
research papers

J. Appl. Cryst. (2022). 55, 1277–1288 https://doi.org/10.1107/S1600576722007105 1277

Received 3 March 2022

Accepted 10 July 2022

Edited by J. Ilavsky, Argonne National

Laboratory, USA

Keywords: X-ray scattering; image inpainting;

deep learning; mixed-scale dense networks;

tunable U-Nets.

A comparison of deep-learning-based inpainting
techniques for experimental X-ray scattering

Tanny Chavez,a Eric J. Roberts,b,c Petrus H. Zwartb,c,d and Alexander Hexemera,c*

aAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, bMolecular Biophysics and

Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, cCenter for

Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

USA, and dBerkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley,

CA 94720, USA. *Correspondence e-mail: ahexemer@lbl.gov

The implementation is proposed of image inpainting techniques for the

reconstruction of gaps in experimental X-ray scattering data. The proposed

methods use deep learning neural network architectures, such as convolutional

autoencoders, tunable U-Nets, partial convolution neural networks and mixed-

scale dense networks, to reconstruct the missing information in experimental

scattering images. In particular, the recovered pixel intensities are evaluated

against their corresponding ground-truth values using the mean absolute error

and the correlation coefficient metrics. The results demonstrate that the

proposed methods achieve better performance than traditional inpainting

algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-

scale dense network architectures achieved the best reconstruction performance

among all the tested algorithms, with correlation coefficient scores greater than

0.9980.

1. Introduction

X-ray scattering is a nondestructive technique commonly used

for materials and structure characterization in different

applications, such as the development of pharmaceuticals

(Munjal & Suryanarayanan, 2021; Amaro & Mulholland, 2018;

Maveyraud & Mourey, 2020), the analysis of myelin (Schulz et

al., 2020; Georgiadis et al., 2021; Müller et al., 2021) and

amyloid structure (Liu et al., 2016; Choi et al., 2021) for disease

detection in human brain tissue, the evaluation of human

tissue nanostructure (Müller et al., 2010; Georgiadis et al.,

2021) in biomedical imaging, the effects of cellular membrane

thickness on intracellular transport (Heberle & Pabst, 2017;

Khondker et al., 2021), the inspection of skimmed milk

nanostructures in food science (Yang et al., 2021; Christiansen

et al., 2021), determining the stability and flexibility of

polymer-like wires used in sub-nanometric materials design

(Ni et al., 2018; Liu & Wang, 2020), and many others.

A generic X-ray scattering experiment uses a 2D detector to

collect the scattering data. Although this technique produces

high-definition results, its experimental setup introduces

image defects due to the experimental geometry, the beamstop

and the detector inter-module gaps (Liu et al., 2017). Thus,

X-ray scattering images are commonly masked to remove the

corrupted or missing pixels from the experimental results

(Shimizu et al., 2016; Li, 2021). Although the remaining pixels

in the masked image present trustworthy information for the

materials characterization of the sample, the presence of gaps

introduces a pattern discontinuity that can affect the compu-

tational analysis of the samples. While the traditional

processing methodology of scattering or diffracting data for

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576722007105&domain=pdf&date_stamp=2022-09-28

deriving structural information does not and should not

require estimates of gap-masked data (Pande et al., 2018;

Ashiotis et al., 2015), certain processes, such as automated

sample-type identification (Liu et al., 2019) and initial orien-

tation determination in single-particle X-ray scattering

(Bellisario et al., 2022), are greatly assisted by gap-less data.

Hence, the reconstruction of gaps within X-ray scattering

images represents an important task for specific data analysis

steps within an automated data analysis pipeline or self-

driving instrument (Noack et al., 2021).

Image inpainting is a restoration process that estimates the

content of missing regions within images and videos and has

sparked special interest in the area of computer vision

(Elharrouss et al., 2020; Jam et al., 2020). Conventional

inpainting algorithms use well known mathematical and

statistical approximation methods such as biharmonic func-

tions (Damelin & Hoang, 2018), Cahn–Hilliard equations

(Bertozzi et al., 2006), anisotropic diffusion by partial differ-

ential equation modeling for propagating boundary data

(Bertalmio et al., 2000), low-rank tensor completion (Li et al.,

2020; Liu et al., 2021) and Gauss–Markov random field priors

(Satapathy & Sahay, 2021; Efros & Leung, 1999). Alter-

natively, machine learning (ML) approaches have potential

for inpainting tasks. Among the most commonly used tech-

niques, we mention general regression neural networks (Su et

al., 2021; Kanhar & Chandak, 2021), convolutional neural

networks (CNNs) (Matsui & Ikehara, 2020; Jiang et al., 2018;

Liu et al., 2018), generative adversarial networks (Chen,

Zhang et al., 2021; Zhao et al., 2020) and two-stage generative

models which refine coarse predictions with global contextual

information (Pathak et al., 2016; Yu et al., 2018).

While deep-learning-based inpainting techniques have been

widely applied for the reconstruction of facial and scenery

features of images, their implementation in X-ray scattering

data, particularly in experimental scattering data, has not been

extensively explored in previous work. To the best of our

knowledge, there exist just a handful of previous studies that

aim to reconstruct the lost information in X-ray scattering

data, generally accomplished by considering the symmetry of

the structure of the data in a non-ML fashion or through ML

approaches using simulated data (Liu et al., 2017; Bellisario et

al., 2022). Since beamline scientists are currently using ML-

based algorithms to process the large quantity of data they

collect (Chen, Andrejevic et al., 2021; Schwarz et al., 2019), it is

of great importance to reconstruct the missing regions in

scattering images to avoid the introduction of distortion and

bias into their post-processing analysis. Hence, this paper

proposes the implementation of image inpainting techniques

based on deep learning approaches.

Here we explore and optimize a number of popular

convolutional neural network architectures to reconstruct the

masked areas in scattering images. CNNs are considered a

powerful feature extraction technique due to their simulta-

neously trained compression and reconstruction stages

(Rumelhart & McClelland, 1987; Wickramasinghe et al., 2021),

allowing one, potentially, to identify the most relevant features

within the masked input images for the reconstruction of the

pixels located in the gap regions (Öztürk, 2020; Kornilov et al.,

2020; Liu et al., 2018; Thakur & Paul, 2020). This work focuses

on four neural network (NN) architectures: convolutional

autoencoders, tunable U-Nets (TUNets), partial convolution

NNs and mixed-scale dense networks (MSDNets).

The parameters of the network are optimized with respect

to the L1 norm, as this provides a balanced trade-off between

performance and complexity (Zhao et al., 2017). Apart from

the absolute error, the L1 metric, we report the Pearson

correlation coefficient between the inpainted results and their

corresponding ground-truth images. In addition, we further

analyze the impact of inpainting within the context of latent-

space estimation and how it differs from the masked and

ground-truth latent spaces, respectively.

This paper is organized as follows. Section 2 describes the

experimental setup that was used for the collection of the data

set and the processing analysis, Section 3 introduces the

inpainting algorithms, and Sections 4 and 5 present the

experimental results and our conclusions, respectively.

2. Experimental setup

The data set used in this paper contains 6497 X-ray scattering

images of size 1475 � 1679 pixels. The data are a random

subset of a library housing over 30 000 scattering images of

user data from a variety of transmission and grazing-incidence

experiments collected on the Advanced Light Source SAXS/

WAXS beamline 7.3.3 over the past decade (Hexemer et al.,

2010). The data comprise a large variety of materials, covering

crystalline powders, liquid crystals, noncrystalline systems and

thin films. The data were recorded on a PILATUS3 2M

detector and collected at a constant X-ray energy of 10 keV

with an E/�E of 100. The PILATUS3 2M consists of three

columns of eight vertically stacked individual detectors for a

total of 24 detector modules. Two vertical gaps measuring

7 pixels wide separate the three columns of modules, while

seven horizontal gaps measuring 17 pixels tall separate the

eight rows. In total, the seven horizontal and two vertical gaps

measure 17 � 1679 and 1475 � 5 pixels, respectively, with

each pixel measuring 0.172 mm in length.

To collect the data obstructed by the horizontal gaps, the

detector was exposed at an initial position, then moved

vertically to collect the missing data under the same exposure

conditions. While the vertical motion of the detector could

technically introduce some small differences between these

images, this is highly unlikely due to the resolution of the

detector, which is less than 5 mm. Additionally, we followed

the usual precautions to check for beam damage, which

included moving the sample by the width of the beam when

possible, and discarding images where heterogeneity could

lead to different scattering events. The missing gap informa-

tion of the initial image was then replaced by the data

provided in that location from the second exposure. Averaging

the common areas among these images was avoided because it

leads to different noise statistics across the image, which

makes fitting and interpretation more difficult. In addition,

research papers

1278 Tanny Chavez et al. � Deep-learning-based inpainting J. Appl. Cryst. (2022). 55, 1277–1288

missing detector data due to dead pixels were also replaced

where possible.

Fig. 1 presents a sample of the data, where the first row

contains the masked images and the second row contains their

corresponding ground truth with the missing horizontal gap

information filled in. However, the missing information in the

vertical gaps persists. Although the pattern definition is

visually clearer in the ground-truth images, the remaining

vertical gaps continue to disrupt the pattern continuity and

can negatively impact its post-processing analysis. Hence, it is

of great interest to estimate the missing information within the

entire gap grid (horizontal and vertical), even though the

ground-truth images lack the pixel intensities along the

vertical gaps. This paper tackles these two inpainting tasks

simultaneously using the following data processing steps.

2.1. Pre-processing

Before applying the inpainting algorithms, the X-ray scat-

tering images were resized to 512 � 512 pixels using a bicubic

interpolation to reduce the computational complexity of the

training operation. Even though this downsampling process

reduces the resolution of the images, the goal of this study is to

estimate the masked areas of X-ray scattering images to

automate processes such as sample-type identification and

initial orientation determination, which do not require the

full-dimension image.

The resized images were then normalized and a logarithm

was applied to highlight the weaker scattering areas. Addi-

tionally, the data were split into two subsets, where 4641

images were used for training and the remaining 1856 images

were used for testing.

We highlight that the area to be inpainted, also referred to

as the inpainting mask, does not vary in shape or location

across the horizontal gaps because we employed a single

detector to collect the X-ray scattering images presented in

this study. While this mask does not have to be static for the

correct operation of the inpainting algorithms, further training

may be necessary for alternative inpainting masks, such as the

masked areas of a PILATUS 300k detector.

While the horizontal gap information missing from the

masked (or input) images exists in the ground truth, inpainting

the missing information from the persisting vertical gaps

presents a greater challenge, as no ground-truth information

exists to train against. To alleviate this challenge, we intro-

duced a new set of training data consisting of smaller images

extracted from the original data, further augmented with

artificial vertical gaps placed over known data, effectively

providing a target ground truth to train against. We illustrate

the full gap grid data augmentation process in Fig. 2 for two

training images and describe the steps below.

(i) Each masked training image is cropped into seven

overlapping pieces of size 512 � 128 pixels with an overlap of

64 pixels along the horizontal axis, displayed in Figs. 2(b) and

2(e). Cropping is performed using the qlty Python package

research papers

J. Appl. Cryst. (2022). 55, 1277–1288 Tanny Chavez et al. � Deep-learning-based inpainting 1279

Figure 1
A data set overview, displaying the masked data in the top row and the corresponding ground truth in the bottom row. Vertical gaps are persistent in the
ground-truth images.

Figure 2
The data augmentation process. (a) Training image No. 541. (b) Image
No. 541 cropped with the qlty package in Python, where the sections that
contain vertical gaps are discarded due to lack of ground-truth
information. (c) Augmented images obtained from training image No.
541. (d) Training image No. 143. (e) Cropped image No. 143. (f)
Augmented images obtained from training image No. 143.

(Zwart, 2021), which will later be used for stitching together

the cropped subimages that have been passed through the

trained networks.

(ii) The cropped images containing vertical gaps are

discarded.

(iii) Artificial vertical gaps are randomly introduced in the

three remaining cropped images. The locations of these gaps

are randomly assigned to the following horizontal coordinates:

x ’ U f21; 42; 85; 106;�1gð Þ; ð1Þ

where �1 corresponds to no artificial gap added. These

coordinates are chosen such that the artificial gaps in Figs. 2(c)

and 2(f) are consistent in location with the four images with

true gaps in Figs. 2(b) and 2(e).

Note that further reduction of the masked image size

(below 512 pixels) resulted in smaller cropped images, which

did not perform correctly in the neural networks that were

tested in this work. Alternatively, applications that require

training on the full-dimensional data set can potentially crop

the input images following a process similar to the one

described above in order to comply with the computational

resources constraint. Additionally, this pre-processing of the

4641 training images results in a total of 13 923 augmented

images for training.

2.2. Post-processing

While the augmented set of training images splits the

original data into smaller image triplets, and replaces true

vertical gaps lacking a ground truth with artificial gaps and a

corresponding ground truth, the inference stage is performed

differently. Namely, each testing image to be inpainted is

cropped into the seven overlapping pieces seen in Figs. 2(b)

and 2(e), described in Step (i) of Section 2.1. Each of the seven

subimages passes through the trained network and all are

stitched together after network inference. We note the

importance of the artificial gap placement in the training data,

as these gaps are consistent with the true gaps in the testing

subimages. To recombine the seven overlapping subimages

back into one single inpainted image, we once again use the

qlty Python package, this time to perform a simple averaging

of the overlapped areas. This overlapping helps alleviate the

edge effects common in patch-based learning (Innamorati et

al., 2019; Cui et al., 2019) shown by similar overlap averaging

techniques (Pielawski & Wählby, 2020).

While the previously described process inpaints the testing

data set in full, it does not provide areas to evaluate the

quantitative performance of the inpainting algorithms along

the vertical gaps due to the lack of ground-truth information.

Therefore, these results are exclusively used for the quanti-

tative evaluation of the inpainted areas along the horizontal

gaps. To further analyze the vertical gaps, we perform a second

inference test, where the testing data set undergoes the same

data augmentation process described in Section 2.1 to

generate ground-truth information artificially across these

areas and use it for quantitative evaluation.

3. Inpainting algorithms

This section introduces the five inpainting algorithms studied

in this paper, four of which are based on convolutional neural

networks. The three algorithms using convolutional auto-

encoders, mixed-scale dense networks and TUNets enable

blind inpainting in which the gap localization mask is not part

of the input layer. The remaining two algorithms using partial

convolutional layers and biharmonic functions require the

masked-gap pixel locations as input.

3.1. Convolutional neural networks

A CNN is a shared-weight feed-forward architecture made

up of several connected convolutional layers (Fukushima &

Miyake, 1982; LeCun et al., 1998; Goodfellow et al., 2016) that

approximates an underlying mapping function from input data

to some ground-truth target domain, in this case the mapping

of images missing the horizontal and vertical gap information

to those containing the ground-truth horizontal and

augmented vertical gap information. Each convolutional layer

convolves the preceding layer’s output with multiple (typically

several hundred) two-dimensional convolutional filters, or

kernels. These filters are square matrices, typically of size

3 � 3 or 5 � 5, whose entries consist of weights to be learned

during the network training and optimization process.

Contrasted with earlier, more traditional, fully connected

neural networks (Rosenblatt, 1958) in which a learnable

weight (and learnable bias term) is assigned to each possible

pair of nodes between neighboring fully connected layers (Xu

et al., 2019) (upwards of several tens of thousands per layer,

depending on the number of pixels in the input image), CNNs

enforce a more localized learning of image features and

require far fewer weights to learn, resulting in deeper CNN

architectures with more targeted learning. More intuitively,

each filter acts as a smaller receptive field of view whose

learned weights help identify different features within the

image, beginning with lower-level features such as edges and

boundaries consisting of lines and short curves in the early

network layers, and progressing to more complex patterns

such as faces and objects further along the network topology.

Finally, the convolution between layer input and filters results

in an intermediate feature map to be used as the next layer’s

input, but not before being passed through additional

nonlinear activation, pooling and normalization layers to help

hierarchically decompose the input and probe for higher-level

features.

3.1.1. Convolutional autoencoder. The first convolutional

inpainting approach corresponds to a CNN structure with a

symmetric encoder–decoder architecture (Thakur & Paul,

2020; LeCun et al., 1998). While relatively simple in structure,

this method uses convolutional layers and max-pooling

operations to exploit the feature extraction properties in the

beginning encoder half of its architecture. As shown in Fig. 3,

the encoder captures contextual information by compressing

the input image into a lower-dimensional space of features,

often referred to as the latent-space representation of the

input, via max-pooling operations between adjacent convo-

research papers

1280 Tanny Chavez et al. � Deep-learning-based inpainting J. Appl. Cryst. (2022). 55, 1277–1288

lutional layers. This informational ‘bottleneck’ forces the

network to learn the most important feature. The second half

of the network, the decoder, uses alternating convolutional

and transposed convolutional layers (i) to reconstruct the non-

gapped information and (ii) to inpaint the gapped portions of

the images from the latent-space features. In both network

halves, convolutional neural layers derive feature maps from

the previous layer output by applying filters with a certain

kernel size.

3.1.2. Tunable U-Net. The U-Net architecture was first used

in the segmentation of biomedical images (Ronneberger et al.,

2015). U-Nets extend the deep fully convolutional neural

network architecture that was used for pixel-by-pixel classifi-

cation (Long et al., 2015) by introducing matching pairs of

contractive and expansive operations that mirror each other at

the far ends of the network. Similar to the convolutional

autoencoder introduced above, the U-Net is a symmetric

encoder–decoder system that first captures contextual infor-

mation in the contractive encoder half, made up of stacked

3 � 3 convolutions, rectified linear unit (ReLU) activation and

max-pooling operations, resulting in a ‘bottleneck’ of learned

features that is similar to the autoencoder’s but much less

compressed. Following this contractive phase is the up-

sampling half which projects learned features back into

higher-resolution image space to predict a pixel-by-pixel

semantic segmentation. This decoder consists of layers of

stacked operations similar to that of the encoder half: 3 � 3

convolutions, ReLU activation, skip connections via channel-

wise concatenation and spatial dimension-doubling up-

convolutions. Overall, contextual information is more readily

propagated through the network by means of (i) the large

increase in the number of convolutional channels over tradi-

tional fully convolutional neural networks, and (ii) long-

reaching skip connections in the form of channel-wise

concatenations of intermediate layer output between adjacent

layers in the contracting and expanding halves. The skip

connections effectively decouple the encoder and decoder

halves, setting them apart from the convolutional auto-

encoders in which the two halves may operate independently

of each other.

Many current denoising and segmentation applications

default to U-Nets due to their simplicity and robustness (Çiçek

et al., 2016; Zhou et al., 2018, 2020). In particular, deep

learning frameworks deploying U-Net architecture backbones

have shown potential for inpainting purposes (Öztürk, 2020;

Kornilov et al., 2020). For instance, the usage of consecutive

convolutional filters within each layer maps the input images

to a set of fundamental features that will later be employed for

reconstruction of the missing pixel information. Similarly, the

successive max-pooling of the data samples different scale

spaces of the image, allowing local features to be more easily

correlated with behavior and context at larger length scales

(Noh et al., 2019). Additionally, its overlap tile strategy is

convenient for contextualizing prior localized information that

was lost during the encoding phase of the NN. This strategy, in

research papers

J. Appl. Cryst. (2022). 55, 1277–1288 Tanny Chavez et al. � Deep-learning-based inpainting 1281

Figure 4
A schematic diagram of a four-layer TUNet with 64 initial base channels and a growth rate of 2.

Figure 3
A schematic diagram of a two-layer convolutional autoencoder with 32
initial base channels.

conjunction with the large number of feature channels in the

decoding section, provides enough context to reconstruct the

gaps in the later layers of the NN. Similar to the convolutional

autoencoder architecture, U-Nets blindly inpaint the input

image without the localization mask of the missing informa-

tion.

The U-Net models used here, also referred to as TUNets,

have been enhanced by allowing the specification of network-

architecture-defining hyperparameters, such as the network

depth, the initial number of channels and their growth rate

after image contraction operators. This level of user-defined

custom implementation was accomplished through the

Python-based pyMSDtorch deep learning software library

(https://pymsdtorch.readthedocs.io/), which allows easy tuning

of the network hyperparameters to optimize its performance.

The TUNet architecture and the associated hyperparameters

used in this paper are shown in Fig. 4.

3.1.3. Partial convolution neural network. The third algo-

rithm implemented in this paper corresponds to an alternative

modification of a U-Net architecture, which replaces the

conventional convolutional layers with partial convolutional

layers, similarly to the approach used by Liu et al. (2018) and

Thakur & Paul (2020). These modified layers take the gap

localization masks as an additional input and perform

segmentation-aware convolutions (Harley et al., 2017)

consisting of a masked convolution operation on the non-gap

pixels and a renormalization of the convolutional output.

Finally, for each forward pass, the network generates an

update to the gap mask which aims to shrink the gap regions.

Unlike the other proposed inpainting approaches, this method

is not a blind inpainting approach since it takes into consid-

eration the gap locations within the reconstruction process of

the images. One major advantage of this implementation relies

on its exclusive consideration of non-gap pixels in the

convolution steps, which prevents the introduction of missing

or corrupted pixel information during the training phase of the

NN. The partial convolution architecture used in this paper is

shown in Fig. 5.

3.1.4. Mixed-scale dense networks. While U-net archi-

tectures remain popular, common implementations often

require upwards of several million trainable parameters. This

can lead to overfitting problems and harm network robustness,

especially in applications where the quantity of training data is

low (Goodfellow et al., 2016; Srivastava et al., 2014). In

response, the MSDNet (Pelt & Sethian, 2018; Pelt et al., 2018)

architecture was developed as a deep learning framework

containing fewer trainable parameters (typically two to three

orders of magnitude fewer) than U-Nets. This is accomplished

by densely connecting all network layers to encourage

maximum reusability of image features and by replacing the

typical scaling operations found in encoder–decoder networks

with dilated convolutions (Yu & Koltun, 2015) in order to

probe images at different length scales. By assigning a specific

dilation to each MSDNet layer, the network can learn which

dilation combinations are most effective. As a result, the

number of network layers and the maximum integer dilation

to cycle through are the two most significant hyperparameters

to toggle, drastically simplifying network design. Additionally,

the dense connections among intermediate feature maps

create skip connections of all possible lengths. Lost spatial

information is more readily recovered with the inclusion of

these dense skip connections, which furthermore helps alle-

viate the vanishing gradient problem that plagues deep

networks (Ioffe & Szegedy, 2015). The general MSDNet

architecture is shown in Fig. 6, while the custom MSNet

models used in this paper were deployed using the pyMSD-

torch deep learning software suite.

3.2. Biharmonic functions

Biharmonic inpainting methods consider the inpainting

procedure as a smooth surface extension problem leveraging

research papers

1282 Tanny Chavez et al. � Deep-learning-based inpainting J. Appl. Cryst. (2022). 55, 1277–1288

Figure 5
A schematic diagram of a five-layer partial convolution NN with 32 initial base channels and a structure similar to U-Net.

numerical approximations of the planar biharmonic functions,

solutions to the square of the fourth-order partial differential

equation Laplacian operator which typically governs flows of

viscous, incompressible fluids (Damelin & Hoang, 2018). In

this context, the known pixel values on the boundaries of

missing gaps act as boundary conditions for biharmonic

function solutions, diffusing the known boundary values

toward the gap center. This method is similar to the partial

convolutional neural networks in that inpainting is performed

inward from a gap boundary and it is not a blind approach, as

inpainting requires the use of a gap location mask.

4. Experimental results

This section summarizes the inpainting results obtained using

the proposed methods described in the previous section. A

hyperparameter sweep consisting of nine TUNets and five

MSDNets was performed for this article and is detailed in

Appendix A. Tables 2 and 3 show, respectively, the best

performing TUNet (model 2) and MSDNet (model 3) that

were used in the images shown in this article. A baseline

performance metric was obtained using a well known

inpainting algorithm based on biharmonic functions (Damelin

& Hoang, 2018).

4.1. Training and evaluation metrics

To gauge the differences between ground-truth and model

predictions of real horizontal gaps and artificial vertical gaps,

we choose to minimize the L1 loss metric, as it remains a

popular regularizer for various inpainting tasks (Liu et al.,

2018; Yu et al., 2018; Chen, Zhang et al., 2021; Yu et al., 2021)

and generally results in less blurring of inpainted regions

(Isola et al., 2017). Note that the L1 metric comprises the

entirety of the loss function; no adversarial loss or additional

regularization was used. Selected training rounds using the L2

loss metric resulted in less favorable inpainting of the gaps,

both horizontal and vertical, in line with past reports (Zhao et

al., 2017).

For evaluation purposes, we report both the L1 metric and

the Pearson correlation coefficient between the inpainted

pixels and their ground-truth information. These metrics

evaluate the inpainted results from different perspectives,

where the L1 metric analyzes the magnitude of the prediction

errors, and the correlation coefficient evaluates the strength of

the linear relationship between predicted and ground-truth

pixel intensities.

4.2. Training details

The ADAM optimizer (Kingma & Ba, 2014) was used to

update the various neural network weights according to the L1

loss terrain. As for the learning rates, all neural networks were

trained according to the same scheduler: an initial learning

rate of 10�3 that dropped twice by a factor of 10 every 100

epochs for a total of 300 epochs. An exception was made for

the 200 layer MSDNet in which the learning rate dropped

every 60 epochs for a total of 180. Lastly, TUNet and 100-layer

MSDNet training was performed on a single Nvidia RTX 3090

GPU with 24 GB memory capacity and 936 GB s�1 band-

width. The remaining algorithms were trained on a single

Nvidia A100 GPU with 40 GB capacity and 1555 GB s�1

bandwidth with a 32-thread AMD EPYC 7302 CPU.

4.3. Results

Fig. 7 compares the qualitative performance of the

inpainting methods by presenting five X-ray scattering images

in our testing data set. We emphasize that the non-gap regions

within the inpainted images have been replaced by the original

pixel intensities from the input images. Hence, this replace-

ment process avoids the introduction of predicted pixels

outside the non-gap areas. The selected results correspond to

test image Nos. 1326, 1474, 721, 442 and 337, which are

referred to as samples A–E, respectively, in Figs. 7 and 8.

While most of the algorithms successfully reconstruct the

majority of the missing pixels in the gaps, we can observe some

pattern distortion and intensity contrast mismatch in a few

images. Thus, Fig. 8 presents cropped sections of the inpainting

results for close-up analysis using difference maps between the

ground truth and each corresponding algorithm. For instance,

sample A exhibits a disruption along the inner ring when using

the biharmonic function, convolutional autoencoder and

partial convolution approaches. Similarly, samples B and C

exhibit some distortion near the beamline stop for most

inpainting methods, with TUNet and MSDNet presenting the

fewest differences among the proposed algorithms. Moreover,

research papers

J. Appl. Cryst. (2022). 55, 1277–1288 Tanny Chavez et al. � Deep-learning-based inpainting 1283

Figure 6
A schematic diagram of a 200-layer MSDNet with maximum dilation 15.

sample C has a minor beam interruption when using partial

convolution. Sample D exhibits some pattern interruption

along its rings. In this case, both the outer and inner rings

present some missing spots in all inpainting methods, with

TUNet and MSDNet introducing the least amount of distor-

tion. Ultimately, sample E represents a special case when

inpainting X-ray scattering images with peaks. In this sample,

the ground-truth image of sample E contains a peak that was

completely masked in the input image. Not surprisingly, since

the input image lacks any information to detect the presence

of this peak, none of the inpainting methods were able to

recover it. This is bound to be a considerable limitation of

inpainting, where fully masked features with no neighboring

indicators cannot be accurately reconstructed.

In order to discuss further the limitations of the proposed

algorithms within X-ray scattering applications, Fig. 9 intro-

duces three additional samples (E–G). Given the outstanding

results obtained through TUNet, we have chosen this archi-

tecture as the inpainting reference for this analysis. While we

can observe that the inpainted results for these images closely

resemble their respective ground truth, we have selected an

interest area in each sample that presents interesting feature

cases. For instance, sample E contains a Yoneda peak across

the sixth horizontal gap that is completely masked in its input

image. As shown in the difference map, this peak could not be

recovered by the inpainting approach due to the lack of

neighboring feature indicators located in the non-gap areas of

this image. Since most of the proposed algorithms make use of

convolutional layers to reconstruct the missing areas of the

input image, the information in the vicinity of the gaps is

crucial for pixel intensity estimation performed by the set of

filters. Similarly, sample F exhibits three peaks along the

beamstop that were partially masked in the input image.

Although these peaks were not fully masked, we can observe

that TUNet could not reconstruct these features within the

difference map close-up. The reason behind this behavior is

the boundary location of the features, where the inpainting

algorithm mistakenly reconstructed the horizon of the sample

a few pixels above its correct location. Additionally, sample G

presents a fourfold symmetry case with a number of masked

peaks in its input image. The close-up area in the inpainted

results presents four peaks along the third horizontal gap,

where we observe that the peak on the left was better

reconstructed than the one on the right of the image. Even

though symmetry is an important feature in X-ray scattering

applications, the inpainting algorithms proposed in this paper

do not make use of this feature within their reconstruction

models, mainly because the images have been cropped during

the training stage of the inpainting process.

To quantify the performance of the algorithms across the

testing data set, this paper uses the L1 error and the correla-

tion coefficient between the predicted pixels and their ground-

research papers

1284 Tanny Chavez et al. � Deep-learning-based inpainting J. Appl. Cryst. (2022). 55, 1277–1288

Figure 7
A comparison of inpainting methods, where the masked input data are
displayed in the top row, followed by their corresponding ground-truth
images in the next row. The dashed areas in the ground-truth images
indicate the location of the close-up images presented in Fig. 8. The
following rows present the inpainted results obtained from the deep
learning methods studied in this paper, where the non-gap regions have
been replaced with the original pixel intensities from the input images.
These results are organized according to the overall performance per
method from the highest to the lowest, as follows: MSDNet, TUNet,
partial convolution, convolutional autoencoder and biharmonic func-
tions.

Figure 8
A close-up comparison of inpainting methods using difference maps
between the ground truth and each inpainting approach, where the white
dashed areas correspond to the boundaries of the horizontal gaps. To
standardize the color map across all samples, the maximum value in the
color bar has been set to 0.15, which means that the bright-yellow areas in
these plots represent a difference of 0.15 or higher.

truth counterparts as the evaluation metrics of the inpainted

results. In the horizontal gap analysis, we evaluate the pixels

located across the horizontal gaps within the stitched images

obtained by the qlty Python package, as described in Section

2.2. Unlike the horizontal gaps, the vertical gaps in our testing

set lack ground-truth information. Therefore, we analyze the

performance of the predicted pixels in the vertical gaps by

adding artificial gaps through a data augmentation process in

the testing set, which is descibed in Section 2.2. Table 1

summarizes the L1 error and the correlation coefficient score

for each inpainting method. As a reference, the average pixel

intensities across the gap regions in the testing data set were

0.2496 and 0.2394 for horizontal and augmented vertical gaps,

respectively. These results further corroborate that TUNet

and MSDNet have the best overall performance, followed by

the convolutional autoencoders, the partial convolution NN

and biharmonic functions, respectively.

Ultimately, blind inpainting approaches, such as TUNet and

MSDNet, benefit from the presence of static masks across the

data set collected in this experimental setup. While the trained

models have obtained outstanding results in scattering images

recorded on a PILUTUS3 2M dectector, alternative setups

with different gap distributions may require further training to

adapt the proposed models. Additionally, experimental setups

with irregular masks (e.g. due to custom-shaped beamstops)

may benefit from the partial convolution neural network

architecture due to its ability to reconstruct irregularly shaped

gaps in alternative inpainting applications (Liu et al., 2018).

4.4. Latent-space analysis

To demonstrate further the importance of inpainting in

X-ray scattering applications, we compared the spatial distri-

bution of the latent vectors estimated with and without

inpainting. Three different latent spaces were estimated by

research papers

J. Appl. Cryst. (2022). 55, 1277–1288 Tanny Chavez et al. � Deep-learning-based inpainting 1285

Table 1
Quantitative analysis of testing results.

Biharmonic functions Convolutional autoencoder TUNet Partial convolution MSDNet

Horizontal gaps L1 error (10�3) 6.6225 6.4807 4.4746 6.2228 4.3958
Correlation coefficient score 0.9958 0.9964 0.9980 0.9958 0.9981

Vertical gaps L1 error (10�3) 4.9841 5.4004 3.9240 4.9388 3.9288
Correlation coefficient score 0.9972 0.9974 0.9986 0.9971 0.9986

Figure 9
The qualitative performance of inpainting in X-ray scattering images with
fully masked features, such as peaks. TUNet was selected as the
inpainting reference, where the white dashed areas indicate the location
of the close-up images at the bottom of the figure. The close-up images
use difference maps to highlight the differences between the inpainted
results and their corresponding ground truth, where the dashed areas
correspond to the location of the horizontal gaps. To standardize the color
map across all samples, the maximum value in the color bar has been set
to 0.15, which means that the bright-yellow areas in these plots represent
a difference of 0.15 or higher.

Figure 10
A summary of the latent-space analysis for masked, ground-truth and
inpainted images. On the left, the figure presents the mean correlation
coefficient as a function of the neighbor rank, which was defined through
the masked, ground-truth and inpainted latent spaces, respectively. On
the right, the violin plots represent the distribution of the percentage of
overlapping images within the 100 nearest ground-truth neighbors using
the masked and inpainted latent spaces, respectively.

training an autoencoder with the original masked images, their

ground truth and the TUNet inpainted images, respectively.

For fairness of comparison, we used the same network archi-

tecture and training parameters for the estimation processes

of all the latent spaces with a final dimension size of 200,

similar to the approach used by Guo et al. (2017) and Liang et

al. (2021).

Fig. 10 summarizes the results obtained from the latent-

space exploration. The plots on the left represent the variation

in the mean correlation coefficient as a function of the

neighbor rank, which was calculated using the Euclidean

distance between latent vectors. To avoid an offset in the

correlation coefficient values due to the masked areas, these

coefficients were calculated using the masked images for all

cases. As shown in these plots, the mean correlation coeffi-

cients obtained through the ground-truth and inpainted ranks

are very similar, whereas the masked rank presents lower

mean correlation coefficients. Additionally, we identified the

100 nearest neighbors for each image within the ground-truth

latent space and later used this as a reference to quantify the

overlap among the 100 nearest neighbors in each image in

both masked and inpainted latent spaces. In the right-hand

graph of Fig 10, the distribution of these percentages is

represented through violin plots, where we can clearly observe

that the inpainted distribution has a higher mean and a tighter

tail compared with its masked counterpart.

Overall, if we use autoencoders to compress the images, the

relationships between neighboring images in latent space for

the inpainted images are equivalent to those obtained from

ground-truth data, while for non-inpainted images this rela-

tionship deteriorates. Therefore, these results demonstrate

that inpainting can improve the estimation of the latent space,

which is a key step to automating sample-type classification

processes based on machine learning approaches.

5. Conclusions

The results presented in this paper demonstrate that the

missing information in X-ray scattering data can be success-

fully recovered using inpainting approaches based on deep

learning NN architectures. This study has proposed four

architectures, namely convolutional autoencoders, TUNet,

partial convolution NN and MSDNet, which were compared

with a well known inpainting technique using biharmonic

functions. Among these methods, TUNet and MSDNet

achieved the best reconstruction performance with L1 errors

of 4.4746 � 10�3 or lower, and correlation coefficients greater

than 0.9980, for both horizontal and vertical gaps in the testing

data set.

Unlike other inpainting challenges, X-ray scattering images

present regular masks with rectangular shapes that remain

static for all images. Hence, blind inpainting approaches

similar to the TUNet and MSDNet algorithms presented in

this work can effectively reconstruct the missing pixels within

the scattering image. While these conditions are particular to

this application, the experimental results prove that inpainting

algorithms originally designed for image processing of facial

and scenic features can potentially be used for the recon-

struction of X-ray scattering data. Considering the promising

latent-space results we have observed, our future work aims to

analyze further the importance of inpainting for the pattern

classification of X-ray scattering images through ML-based

deep learning methods.

APPENDIX A
Hyperparameter sweep

Considering that TUNet and MSDNet presented the best

overall performance during our preliminary analysis, we

performed a hyperparameter sweep to study further the

inpainting performance of these two architectures on X-ray

scattering images. For TUNets, the hyperparameters that were

considered in this analysis were the depth of the network, the

research papers

1286 Tanny Chavez et al. � Deep-learning-based inpainting J. Appl. Cryst. (2022). 55, 1277–1288

Table 2
Summary of TUNet hyperparameter sweep.

Model 2 is the best performing network.

Model

Parameter 0 1 2 3 4 5 6 7 8

Depth 4 4 4 5 5 5 6 6 6
Base channels 16 32 64 16 32 64 16 32 64
Growth rate 2.5 2 2 2 2 1.5 2 2 1.5
Parameter count (millions) 0.535 2.140 8.556 2.158 8.630 6.033 8.648 34.586 34.512
Batch size 180 100 50 180 100 50 180 100 50
Training loss (10�3) 5.07 2.25 1.20 3.98 2.92 1.24 4.33 2.13 1.19
Validation loss (10�3) 5.15 2.25 1.23 4.01 2.94 1.31 4.39 2.40 1.28
Cross correlation score 0.9965 0.9991 0.9994 0.9983 0.9991 0.9993 0.9981 0.9994 0.9992

Table 3
Summary of MSD hyperparameter sweep.

Model 3 is the best performing network.

Model

Parameter 0 1 2 3 4

Layers 50 100 100 200 200
Maximum dilation 12 12 20 15 20
Parameter count (millions) 0.012 0.045 0.045 0.181 0.181
Batch size 30 7 7 6 6
Training loss (10�3) 1.78 1.54 1.61 1.15 1.16
Validation loss (10�3) 1.62 1.14 1.21 1.15 1.16
Cross correlation score 0.9990 0.9993 0.9991 0.9994 0.9994

number of base channels, the growth rate and the batch size.

MSDNets considered the number of layers, the maximum

dilation of the convolutional layer and the batch size. Tables 2

and 3 summarize the hyperparameters used for these analyses

with their corresponding training and validation metrics. The

best performing networks, selected on the basis of the

minimum training/validation losses and the highest cross

correlation score, are model 2 for TUNet and model 3 for

MSDNet.

Acknowledgements

The scientific scattering data were provided by Professor

Nitash P. Balsara (UC Berkeley), Dr Adam Weber (Lawrence

Berkeley National Laboratory), Professor Ting Xu (UC

Berkeley), Professor Thomas Russell (University of Massa-

chusetts, Amherst), Dr Ahmet Kusoglu (Lawrence Berkeley

National Laboratory) and Professor Enrique Gomez (Penn

State University).

Funding information

This work was performed and partially supported by the US

Department of Energy (DOE), Office of Science, Office of

Basic Energy Sciences Data, Artificial Intelligence and

Machine Learning at the DOE Scientific User Facilities

program under the MLExchange Project (award No. 107514).

This research used resources of the Advanced Light Source,

which is a DOE Office of Science User facility under contract

No. DE-AC02-05CH11231. This research was supported in

part by the Advanced Scientific Computing Research and the

Basic Energy Sciences programs, which are supported by the

Office of Science of the DOE under contract DE-AC02-

05CH11231. Further support originates from the National

Institute of General Medical Sciences of the National Insti-

tutes of Health (NIH) under award No. 5R21GM129649-02

and from the Laboratory Directed Research and Develop-

ment Program of Lawrence Berkeley National Laboratory

under DOE contract No. DE-AC02-05CH11231. The data

collection was supported by the Hydrogen and Fuel Cell

Technologies Office of the DOE.

References

Amaro, R. E. & Mulholland, A. J. (2018). Nat. Rev. Chem. 2, 0148.
Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J. P., Karkoulis, D.,

Picca, F. E. & Kieffer, J. (2015). J. Appl. Cryst. 48, 510–519.
Bellisario, A., Maia, F. R. N. C. & Ekeberg, T. (2022). J. Appl. Cryst.

55, 122–132.
Bertalmio, M., Sapiro, G., Caselles, V. & Ballester, C. (2000).

Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques, pp. 417–424. New York: Association for
Computing Machinery.

Bertozzi, A. L., Esedoglu, S. & Gillette, A. (2006). IEEE Trans.
Image Process. 16, 285–291.

Chen, Y., Zhang, H., Liu, L., Chen, X., Zhang, Q., Yang, K., Xia, R. &
Xie, J. (2021). Appl. Intell. 51, 3460–3474.

Chen, Z., Andrejevic, N., Drucker, N. C., Nguyen, T., Xian, R. P.,
Smidt, T., Wang, Y., Ernstorfer, R., Tennant, D. A., Chan, M. & Li,
M. (2021). Chem. Phys. Rev. 2, 031301.

Choi, M., Dahal, E. & Badano, A. (2021). Biomed. Phys. Eng.
Express, 7, 015008.

Christiansen, M. V., Smith, G. N., Brok, E. S., Schmiele, M. & Ahrné,
L. (2021). Food. Res. Int. 147, 110451.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger,
O. (2016). International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 424–432. Heidelberg:
Springer.

Cui, Y., Zhang, G., Liu, Z., Xiong, Z. & Hu, J. (2019). Med. Biol. Eng.
Comput. 57, 2027–2043.

Damelin, S. B. & Hoang, N. (2018). Int. J. Math. Math. Sci. 2018,
3950312.

Efros, A. & Leung, T. (1999). Proceedings of the Seventh IEEE
International Conference on Computer Vision, Vol. 2, pp. 1033–
1038.

Elharrouss, O., Almaadeed, N., Al-Maadeed, S. & Akbari, Y. (2020).
Neural Process. Lett. 51, 2007–2028.

Fukushima, K. & Miyake, S. (1982). Competition and Cooperation in
Neural Nets, pp. 267–285. Heidelberg: Springer.

Georgiadis, M., Schroeter, A., Gao, Z., Guizar-Sicairos, M., Liebi, M.,
Leuze, C., McNab, J. A., Balolia, A., Veraart, J., Ades-Aron, B.,
Kim, S., Shepherd, T., Lee, C. H., Walczak, P., Chodankar, S.,
DiGiacomo, P., David, G., Augath, M., Zerbi, V., Sommer, S.,
Rajkovic, I., Weiss, T., Bunk, O., Yang, L., Zhang, J., Novikov, D. S.,
Zeineh, M., Fieremans, E. & Rudin, M. (2021). Nat. Commun. 12,
2941.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning.
Cambridge, Massachusetts, USA: MIT Press.

Guo, X., Liu, X., Zhu, E. & Yin, J. (2017). Neural Information
Processing, edited by D. Liu, S. Xie, Y. Li, D. Zhao & E.-S. M. El-
Alfy, pp. 373–382. Cham: Springer International Publishing.

Harley, A. W., Derpanis, K. G. & Kokkinos, I. (2017). Proceedings of
the IEEE International Conference on Computer Vision, pp. 5038–
5047. New York: IEEE.

Heberle, F. A. & Pabst, G. (2017). Biophys. Rev. 9, 353–373.
Hexemer, A., Bras, W., Glossinger, J., Schaible, E., Gann, E., Kirian,

R., MacDowell, A., Church, M., Rude, B. & Padmore, H. (2010). J.
Phys. Conf. Ser. 247, 012007.

Innamorati, C., Ritschel, T., Weyrich, T. & Mitra, N. J. (2019). Int. J.
Comput. Vis. 128, 773–782.

Ioffe, S. & Szegedy, C. (2015). Proc. Mach. Learn. Res. 37, 448–456.
Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. (2017). Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1125–1134. New York: IEEE.

Jam, J., Kendrick, C., Walker, K., Drouard, V., Hsu, J. G.-S. & Yap,
M. H. (2020). Comput. Vis. Image Underst. 203, 103147.

Jiang, L., Xiao, S. & He, C. (2018). Proceedings of the 2018
International Conference on Image and Graphics Processing,
pp. 91–95. New York: Association for Computing Machinery.

Kanhar, D. & Chandak, R. (2021). Machine Learning Algorithms for
Industrial Applications, pp. 167–181. Heidelberg: Springer.

Khondker, A., Bider, R.-C., Passos-Gastaldo, I., Wright, G. D. &
Rheinstädter, M. C. (2021). Biochim. Biophys. Acta, 1863, 183448.

Kingma, D. P. & Ba, J. (2014). arXiv:1412.6980.
Kornilov, A., Safonov, I. & Yakimchuk, I. (2020). 26th Conference of

Open Innovations Association (FRUCT), pp. 200–206. New York:
IEEE.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Proc. IEEE, 86,
2278–2324.

Li, X. (2021). J. Appl. Cryst. 54, 680–685.
Li, X. P., Liu, Q. & So, H. C. (2020). IEEE Signal Process. Lett. 27,

680–684.
Liang, M., Liu, R. W., Li, S., Xiao, Z., Liu, X. & Lu, F. (2021). Ocean

Eng. 225, 108803.
Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A. & Catanzaro, B.

(2018). Proceedings of the European Conference on Computer
Vision (ECCV), Vol. 11, pp. 85–100. Cham: Springer.

research papers

J. Appl. Cryst. (2022). 55, 1277–1288 Tanny Chavez et al. � Deep-learning-based inpainting 1287

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB36

Liu, J., Costantino, I., Venugopalan, N., Fischetti, R. F., Hyman, B. T.,
Frosch, M. P., Gomez-Isla, T. & Makowski, L. (2016). Sci. Rep. 6,
33079.

Liu, J., Lhermitte, J., Tian, Y., Zhang, Z., Yu, D. & Yager, K. G. (2017).
IUCrJ, 4, 455–465.

Liu, Q. & Wang, X. (2020). Matter, 2, 816–841.
Liu, S., Melton, C. N., Venkatakrishnan, S., Pandolfi, R. J., Freychet,

G., Kumar, D., Tang, H., Hexemer, A. & Ushizima, D. M. (2019).
MRS Commun. 9, 586–592.

Liu, X., Hao, C., Su, Z., Qi, Z., Fu, S., Li, Y. & Han, H. (2021). J.
Electron. Imaging, 30, 1–21.

Long, J., Shelhamer, E. & Darrell, T. (2015). Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3431–
3440. New York: IEEE.

Matsui, T. & Ikehara, M. (2020). IEEE Access, 8, 38846–38854.
Maveyraud, L. & Mourey, L. (2020). Molecules, 25, 1030.
Müller, B., Deyhle, H., Bradley, D. A., Farquharson, M., Schulz, G.,

Müller-Gerbl, M. & Bunk, O. (2010). Eur. J. Nanomed. 3, 30–33.
Müller, B., Khimchenko, A., Rodgers, G., Osterwalder, M., Tanner, C.

& Schulz, G. (2021). Proc. SPIE, 11886, 1188613.
Munjal, B. & Suryanarayanan, R. (2021). TrAC Trends Anal. Chem.

136, 116181.
Ni, B., Shi, Y. & Wang, X. (2018). Adv. Mater. 30, 1802031.
Noack, M. M., Zwart, P. H., Ushizima, D. M., Fukuto, M., Yager, K. G.,

Elbert, K. C., Murray, C. B., Stein, A., Doerk, G. S., Tsai, E. H. R.,
Li, R., Freychet, G., Zhernenkov, M., Holman, H. N., Lee, S., Chen,
L., Rotenberg, E., Weber, T., Goc, Y. L., Boehm, M., Steffens, P.,
Mutti, P. & Sethian, J. A. (2021). Nat. Rev. Phys. 3, 685–697.

Noh, K. J., Park, S. J. & Lee, S. (2019). Comput. Methods Programs
Biomed. 178, 237–246.

Öztürk, Ş. (2020). Proceedings of the 4th International Symposium on
Multidisciplinary Studies and Innovative Technologies (ISMSIT),
pp. 1–5. IEEE.

Pande, K., Donatelli, J. J., Malmerberg, E., Foucar, L., Bostedt, C.,
Schlichting, I. & Zwart, P. H. (2018). Proc. Natl Acad. Sci. USA,
115, 11772–11777.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T. & Efros, A. A.
(2016). Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2536–2544. New York: IEEE.

Pelt, D. M., Batenburg, K. J. & Sethian, J. A. (2018). J. Imaging, 4, 128.
Pelt, D. M. & Sethian, J. A. (2018). Proc. Natl Acad. Sci. USA, 115,

254–259.
Pielawski, N. & Wählby, C. (2020). PLoS One, 15, e0229839.
Ronneberger, O., Fischer, P. & Brox, T. (2015). Medical Image

Computing and Computer-Assisted Intervention – MICCAI 2015,

edited by N. Navab, J. Hornegger, W. M. Wells & A. F. Frangi,
pp. 234–241. Cham: Springer International Publishing.

Rosenblatt, F. (1958). Psychol. Rev. 65, 386–408.
Rumelhart, D. E. & McClelland, J. L. (1987). Parallel Distributed

Processing: Explorations in the Microstructure of Cognition:
Foundations, pp. 318–362. Cambridge: MIT Press.

Satapathy, S. & Sahay, R. R. (2021). Signal Process. Image Commun.
98, 116378.

Schulz, G., Deyhle, H., Bikis, C., Bunk, O. & Müller, B. (2020).
Precision Nanomed. 3, 656–665.

Schwarz, N., Veseli, S. & Jarosz, D. (2019). Synchrotron Rad. News,
32(3), 13–18.

Shimizu, N., Yatabe, K., Nagatani, Y., Saijyo, S., Kosuge, T. & Igarashi,
N. (2016). AIP Conf. Proc. 1741, 050017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. &
Salakhutdinov, R. (2014). J. Mach. Learn. Res. 15(1), 1929–1958.

Su, Y., Yin, X., Chang, H., Zhang, Z. & Liu, Y. (2021). Proc. SPIE,
11915, 28–33.

Thakur, A. & Paul, S. (2020). Introduction to Image Inpainting with
Deep Learning, https://wandb.ai/site/articles/introduction-to-
image-inpainting-with-deep-learning.

Wickramasinghe, C. S., Marino, D. L. & Manic, M. (2021). IEEE
Access, 9, 40511–40520.

Xu, Q., Zhang, M., Gu, Z. & Pan, G. (2019). Neurocomputing, 328,
69–74.

Yang, S., Tyler, A. I., Ahrné, L. & Kirkensgaard, J. J. (2021). Food.
Res. Int. 147, 110527.

Yu, F. & Koltun, V. (2015). arXiv:1511.07122.
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X. & Huang, T. S. (2018).

Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5505–5514. New York: IEEE.

Yu, Y., Zhan, F., Lu, S., Pan, J., Ma, F., Xie, X. & Miao, C. (2021).
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 14114–14123. New York: IEEE.

Zhao, H., Gallo, O., Frosio, I. & Kautz, J. (2017). IEEE Trans.
Comput. Imaging, 3, 47–57.

Zhao, L., Mo, Q., Lin, S., Wang, Z., Zuo, Z., Chen, H., Xing, W. & Lu,
D. (2020). Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5741–5750. IEEE.

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N. & Liang, J. (2018). Deep
Learning in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support, pp. 3–11. Heidelberg: Springer.

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N. & Liang, J. (2020).
IEEE Trans. Med. Imaging, 39, 1856–1867.

Zwart, P. H. (2021). qlty, https://qlty.readthedocs.io/en/latest/
readme.html.

research papers

1288 Tanny Chavez et al. � Deep-learning-based inpainting J. Appl. Cryst. (2022). 55, 1277–1288

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB77
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB77
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB77
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB72
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB72
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB72
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB73
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB73
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB74
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB74
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB74
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB75
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB75
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB75
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB76
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB76
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB77
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5040&bbid=BB77

