry degradation or are simply caused by experimental

research papers

J. Appl. Cryst. (2023). 56, 367–380 Gert Nolze et al. � Use of EBSD patterns to determine the crystal lattice. 3 377

Figure 9
The difference in the atomic number �Z between the two elements in a
binary compound as a function of the mean atomic number Z. As in Fig. 8,
black symbols indicate phases where the extrema of the first derivative
yield the correct lattice type. Blue symbols represent phases where
further interference orders were evident, leading to the correct lattice
type. Red symbols illustrate phases where no indication of the correct
superlattice existed. The red and blue lines are proposed to separate
correct from pseudosymmetric solutions.



or analytical limitations. Regardless, even with the primitive

approach presented here, the resulting errors are significantly

lower than predicted in the past (Dingley & Wright, 2009).

On the other hand, crystal symmetry even in simulated

BKD patterns gets lost, i.e. symmetry-equivalent bands are

not congruent and can look very different, to the point of

being unrecognizable. This means that a lack of perfect

symmetry is of only limited significance.

Analysing isostructural phases, it is noticeable that their

susceptibility to inherent pseudosymmetry shows a correlation

with chemical composition. The reason is the atomic scattering

factor, which is much less sensitive for electrons than for

X-rays and as a function of Z does not grow monotonically

with sin �=�. Fortunately, Kikuchi bands of {hkl} with large

lattice plane distances are often not suitable during lattice

parameter determination because of misleading band widths.

To investigate the discriminability of different elements, the

BKD patterns of phases with NaCl (B1) and CsCl (B2)

structures were analysed. It was found that for a significant

fraction only a pseudosymmetric lattice can be derived. The

resulting higher lattice point density delivers either a halved

lattice parameter (B1) or an additional centring (B2).

Although it can be shown that there is a correlation with

chemical composition for the binary AB compounds studied,

this cannot be transferred to other substance classes.

Despite all the drawbacks, it should be clear that a crystal

lattice derived from a single wide-angle BKD pattern, even if

it is not completely correct, still represents part of the true

solution. The crystal lattice found must be at least a sublattice

of the true lattice. Therefore, either the lattice parameters are

correct, although the true lattice has further centrings, or the

true basis vectors are a linear combination of the found basis.

APPENDIX A
Reciprocal lattice of centred unit cells

The derivation of the lattice metric from a single BKD pattern

is based on the correlative analysis of the reciprocal lattice (Li

& Han, 2015; Nolze & Winkelmann, 2017). For primitive

lattices this is comparatively straightforward. Unfortunately,

many technically relevant phases are described by non-

primitive Bravais lattices, such as ferrite and austenite, i.e.

�-Fe and �-Fe, respectively. Since the impact of unit-cell

centring on the reciprocal lattice usually receives little atten-

tion, it will be briefly discussed here.

A1. Cell transformation

To find the counterparts of centred cells in the reciprocal

lattice, conversion to a primitive lattice description is recom-

mended. Using the matrix XTY as a description for a trans-

formation from lattice type Y to X, the primitive descriptions

of an I and an F lattice are, for example, given by the matrices

ITP ¼
1

2

1 1 1

1 1 1

1 1 1

0
@

1
A and FTP ¼

1

2

0 1 1

1 0 1

1 1 0

0
@

1
A ð10Þ

[see also International Tables for Crystallography, Vol. A,

Table 3.1.3.1 (Aroyo, 2016) or Table 5.1.3.1 (Hahn, 2005)].

Their determinants |XTY| indicate the fraction of the volume of

lattice Y compared with X. Therefore, jITPj ¼
1
2 and jFTPj ¼

1
4.

For a reverse transformation the inverse matrices are valid, i.e.

Y TX ¼ X TY
�1,

PTI ¼

0 1 1

1 0 1

1 1 0

0
@

1
A and PTF ¼

1 1 1

1 1 1

1 1 1

0
@

1
A: ð11Þ

A2. Proper indexing

XTY and YTX are very useful for correct indexing of lattice

planes and directions. As pointed out by Nespolo (2017), only

for primitive cell descriptions are h, k, l and u, v, w coprime

integers. Thus, [uvw] may have a common factor of 1
2 or 1

3 for

non-primitive cells, and in (hkl) the indices need no longer be

prime but may also be a least-common multiple of 2 (A, B, C,

I, F) or 3 (hR). Since it is not simple to see whether indices will

be fractional or integer, it is easier to convert integer prime

indices of the primitive lattice into those of the centred lattice

using

u

v

w

2
4

3
5

X

¼ X TP

u

v

w

2
4

3
5

P

or ðhklÞX ¼ ðhklÞP PTX : ð12Þ

Thus, it turns out that direction [100]P in a primitive lattice

description has the indexing of 1
2 ½111�I in the centred I-lattice

description, whereas [110]P is also given by integers for u, v

and w in the I-lattice description: [100]I . In contrast, lattice

plane ð111ÞP transforms to (002)I , whereas the similarly

indexed (111)P changes to (222)I . Other lattice planes also

keep the common description by prime integers after trans-

formation: (001)P changes to (110)I .

Since proper indexing refers to the next possible lattice

point along a direction in the crystal or reciprocal lattice, for

(hkl) and [uvw] the well known integral reflection conditions

for hkl can be adapted [see e.g. Table 2.2.13.1 of Hahn (2005)].

For the just discussed I lattice, all indices in (hkl)I must be

doubled if h + k + l = 2n + 1, whereas for [uvw]I all indices

must be halved if u + v + w = 2n.

The matrix similarities ITP ¼
1
2 PTF and FTP ¼

1
2 PTI [equa-

tions (10) and (11)] already suggest some kind of relationship

between the I and F lattices in direct and reciprocal space.

Very often this is found in statements that the reciprocal

lattice of F is an I lattice and vice versa. However, this is a

rather phenomenological and misleading description. The fact

is that a unit cell in reciprocal space derived from a centred

lattice no longer has reciprocal-lattice points at each corner

when their basis vectors are derived by

a� ¼
b� c

Vuc

; b� ¼
c� a

Vuc

; c� ¼
a� b

Vuc

; ð13Þ

where Vuc is the volume of the unit cell. The resulting distri-

butions of reciprocal-lattice points derived from centred cells
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and described by a*, b* and c* are displayed in Fig. 10. As can

be seen, only a subset of corners are occupied by (blue) lattice

points.

For a first approximation it helps that the product of the

numbers of lattice points in the real and reciprocal unit cells is

always 1, regardless of the lattice type chosen. For example,

since the F lattice contains four lattice points per centred unit

cell, the derived reciprocal unit cell defined by (13) only

contains 1
4 lattice point; to show this graphically in Fig. 10, a

volume of 2 � 2 � 2 cells needs to be considered (these eight

cells contain 1þ 8� 1
8 ¼ 2 reciprocal-lattice points). From this

it follows that a*, b* and c* in centred reciprocal lattices are

no longer translation vectors. Only the vectors t�i describe the

translation symmetry of the reciprocal lattice. The shortest t�i
are drawn as blue vectors in Fig. 10 and listed in Table 6, and

they indicate a*, b* and c* of the primitive cell.

Applying the translations t�i , a volume of 2 � 2 � 2 unit

cells delivers for F* a lattice point distribution which looks

like an I-type lattice, whereas for I* it appears like an F-type

lattice [Figs. 3(b) and 3(c)].

For lattice types A, B and C their character remains, e.g. in

the case of multiple cells for C* the resulting reciprocal-lattice

point arrangement also appears as a C-type lattice (Fig. 10).

For R* the reciprocal basis vectors a* = b* and c* with �* =

�* = 90� and �* = 60� result. Of the resulting nodes in each

layer of constant lc* in Fig. 10 only one-third are occupied by

reciprocal-lattice points. This matches the expected lattice

point density of %R� = 1/3 since %R = 3. Note that for l = 1, 2 or 3

the distribution of points in each layer is shifted so that 3c* is

the shortest translation vector along c*, i.e. the reciprocal-

lattice direction is correctly indexed by [003]*.
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Figure 10
Unit cells of centred lattices in reciprocal space. Assuming the unit cell to
be a parallelepiped defined by the basis vectors a*, b* and c*, for A*, B*,
C * and I * only half of all the unit-cell corners, for R* only one-third and
for F * only a quarter are occupied by lattice points. The shortest
translation vectors t* [blue arrows between (filled) lattice points] are
commonly not parallel to the basis vectors.

Table 6
Shortest translation vectors t�i in reciprocal space for all lattice types; they
represent the basis vectors of the respective primitive unit cell.

Lattice Lattice point density Reciprocal translation vectors t�i

P� 1 (1, 0, 0)�, (0, 1, 0)�, (0, 0, 1)�

A� 1/2 (1, 0, 0)�, (0, 1, 1)�, ð0; 1; 1Þ�

B� 1/2 (0, 1, 0)�, (1, 0, 1)�, ð1; 0; 1Þ�

C� 1/2 (0, 0, 1)�, (1, 1, 0)�, ð1; 1; 0Þ�

I � 1/2 (1, 1, 0)�, (1, 0, 1)�, (0, 1, 1)�

R�h 1/3 (1, 0, 1)�, ð1; 1; 1Þ�, ð0; 1; 1Þ�

F� 1/4 ð1; 1; 1Þ�, ð1; 1; 1Þ�, ð1; 1; 1Þ�
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Lühr, T., Winkelmann, A., Nolze, G., Krull, D. & Westphal, C. (2016).

Nano Lett. 16, 3195–3201.
Martin, S., Winkelmann, A. & Leineweber, A. (2022). Acta Mater.

229, 117828.
Mehl, M. J., Hicks, D., Toher, C., Levy, O., Hanson, R. M., Hart, G. &

Curtarolo, S. (2017). Comput. Mater. Sci. 136, S1–S828.
Michael, J. R. & Eades, J. A. (2000). Ultramicroscopy, 81, 67–81.
Müller, R. H. (1954). Phys. Rev. 93, 891–892.
Müller, U. (2013). Symmetry Relationships Between Crystal Struc-

tures: Applications of Crystallographic Group Theory in Crystal
Chemistry. Oxford University Press.

Nespolo, M. (2017). J. Appl. Cryst. 50, 1541–1544.
Nolze, G. (2013). Cryst. Res. Technol. 48, 476–489.
Nolze, G., Grosse, C. & Winkelmann, A. (2015). J. Appl. Cryst. 48,

1405–1419.
Nolze, G., Hielscher, R. & Winkelmann, A. (2017). Cryst. Res.

Technol. 52, 1600252.
Nolze, G., Tokarski, T. & Rychłowski, Ł. (2023a). J. Appl. Cryst. 56,

349–360.
Nolze, G., Tokarski, T. & Rychłowski, Ł. (2023b). J. Appl. Cryst. 56,

361–366.
Nolze, G., Tokarski, T., Rychłowski, Ł., Cios, G. & Winkelmann, A.

(2021). J. Appl. Cryst. 54, 1012–1022.
Nolze, G. & Winkelmann, A. (2017). J. Appl. Cryst. 50, 102–119.
Nolze, G., Winkelmann, A. & Boyle, A. P. (2016). Ultramicroscopy,

160, 146–154.

Nowell, M. M. & Wright, S. I. (2005). Ultramicroscopy, 103, 41–58.

Pang, E. L., Larsen, P. M. & Schuh, C. A. (2020). J. Appl. Cryst. 53,
1060–1072.

Peng, F., Zhang, Y., Li, W., Miao, H. & Zeng, Y. (2021). J. Microsc.
283, 191–201.

Peng, L.-M., Ren, G., Dudarev, S. L. & Whelan, M. J. (1996). Acta
Cryst. A52, 257–276.

Prince, E. (2004). Editor. International Tables for Crystallography,
Vol. C, Mathematical, Physical and Chemical Tables, 3rd ed.
Dordrecht: Kluwer Academic Publishers.

Schmidt, N.-H., Mansour, H., Goulden, J., Palomares-Garcia, A. &
Munoz-Moreno, R. (2016). European Microscopy Congress
Proceedings, pp. 433–434. Wiley VCH Verlag.

Vaudin, M. D. (2005). Microsc. Microanal. 11(Suppl. 2), 510–511.

Winkelmann, A., Britton, T. B. & Nolze, G. (2019). Phys. Rev. B, 99,
064115.

Winkelmann, A., Nolze, G., Vos, M., Salvat-Pujol, F. & Werner, W.
(2016). Mater. Sci. Eng. 109, 012018.

Winkelmann, A., Trager-Cowan, C., Sweeney, F., Day, A. P. &
Parbrook, P. (2007). Ultramicroscopy, 107, 414–421.

Wondratschek, H. & Müller, U. (2004). Editors. International Tables
for Crystallography, Vol. A1, Symmetry Relations Between Space
Groups, 1st ed. Dordrecht: Kluwer Academic Publishers.

Yamashita, S., Kikkawa, J., Yanagisawa, K., Nagai, T., Ishizuka, K. &
Kimoto, K. (2018). Sci. Rep. 8, 12325.

Zambaldi, C., Zaefferer, S. & Wright, S. I. (2009). J. Appl. Cryst. 42,
1092–1101.

Zwart, P. H., Grosse-Kunstleve, R. W., Lebedev, A. A., Murshudov,
G. N. & Adams, P. D. (2008). Acta Cryst. D64, 99–107.

research papers

380 Gert Nolze et al. � Use of EBSD patterns to determine the crystal lattice. 3 J. Appl. Cryst. (2023). 56, 367–380

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5341&bbid=BB56

