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A versatile software package in the form of a Python extension, named CDEF

(computing Debye’s scattering formula for extraordinary form factors), is

proposed to calculate approximate scattering profiles of arbitrarily shaped

nanoparticles for small-angle X-ray scattering (SAXS). CDEF generates a

quasi-randomly distributed point cloud in the desired particle shape and then

applies the open-source software DEBYER for efficient evaluation of Debye’s

scattering formula to calculate the SAXS pattern (https://github.com/j-from-b/

CDEF). If self-correlation of the scattering signal is not omitted, the quasi-

random distribution provides faster convergence compared with a true-random

distribution of the scatterers, especially at higher momentum transfer. The usage

of the software is demonstrated for the evaluation of scattering data of Au

nanocubes with rounded edges, which were measured at the four-crystal

monochromator beamline of PTB at the synchrotron radiation facility BESSY II

in Berlin. The implementation is fast enough to run on a single desktop

computer and perform model fits within minutes. The accuracy of the method

was analyzed by comparison with analytically known form factors and verified

with another implementation, the SPONGE, based on a similar principle with

fewer approximations. Additionally, the SPONGE coupled to McSAS3 allows

one to retrieve information on the uncertainty of the size distribution using a

Monte Carlo uncertainty estimation algorithm.

1. Introduction

Small-angle X-ray scattering (SAXS) is a powerful nano-

structure quantification tool to characterize ensembles of

nanoparticles (Guinier & Fournet, 1955). The X-ray scattering

pattern of a nanoparticle system depends on many particle

properties, which can therefore be obtained from the

measurement, such as the radius of gyration (Guinier &

Fournet, 1955), particle shape (Guinier, 1939; Guinier &

Fournet, 1955; Porod & Glatter, 1982), size distribution

(Riseman, 1952), specific surface area (Guinier & Fournet,

1955) and number concentration (Schavkan et al., 2019).

It is a nondestructive method with only little sample

preparation for particles in liquid suspension and is also

applicable for powders and porous materials (Bock et al.,

1997). With SAXS, typically particles with sizes ranging from a

few nanometres up to a few hundred nanometres can be

measured if there is sufficient electron density contrast of the

particles relative to the suspension medium, since photons are

scattered by the electrons in the material. The higher the

electron density contrast, the more pronounced the scattered
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intensity relative to the background signal originating from

the suspension. The measured SAXS signal can be further

processed and fitted to obtain information about the desired

particle properties.

To fit and evaluate experimental data, an adequate

assumption of the underlying particle shape is necessary. This

assumption is made by choosing the correct form factor F(q)

for the physical model, where q is the magnitude of the scat-

tered photon’s momentum transfer vector.

For simple particle shapes such as spheres, cylinders or

spherical core–shell particles, F(q) can be calculated analyti-

cally. For instance, F(q) of a perfect sphere with a homo-

geneous electron contrast �� was derived by Rayleigh (1911):

Fsphðq;R;��Þ ¼ ��
4

3
�R3

� �
3

sinðqRÞ � qR cosðqRÞ

ðqRÞ
3

� �
; ð1Þ

where R is the radius of the sphere.

The scattering pattern I(q) of a polydisperse particle

ensemble, as measured on the detector, is then obtained by

convolving the absolute square of the form factor

|Fsph(q, R, ��)|2 with the size distribution g(R):

IðqÞ ¼
R1
0

Fsphðq;R;��Þ
�� ��2gðRÞ dR: ð2Þ

Equation (1) can be extended to other geometrical shapes

with spherical symmetry, such as core–shell particles and

particles with multiple concentric shells (Pedersen, 2002;

Kohlbrecher, 2020). For regular shapes with lower symmetry,

the form factors are known, among many others, for ellipsoids

(Guinier, 1939), cylinders (Guinier & Fournet, 1955), cubic

particles (Mittelbach & Porod, 1961), and cylindrical and

conical particles with an arbitrary polygonal base which are

built out of polygonal wedges (Shapovalov, 2013). For all these

shapes, the average over all possible particle orientations is

typically performed by numerical integration. This requires a

one-dimensional average for shapes with one axis of rotational

symmetry, such as cylinders and ellipsoids, and a two-dimen-

sional average for others like cubic shapes (Mittelbach &

Porod, 1961; Napper & Ottewill, 1963; Pedersen, 2002; Nayuk

& Huber, 2012), which is costly.

Recently, a seemingly limitless landscape of nanomaterial

shapes and structures that do not fit these analytical functions

have been synthesized, such as stars (Zhou et al., 2015; Feld et

al., 2019), cubes with concave faces (Zhou et al., 2015) and

core–shell-structured cubes (Zhou et al., 2015; Jia et al., 2016;

Feld et al., 2019), demanding a convenient method of calcu-

lating scattering profiles I(q) of these complex-shaped parti-

cles. Widely used SAXS analysis software such as SASfit

(Breßler, Kohlbrecher & Thünemann, 2015) or SasView

(https://www.sasview.org/) provides extended libraries of

analytic form factors to evaluate SAXS data. However,

analytic expressions for a particular shape may not be readily

available, and the derivation can quickly become intractable

(Shapovalov, 2013).

A viable alternative approach to the analytic treatment of

form factors for irregular shapes consists of building an

approximation of the desired shape from smaller objects and

calculating the scattering of the approximation via the Debye

(1915) scattering equation, which allows direct computation of

the rotational average of an ensemble of scatterers from their

individual form factors. Hansen (1990) has proposed to build

irregular shapes from randomly distributed point scatterers,

and Pedersen et al. (2012) successfully applied this method to

the analysis of polydisperse immune stimulating complex

vaccine particles, which are perforated bilayer vesicles with or

without proteins, composed of compounds with different

scattering length densities.

With the present paper, we introduce our open-source

software CDEF (Deumer & Gollwitzer, 2022), which provides

efficient calculation of approximate scattering profiles I(q) for

polydisperse ensembles of arbitrarily shaped nanoparticles.

CDEF builds on the ideas put forward by Hansen (1990) and

Pedersen et al. (2012) and enhances them with the option for

quasi-random distribution of scatterers, which can improve

convergence. An additional speed-up is achieved by offloading

the actual calculation of the Debye formula to the open-

source software DEBYER (Wojdyr, 2020).

The algorithm is detailed in Section 2. As an application,

CDEF is used to evaluate scattering data from gold nanocubes

with rounded edges in Section 3. Experimental details and the

used nanomaterial are described in Sections 4 and 3, respec-

tively. Finally, the results are compared with the pre-existing

program the SPONGE, based on similar principles (Aratsu et

al., 2020), in Section 5.

2. Methods

In this section, CDEF and the SPONGE will be described in

more detail. Both programs are based on the Debye (1915)

scattering formula, which can generally be used to calculate

the SAXS pattern I(q) of a system of N individual scatterers,

IðqÞ ¼
XN

k;j

fk fj

sinðqrk;jÞ

qrk;j

; ð3Þ

from the form factors fi of the individual scatterers and the

distances rk, j between the scatterers k and j.

2.1. Implementation details of CDEF

To approximately calculate I(q) for arbitrarily shaped nano-

particles, CDEF applies equation (3) to a three-dimensional

point cloud of the desired particle shape. The point cloud is

created by filling the particle’s bounding box with equally

distributed punctiform scatterers and discarding all points

outside of the volume defined by the particle’s shape. The

shape can be built either from a computer-aided design

(CAD) construction (for this, both CDEF and the SPONGE

offer the import of the widely used STL file format) or by

programmatically reshaping the point cloud. CDEF provides

the option to generate the initial point cloud from either a

true- or a quasi-random sequence (Fig. 1). Compared with the

true-random series, a quasi-random sequence fills the shape

more evenly with less local clustering (Vandewoestyne &
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Cools, 2006). We implemented a generator for the scrambled

Halton (1964) series proposed by Kocis & Whiten (1997) and

Sobol’s (1967) series as provided by the SciPy package

(Virtanen et al., 2020).

Each point of the generated cloud then gets assigned a

weight to account for density variations such as in hetero-

geneous or core–shell particles. Finally, as a computational

tool to efficiently evaluate Debye’s scattering formula, CDEF

passes the points and the associated weights to the open-

source program DEBYER (Wojdyr, 2020), whereas the

SPONGE uses its own implementation of the Debye equation.

Similar approaches to compute form factors for arbitrary

shapes using Debye’s scattering formula have been reported

by Pedersen (2002), Pedersen et al. (2012) and Hansen (1990),

and are used by other fast programs, e.g. DEBUSSY

(Cervellino et al., 2015).

A more detailed comparison between CDEF, the SPONGE

and other evaluation methods using Debye’s equation can be

found in the supporting information (SI).

As proposed by Hansen (1990) and Pedersen et al. (2012),

DEBYER achieves a significant performance gain by splitting

the calculation of equation (3) into two parts. First a histogram

of the pair distances rk,j is computed with a reduced number of

histogram bins NBINS, and subsequently the sinc function

sinðqrÞ=ðqrÞ is evaluated for each bin of the histogram.

Because NBINS is usually much smaller, typically around 1000–

10 000, than the number of pairs of scatterers N2, this

approximation can speed up the computation by several

orders of magnitude for repeated evaluation of equation (3)

for different q, such as in the computation of a full scattering

pattern. CDEF allows the user to set the histogram bin width

explicitly to trade off the accuracy of the computed scattering

curve with computation time.

The scattering pattern IMONO obtained in this way corre-

sponds to a single particle, averaged over all possible orien-

tations. For the modeling of realistic particle dispersions,

IMONO must be averaged over a certain size distribution.

CDEF achieves this by rescaling the single-particle scattering

curve from a single master curve according to

IPOLYðqÞ ¼
R1
0

V2IMONOðqRÞ gðRÞ dR; ð4Þ

which avoids repeated evaluation of Debye’s scattering

equation for different particle sizes. Here, g(R) is the size

distribution and V the volume of the rescaled particle with size

R. The integral in equation (4) is evaluated by Monte Carlo

integration with 3000 samples using a normal random-number

generator, yielding a Gaussian size distribution, but other

distributions can be easily implemented by using the appro-

priate random-number generator. At the moment, CDEF

implements Gaussian and lognormal distributions.

The implementation of a Poisson disc algorithm to fill the

bounding box homogeneously with scatterers which are

required to have a certain minimum distance to each other

would also be conceivable. However, this requires more

computational effort, e.g. filling a cube with 30 000 points is

approximately 28 times slower [�350 ms (Sobol) versus

9.85 s], and would not offer any apparent advantages over the

existing algorithms (SI).

2.2. CDEF versus analytic formulae

As a validation of CDEF, we first compare its normalized

results with the corresponding analytic form factors of

common particle shapes using the three introduced filling

algorithms (Fig. 1). Fig. 2 shows the analytically [equation (1)]

and numerically calculated single-particle SAXS profiles of a

homogeneous sphere with radius R = 10 nm. For the calcula-

tion of each numeric profile, a spherical cloud was generated

by (quasi-)randomly filling 30 000 points into a cubic bounding

box with side length 2R = 20 nm and then deleting all points

outside of the defined sphere, which yields N ’ 15 700

remaining points.

Both quasi-random profiles match the analytic profile with

good agreement up to the fifth local maximum, whereas at

higher q values both profiles start deviating from the analytic

profile owing to an artificial background signal originating

from the clouds’ fine structure. This also holds true for the

true-random filling pattern with the same number of scattering
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Figure 1
Examples of circular point clouds with radius r = 0.5 generated with one true-random and two quasi-random (Sobol, Halton) filling algorithms. Each
cloud is generated by initially filling 5000 points into a squared area with side length l = 1 and subsequently deleting all points outside of the circle, which
leaves �4000 points. The usage of a quasi-random algorithm leads to a higher homogeneity of the spatial distribution relative to the true-random
method, whereas the true-random distribution shows a higher degree of local clustering.



points. However, it only matches IAnal. up to the second local

maximum because of the constant scattering background.

Fig. 2 also shows that reducing the number of scattering points

by a factor of 10 raises the background plateau by the same

factor.

Pedersen et al. (2012) proposed that the constant back-

ground arising from the true-random distribution can be

subtracted by excluding the self-correlation of the scatterers,

which corresponds to zeroing the first bin of the pair distance

histogram or subtraction of a constant value of 1/N from the

resulting scattering patterns. This does indeed increase the

dynamic range of the computed scattering curve and brings it

into closer agreement with the true pattern.

Fig. 3 displays background-corrected scattering patterns for

the three different types of filling algorithm. For the quasi-

random filling algorithms, zeroing the first bin does not

improve the agreement with the exact solution because of the

low autocorrelation at small distances of quasi-random

sequences. Instead, zeroing a small initial sequence of bins

except for the first can bring the curves into closer agreement

with the exact result (see Fig. 3). Still, the curve computed

from the quasi-random sequences without this correction is in

better agreement for midrange values of q than the corrected

true-random solution, which is evident by comparing the plots

of the relative deviation in Figs. 2 and 3. To perform these

optimizations for a given case, CDEF provides the option to

zero out a sequence of bins in the pair distance distribution

histogram.

Similar results are obtained for a comparison of particles

with lower symmetry, such as cylinders and cubes. The

corresponding data can be found in the SI (Figs. S2, S5, S6

and S7).

2.3. The SPONGE

2.3.1. Implementation details of the SPONGE. A separate

implementation was developed, called the SPONGE (Pauw &

Breßler, 2022), that is a more fundamentally proximate

method by eschewing many of the speed-improving approx-

imations. It also uses the Debye equation for puctiform scat-

terers with a fully random point distribution. This method is

essentially similar to CDEF with the exception that the

intermediate step, where the numerical pair distance distri-

bution function is generated, is bypassed in favor of a more

direct approach, further minimizing potential sources of error.

While the SPONGE is much more computationally inten-

sive, it should be more accurate over the entire q range where

the homogeneous phase approximation holds, and thus it can

be used to validate that the approximations in the faster

CDEF implementations are not generating unforeseen arti-

facts. Like CDEF, the SPONGE uses a surface description in

the STL format to define the boundaries of a nano-object. It

then leverages the fast VTK bindings in Python (Schroeder et

al., 2006) for point placement and determines whether the

point lies inside or outside of the object. The computation of

the point-to-point Euclidian distance matrix is done using a

fast SciPy implementation (The SciPy Community, 2021),

before the Debye equation is applied to obtain a simulated

isotropic scattering curve. When a scattering length density is

provided, the SPONGE-simulated data can be scaled to

absolute units (i.e. to an absolute scattering cross section in

m�1 sr�1).

This procedure is repeated, resulting in a number of inde-

pendently generated scattering curves, each based on their

own set of random points. The mean intensity from all repe-

titions is then presented, with the standard deviation used as

an estimate for the uncertainty for each point.

A number-weighted size distribution can also be taken into

account. The SPONGE currently uses a Gaussian size distri-

bution, which is implemented by choosing a random scaling
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Figure 3
Comparison of normalized single-particle SAXS profiles with modeling
of the artificial background signal.

Figure 2
Comparison of normalized single-particle SAXS profiles, obtained using
CDEF without modeling of the artificial background signal, with the
exact analytic SAXS profile IAnal. of a sphere with radius R = 10 nm and
electron contrast �� = 1 nm�3. For the numeric calculations, the Deybe
equation was applied on spherical clouds which were generated using two
different quasi-random (Sobol, Halton) and one true-random filling
algorithm. At specific q values the artificial scattering signal from the fine
structure of the individual cloud dominates the numeric profiles, leading
to a deviation from IAnal..



factor for the q value for each independent repetition and

which affects the total intensity scaling factor according to its

scaled volume (in a procedure identical to that given in

Section 2.1). This would be similar in reality to probing a

multitude of objects of different size to build up the average

scattering pattern. This size distribution has been verified to

work accurately (by checking the result with a fit in SasView)

up to a Gaussian distribution width � of at least 50%. This

simulated distribution width is not used for fitting but is used

to avoid unrealistically sharp minima in the simulated curve.

For the simulations presented herein, the distribution width is

set to 1%.

2.3.2. The SPONGE and McSAS3. The thus-simulated data

of primary particles can be used to fit an experimental data set,

even when the experimental data set is from a sample with an

unknown, broader distribution of particle sizes. For this, we

turn the simulated data into a fitting model for use with the

Monte Carlo approach as implemented in McSAS (Pauw et al.,

2013; Bressler, Pauw & Thünemann, 2015). As the original

McSAS is not easily adapted to support such a model

description, we are here using the refactored McSAS3

implementation (currently in the last stages of development).

McSAS3 works using the same methods as McSAS but has

many practical improvements, such as multi-threaded opti-

mization, a backend independent of the graphical user inter-

face (for headless computation) and the option to re-

histogram a previous optimization run (McSAS on GitHub;

Breßler & Pauw, 2022).

The simulated data set can be converted into a fitting

model, provided it has a Guinier region at low q and (on

average) a Porod region at high q. Then, for a given scaling

factor, the q value of the simulated data is rescaled (in a

manner identical to Section 2.3.1), and the intensity inter-

polated to the requested q value of the experimental data.

Data points that fall outside the limits of the simulated data

are extrapolated using a flat (Guinier) approximation at low q

and a Porod slope at high q.

Using this fitting model in McSAS3, experimental data can

be fitted rapidly using the simulated scattering pattern of an

elementary scatterer. From this, a form-free volume-weighted

scaling factor distribution is obtained that best describes the

experimental data. As with the original McSAS (Pauw et al.,

2013), a number of independent optimizations are performed

to allow the estimation of the uncertainty of the resulting

distribution.

2.4. Diverse models of cubic particles

To show the versatile application of CDEF, we characterize

the Au nanocubes that are described in Section 3. In doing so,

we implemented three different cubic models (ideal cube,

cube with truncated edges, cube with rounded edges) carrying

a homogeneous electron density (Fig. 4).

To simulate truncated edges, an advanced (i.e. point clouds

are generated by user-written Python functions) algorithm

based on the Hessian normal form is implemented, with which

the truncation level of the cubic model with a side-to-side

distance L can be adjusted. Further information is provided in

the SI.

Moreover, a cubic model with rounded edges is generated

by introducing four cylinders for each Euclidean direction x, y,

z, where each cylinder is located in one of the four corners

with its axis being aligned along the corresponding edge

(Fig. 4). The rounded edges are then generated by deleting

points, i.e. setting their corresponding form factor to zero,

located at the edges and outside of each cylinder. All 12

cylinders are described by the same radius of curvature Rcurve.

3. Synthesis of Au nanocubes

Mono-crystalline Au nanocubes (Fig. 5) were prepared by

colloidal chemistry in aqueous solution, according to an

already published protocol (Haggui et al., 2012; Kameche et

al., 2020), in the presence of cetyltrimethylammonium

bromide as the capping agent. Crystal growth was achieved by

chemical reduction of Au+ ions on the surface of a gold seed (a

small sphere with an initial size of 2–3 nm in diameter),

resulting in the formation of a cubic shape (Kuo et al., 2018).

The side length of these particles as determined from scanning

electron microscopy (SEM) images is 55 nm with a standard

deviation of 2 nm. Using this particular synthesis procedure

leads to a percentage of �90% of nanocubes with respect to

the whole particle ensemble and a small number (�10%) of

particles with different shapes (see marked spots in Fig. 5).

The edges and corners of the cubes tend to gradually round

out over time. In solution, this phenomenon is slow (six

months). However, it is faster (one month) when the cubes are

deposited on a substrate and kept in air. From the SEM

images, a curvature radius (Rcurve ’ 7 nm) was determined for

the edges.

4. Experimental details

Since the SAXS experiments were conducted in vacuum, the

diluted colloidal solution of Au nanocubes suspended in water
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Figure 4
Two different cubic models with face-to-face-distance L. (a) Cube with
truncated edges. All 12 edges are truncated by sectional planes. Each
sectional plane (an example is marked in blue) is defined by a support
vector a and a normal vector n which stands perpendicular to the plane.
(b) Cube with implied rounded edges. The curve of each edge is defined
by identical cylinders with curvature radius Rcurve which touch the
associated cubic sides.



was filled into a rectangular capillary of borosilicate glass, with

a homogeneous thickness along its vertical axis, and sealed

with a blow torch before measurement. The sample was then

loaded into the experimental vacuum chamber which is

connected to the four-crystal monochromator (FCM) beam-

line of the PTB laboratory at the synchrotron radiation facility

BESSY II, Berlin. For the experiment, X-rays were generated

by a bending magnet and then guided by the beamline to the

sample holder, resulting in a thin X-ray beam with a cross-

sectional area of approximately 150 mm high and 400 mm wide

at the sample position. The FCM beamline allows experiments

in a wide range of photon energies from Eph = 1.75 keV to

Eph = 10 keV (Krumrey, 1998). Our SAXS experiments were

performed at Eph = 8 keV using Si(111) monochromator

crystals with a spectral resolving power of Eph /�Eph = 104 and

a photon flux in the range of � ’ 1010 s�1 (Krumrey, 1998).

During the experiment, the capillaries were measured at

different y positions along the vertical axis. At each y position,

SAXS images were recorded by a vacuum-compatible

PILATUS 1M hybrid-pixel detector with a pixel size of p =

172 mm (Wernecke et al., 2014).

4.1. Data processing

Prior to data evaluation, the 2D SAXS image, consisting of

concentric circles, is converted into the corresponding one-

dimensional SAXS profile in absolute units. This allows us to

determine the number concentration of suspended particles.

For each distinct y position, the measured or experimental

intensity IEXP is circularly integrated around the center of the

incident beam and then normalized to the incident photon

flux, the duration of exposure, the sample thickness and the

quantum efficiency of the detector at a given photon energy

(Schavkan et al., 2019). Then IEXP is expressed in terms of the

momentum transfer q:

q ¼
4�Eph

hc
sin

1

2
arctan

np

LSD

� �
’

4�Eph

hc

np

LSD

; ð5Þ

where LSD is the distance from the sample to the detector

plane, n is the number of pixels, h is Planck’s constant and c is

the speed of light. Data processing at PTB, up to this point, is

standardized using in-house software.

Since scattering from water molecules and the walls of the

glass capillary is also detected by the SAXS measurement,

leading to an unwanted background signal, an additional

capillary only filled with distilled water was measured during

the same measurement to detect the corresponding back-

ground curve, which was eventually subtracted from IEXP. For

better statistics, however, IEXP and the background curves

were averaged over all y positions before subtraction.

After subtraction of the background signal, it was not

necessary to include an independent background in the fitting

model. This also reduces the number of adjustable parameters.

5. Results and discussion

In this work, we characterized Au nanocubes using three

different cubic models, namely an ideal cube, a cube with

truncated edges and a cube with rounded edges. However, for

reasons of convenience, only results referring to the model

with rounded edges, which shows the lowest �2 (Table 1), are

presented. Detailed results of the other models can be found

in the SI.

During the fitting of shapes with varying geometry, such as

the truncated or rounded cubic model, it is necessary to

recalculate the individual single-particle scattering profile

IMONO in each computational step. For steady particle shapes

with size changes only, such as ideal cubes, it is sufficient to

calculate IMONO once and then rescale it in accordance to the

assumed size distribution, which requires much less compu-

tational effort. For all models, no modeling of the artificial

background signal was performed, as illustrated in Section 2.2,

and a sufficiently high number of scatterers (N = 30 000) was

chosen to cover the required q range.
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Figure 5
Scanning electron microscopy images of Au nanocubes at two different
scales. The population also consists of a few particles with a non-cubic
shape (some marked by red circles).



For all introduced cubic models, the results of the (faster)

CDEF are compared with those of the SPONGE to confirm

the results of CDEF. Fig. 6 compares the volume-weighted size

distribution from the SPONGE with the size distribution from

CDEF, converted into volume weight. Both methods eval-

uated the same experimental data. Since the SPONGE cannot

fit shape parameters owing to the time-consuming computing

process, STL files of CDEF’s best-fit particle shapes were

generated and then given to the SPONGE to reveal the

underlying uncertainty of IFIT (the specific model function or

fitting function).

Using CDEF, each model was fitted to the experimental

data by varying the M free parameters, namely the number-

weighted distribution of the side-to-side length L, which was

assumed to be Gaussian, and the truncation or rounding

parameters for the imperfect cubes. Powell’s algorithm

(Fletcher & Powell, 1963) with a maximal number of

M � 1000 function evaluations was used to minimize �2. The

combined SPONGE + McSAS analysis was not confined to

any particular size distribution but rather fitted the volume-

weighted size distribution numerically.

With CDEF, each 3D cloud initially consisted of N = 30 000

scattering points. Then for each function evaluation step N

was varied according to the underlying spatial distribution of

scatterers, the level of truncation T or the radius of curvature

Rcurve such that N < 30 000. This initial number of

N = 30 000 was a good compromise to fit the whole q

interval of the experimental data without experien-

cing any artifacts arising from the clouds’ fine

structure, but staying below a computing duration of

<4 s per evaluation of �2. For comparison, a sphe-

rical model was additionally included in the

evaluation (Table 1 and SI).

For both methods, the cubic models with trun-

cated (SI) or rounded edges (Fig. 7) fit the experi-

mental data slightly better than the ideal cube. The

lower values of �2 (Table 1) also imply a higher

degree of compliance for these models, which coin-

cides with the fact that the particles’ edges and

corners gradually round out over time when being

stored in suspension for more than six months.

For the model with rounded edges we obtain the same result

of L = 53.4 nm with �L = 3.2 nm. With this model, we addi-

tionally obtain a radius of curvature of Rcurve ’ 7 nm, which is

in good agreement with the value measured with SEM

(Section 3). With the SPONGE we obtain L =

(54.00 � 0.06) nm and �L = (3.1 � 0.9) nm. The relative

deviation of the mean face-to-face-distance �L /L again

equals 1.1%.

Since the measured ensemble of Au nanocubes does not

consist only of cubes with a single shape (ideal, truncated or

rounded) but partially contains all of these plus particles with

undefined (i.e. non-cubic) shapes (Fig. 5), none of the specific

cubic models used is actually able to exactly fit the measure-

ment data, meaning I /IFIT ’ 1 and �2
� 1 for the entire q

range. Also the uncertainty estimate coming from data

processing (Section 4.1), meaning the background subtraction

in particular, could be underestimated.

Thus, a next step to improve the overall model of the

particle ensemble could be the application of a model function

including all assumed cubic models with their volume-

weighted percentage of the total particle population. The
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Figure 7
CDEF versus the SPONGE. Fit results of Au nanocubes using a cubic
model with rounded edges. Coupling of the SPONGE with McSAS
additionally reveals an uncertainty of IFIT, and thus the uncertainty of the
underlying size distribution can be stated (Fig. 6). See Table 1 for further
information.

Table 1
CDEF: summary of fitting results of homogeneous cubic models with number
concentration C, mean particle size L, standard deviation �L, truncation factor T (in
terms of L/21/2), radius of curvature Rcurve (in terms of L/2), number of iterations Niter

of the Powell algorithm, number of function evaluations Nfev of the �2 function and
computing time t.

Model
C†
(cm�3)

L
(nm)

�L

(nm) T Rcurve �2 Niter Nfev

t
(s)

Ideal cube 8.709 � 109 52.5 2.8 – – <33 5 262 <37
Truncated cube 8.604 � 109 53.4 3.3 0.91 – <23 5 433 <1339
Rounded cube 8.562 � 109 53.4 3.3 – 0.27 (7.2 nm) <21 6 493 <1172
Sphere 8.636 � 109 31.7‡ 3.4§ – – <158 5 274 <39

† Number concentration is based on an effective electron contrast of �� ’ 4077 nm�3 of Au particles
suspended in H2O at 8 keV. ‡ Spherical radius in nanometres. § Standard deviation of radius in
nanometres.

Figure 6
CDEF versus the SPONGE: the SPONGE’s volume-weighted size
distribution reveals a mean value of L = (54.00 � 0.06) nm. The volume-
weighted distribution using CDEF again shows an expectation value of
L = 53.4 nm.



percentage would need to be determined for a representative

sample of the ensemble in advance, for instance using

microscopic methods with which number-weighted percen-

tages would be obtained.

6. Conclusion

CDEF is suitable for calculating single-particle SAXS profiles

of common particle shapes (including shapes with high aspect

ratios) with satisfactory accuracy, which was shown by

comparison with known analytic form factors. Here, a suffi-

cient but minimal number of scattering points should be

selected to prevent artifacts from appearing in the scattering

profile while keeping the computing effort low. Additionally,

users of CDEF are able to make manual changes to the

underlying pair distance histogram to further reduce the

number of necessary scattering points. Occasional cross-

checks can be made between CDEF and the SPONGE to

ensure that the speed-improving assumptions in CDEF are not

interfering with the accuracy of the results. Using CDEF,

polydisperse SAXS patterns can also be generated, eventually

allowing experimental data to be evaluated. For all presented

cubic models, a direct comparison between CDEF and the

SPONGE concerning the size distribution of Au nanocubes

reveals good agreement between results, with a deviation of

the mean size of �1.5%, even though CDEF uses the histo-

gram approximation of the pair distances through DEBYER

and is confined to a Gaussian distribution.

The time-saving approach of implementing Debye’s equa-

tion in CDEF further allows us to introduce fit parameters of

the particle shape, which enable users to obtain more detailed

information on the measured nanoparticles. In terms of

‘steady-shape’ particle evaluation, moreover, CDEF has also

been coupled with a Markov chain Monte Carlo algorithm to

additionally reveal uncertainty estimates of the assumed size

distribution of bipyramidal TiO2 nanoparticles (Crouzier et al.,

2021).

While the more direct SPONGE approach is not quick

enough for iterative optimization methods, the coupling of the

SPONGE with McSAS3 allows the determination of size

distributions of odd-shaped particles when no information on

the shape of the analytical size distribution is known. The

coupling of CDEF with McSAS3 is, in principle, also possible

since both programs are implemented as Python libraries. This

would lead to superior performance compared with the

SPONGE and will be considered in future versions of CDEF.

Both approaches can be extended to include core–shell

morphologies by varying the density of scatterers or assigning

different electron densities to the individual punctiform scat-

terers. Further speed-up could be achieved by an imple-

mentation which runs on parallel hardware such as consumer

graphics cards.
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M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N.,
Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer,
R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S.,
Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones,
T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U.,
Halchenko, Y. O. & Vázquez-Baeza, Y. (2020). Nat. Methods, 17,
261–272.

Wernecke, J., Gollwitzer, C., Müller, P. & Krumrey, M. (2014). J.
Synchrotron Rad. 21, 529–536.

Wojdyr, M. (2020). Debyer, https://debyer.readthedocs.io/en/latest/.

Zhou, Z., Zhu, X., Wu, D., Chen, Q., Huang, D., Sun, C., Xin, J., Ni, K.
& Gao, J. (2015). Chem. Mater. 27, 3505–3515.

research papers
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