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On the basis of Brown’s static equations of micromagnetics, the uniaxial

polarization of the scattered neutron beam of a bulk magnetic material is

computed. The approach considers a Hamiltonian that takes into account the

isotropic exchange interaction, the antisymmetric Dzyaloshinskii–Moriya

interaction, magnetic anisotropy, the dipole–dipole interaction and the effect

of an applied magnetic field. In the high-field limit, the solutions for the

magnetization Fourier components are used to obtain closed-form results for the

spin-polarized small-angle neutron scattering (SANS) cross sections and the

ensuing polarization. The theoretical expressions are compared with experi-

mental data on a soft magnetic nanocrystalline alloy. The micromagnetic SANS

theory provides a general framework for polarized real-space neutron methods,

and it may open up a new avenue for magnetic neutron data analysis on

magnetic microstructures.

1. Introduction

Polarized neutron scattering is one of the most powerful

techniques for investigating the structure and dynamics of

condensed matter, in particular magnetic materials and

superconductors (Chatterji, 2006). Based on the seminal

papers by Bloch (1936, 1937), Schwinger (1937) and Halpern

& Johnson (1939), the theory of polarized neutron scattering

was worked out in the early 1960s by Maleev et al. (1963) and

Blume (1963). Several classic experimental studies (Shull et

al., 1951; Moon et al., 1969; Rekveldt, 1971; Drabkin et al.,

1972; Okorokov et al., 1978; Pynn et al., 1983; Mezei, 1986;

Schärpf & Capellmann, 1993) have demonstrated the basic

principles and paved the way for today’s three-dimensional

cryogenic polarization analysis device (CRYOPAD) (Tasset,

1989; Tasset et al., 1999; Brown et al., 1993; Okorokov &

Runov, 2001). With this technique it becomes possible to

measure 16 correlation functions [see the paper by Mezei

(1986) for a detailed discussion], which provide important

information on the nuclear and magnetic structure of mate-

rials [see Williams (1988) and Lovesey (1984) for textbook

expositions of polarized neutron scattering].

However, for the scattering of cold (long-wavelength)

neutrons along the forward direction – as implemented on a

small-angle neutron scattering (SANS) instrument – it has

only in recent years become possible to perform neutron

polarization analysis (retaining the full two-dimensional

scattering information) ‘routinely’: more specifically, uniaxial

(also called longitudinal or one-dimensional) polarization

analysis, where the polarization of the scattered neutrons is
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analyzed along the direction of the initial polarization (Moon

et al., 1969). Clearly, this progress is due to the development of

efficient 3He spin filters (e.g. Batz et al., 2005; Petoukhov et al.,

2006; Okudaira et al., 2020), which, in contrast to e.g. single-

crystal analyzers, can be used over a rather broad wavelength

range and cover a large detector acceptance angle. Note also

that Niketic et al. (2015) and Quan et al. (2019a,b) report on

the development of a novel neutron spin filter, based on the

strong spin dependence of the neutron scattering on protons.

For the combination of uniaxial polarization analysis with

SANS, the term POLARIS has been coined (Wiedenmann,

2005). In contrast to CRYOPAD, which generally demands the

sample to be in a zero magnetic field environment, POLARIS

allows for the application of large magnetic fields.

The POLARIS method has been successfully employed for

studying the superparamagnetic response of concentrated

ferrofluids (Wiedenmann, 2005), proton domains in deuter-

ated solutions (van den Brandt et al., 2006; Aswal et al., 2008;

Noda et al., 2016), the multiferroic properties of HoMn3 single

crystals (Ueland et al., 2010), the role of nanoscale hetero-

geneities for the magnetostriction of Fe–Ga alloys (Mudi-

varthi et al., 2010; Laver et al., 2010), local weak

ferromagnetism in BiFeO3 (Ramazanoglu et al., 2011), nano-

metre-sized magnetic domains and coherent magnetization

reversal in an exchange-bias system (Dufour et al., 2011),

precipitates in Heusler-based alloys (Benacchio et al., 2019),

the magnetic microstructure of nanoscaled bulk magnets

(Honecker et al., 2010; Michels et al., 2012), the internal spin

structure of nanoparticles (Krycka et al., 2010, 2014; Hasz et

al., 2014; Grutter et al., 2017; Orue et al., 2018; Bender, Fork et

al., 2018; Bender, Wetterskog et al., 2018; Oberdick et al., 2018;

Ijiri et al., 2019; Bender et al., 2019; Honecker et al., 2020), and

Invar alloys (Stewart et al., 2019). Polarization analysis further

makes it possible to reveal the direction of the magnetic

anisotropy in single-crystalline spin systems, e.g. an easy plane

versus an easy axis anisotropy or the confinement of the

propagation vector along certain crystallographic directions in

chiral and other exotic magnets (Takagi et al., 2018; White et

al., 2018). In all of the above-mentioned studies, the spin-

resolved SANS cross sections were obtained and analyzed, but

the polarization of the scattered neutrons was not further

investigated.

Historically, this is the domain of the neutron depolariza-

tion technique (see e.g. Halpern & Holstein, 1941; Hughes et

al., 1948, 1949; Burgy et al., 1950; Maleev & Ruban, 1970;

Rekveldt, 1971, 1973; Drabkin et al., 1972; Maleev & Ruban,

1972; Rosman & Rekveldt, 1991, and references therein),

where one measures the change in the polarization of a

polarized neutron beam after transmission through a partially

magnetized magnetic material. Analysis of the 3 � 3 depo-

larization matrix yields information on e.g. the average

domain size and the domain magnetization. This type of

polarization analysis on a SANS instrument has been termed

‘vector analysis of polarization’ by Okorokov & Runov (2001).

Alternatively, it has been demonstrated that the neutron spin-

echo technique can resolve magnetic small-angle scattering

(Grigoriev et al., 2006; Rekveldt et al., 2006). Spin-echo small-

angle neutron scattering (SESANS) provides information on

correlations on a length scale from about 10 nm to 10 mm. In

SESANS, the neutron spin precesses in a constant magnetic

field and the neutron runtime difference due to sample scat-

tering results in the dephasing of the neutron spins and in a

loss of the measured beam polarization. Magnetic scattering

can result in neutron spin-flip events that act as an additional

optical element reversing the sense of the Larmor precession.

The change of the neutron spin due to magnetic scattering can

be exploited to study magnetic systems.

More recently, the method of polarized neutron dark-field

contrast imaging (DFI) has been introduced for spatially

resolved small-angle scattering studies of magnetic micro-

structures (Valsecchi et al., 2021). First experimental results on

a sintered Nd–Fe–B magnet demonstrated not only that dark-

field contrast from half-polarized SANS measurements can be

observed but also that it becomes possible to separate and

retrieve dark-field contrast for all spin-flip and non-spin-flip

channels separately. The polarized DFI method has great

potential for analyzing real-space magnetic correlations on a

macroscopic length scale, well beyond what can be probed

with a conventional SANS instrument. Similarly, first

measurements of micrometre-sized magnetic correlations

have been performed with an alternative neutron precession

technique called spin-echo modulated small-angle neutron

scattering (SEMSANS) (Li et al., 2021). With this setup, the

spin manipulations are performed before the sample so that

the measurement is not sensitive to large stray fields (related

e.g. to the sample environment), and it even allows studies

under beam depolarizing conditions. The polarization

analyzer discriminates the polarization parallel to the

analyzing direction, such that the scattering cross sections for

the opposite neutron spin state are probed at the sample. The

two-dimensional neutron polarization modulation observed

on the detector is then integrated to yield the one-dimensional

correlation function of the system.

For the above techniques, the analysis of magnetic materials

is based on performing a neutron-spin analysis deliberately

after the sample. The magnetic spin-flip scattering signal of the

sample is utilized as a spin flipper to obtain exclusive sensi-

tivity of the signal on local magnetization components. The

projected correlation function is modified with the polariza-

tion of the scattered neutrons to reflect the additional phase in

precession angles due to the spin-flip event.

In this work, we present a micromagnetic SANS theory for

the uniaxial polarization of the scattered neutrons of bulk

magnetic materials. The approach has recently been employed

to analyze SANS cross sections directly in Fourier space

(Michels, 2021) and is here extended to include the final

polarization, which can be measured with a much higher

precision than the individual cross sections (Brown, 2006). The

continuum theory of micromagnetics allows one to char-

acterize the large-scale magnetization distribution of poly-

crystalline magnets, which is determined e.g. by magnetic

anisotropy and saturation-magnetization fluctuations, anti-

symmetric exchange, and dipolar stray fields. Since the validity

of micromagnetic theory extends to the micrometre regime,
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the theoretical framework developed here may also serve as a

basis for the above-mentioned polarized neutron techniques

(SESANS, DFI, SEMSANS), which provide real-space infor-

mation on large-scale magnetic correlations. Rekveldt et al.

(2006) summarize the relevant expressions which relate the

magnetization distribution of the material (obtained from

micromagnetics) to the final polarization and the projected

correlation function. The derived theoretical expressions for

the polarization are tested against experimental SANS data on

a soft magnetic nanocrystalline alloy.

The present paper is organized as follows: Section 2

summarizes the elementary equations of polarized neutron

scattering, while Section 3 sketches the basic steps and ideas of

the micromagnetic SANS theory. These two sections are well

documented in the literature and may be skipped by the

reader. They are included here merely to achieve a self-

contained presentation. Section 4 gives the final expressions

for the polarization of the scattered neutrons, discusses special

sector averages and shows the results for the 2� azimuthally

averaged saturated state. Section 5 furnishes the details of the

polarized SANS experiment and on the investigated sample,

while Section 6 presents and discusses the analysis of the

experimental results. Section 7 summarizes the main findings

of this study. Appendix A features the expressions for the

spin-resolved SANS cross sections in terms of the Fourier

components of the magnetization, which enter the final

expressions for the polarization, while Appendix B showcases

some computed examples for the polarization.

2. Uniaxial SANS polarization analysis

Fig. 1 depicts a typical uniaxial neutron polarization analysis

setup. We consider the most relevant cases where the exter-

nally applied magnetic field H0, which defines the polarization

axis for both the incident and scattered neutrons, is either

perpendicular or parallel to the wavevector k0 of the incident

neutron beam. Note that in both scattering geometries H0 is

assumed to be parallel to the ez direction of a Cartesian

laboratory coordinate system.

In a classical picture, the polarization P of a neutron beam

containing N spins can be defined as the average over the

individual polarizations Pj of the neutrons (Schweizer, 2006):

P ¼
1

N

XN

j¼1

Pj; ð1Þ

where 0 � jPj � 1. In experimental SANS studies the beam is

usually partially polarized along a certain guide-field direction

(quantization axis), which we take here as the z direction.

Assuming that the expectation values of the perpendicular

polarization components vanish, i.e. Px ¼ Py ¼ 0, and that

Pz ¼ P, one can then introduce the fractions

pþ ¼ 1
2 1þ Pð Þ and p� ¼ 1

2 1� Pð Þ ð2Þ

of neutrons in the spin-up (+) and spin-down (�) states, with

pþ þ p� ¼ 1 and pþ � p� ¼ P: ð3Þ

Obviously, for an unpolarized beam pþ ¼ p� ¼ 0:5 and P ¼ 0,

while P ¼ þ1 (pþ ¼ 1) or P ¼ �1 (p� ¼ 1) for a fully

polarized beam.

When there is an additional analyzer behind the sample,

configured such that it selects only neutrons with spins either

parallel or antiparallel to the initial polarization, then one can

distinguish four scattering cross sections (scattering processes)

(Blume, 1963; Moon et al., 1969; Schweizer, 2006): two that

conserve the neutron-spin direction (++ and ��), called the

non-spin-flip cross sections

d�þþ

d�
¼ K b�2

H j
eNNj2 þ b�1

H ð
eNNeQQ�z þ eNN�eQQzÞ þ j

eQQzj
2

h i
;

d���

d�
¼ K b�2

H j
eNNj2 � b�1

H ð
eNNeQQ�z þ eNN�eQQzÞ þ j

eQQzj
2

h i
; ð4Þ

and two cross sections which reverse the neutron spin (+� and

�+), called the spin-flip cross sections

d�þ�

d�
¼ K jeQQxj

2
þ jeQQyj

2
� iðeQQx

eQQ�y � eQQ�xeQQyÞ

h i
;

d��þ

d�
¼ K jeQQxj

2
þ jeQQyj

2
þ iðeQQx

eQQ�y � eQQ�xeQQyÞ

h i
: ð5Þ
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Figure 1
Sketch of the SANS setup and of the two most often employed scattering
geometries in magnetic SANS experiments. (a) Applied magnetic field H0

perpendicular to the incident neutron beam (k0 ? H0); (b) k0 k H0. The
momentum-transfer or scattering vector q corresponds to the difference
between the wavevectors of the incident (k0) and the scattered (k1)
neutrons, i.e. q ¼ k0 � k1. Its magnitude for elastic scattering,
q ¼ jqj ¼ ð4�=�Þ sinð Þ, depends on the mean wavelength � of the
neutrons and on the scattering angle 2 . For a given �, sample-to-
detector distance LSD and distance rD from the centre of the direct beam
to a certain pixel element on the detector, the q value can be obtained
using q ffi k0ðrD=LSDÞ. The symbols ‘P’, ‘F’ and ‘A’ denote, respectively,
the polarizer, spin flipper and analyzer, which are optional neutron
optical devices. Note that a second flipper after the sample has been
omitted here. In spin-resolved SANS (POLARIS) using a 3He spin filter,
the transmission (polarization) direction of the analyzer can be switched
by 180� by means of a radiofrequency pulse. SANS is usually
implemented as elastic scattering (k0 ¼ k1 ¼ 2�=�), and the component
of q along the incident neutron beam [i.e. qx ¼ 0 in (a) and qz ¼ 0 in (b)]
is neglected. The angle � may be conveniently used in order to describe
the angular anisotropy of the recorded scattering pattern on a two-
dimensional position-sensitive detector. Image taken from Michels
(2021), reproduced by permission of Oxford University Press.



In these expressions, K ¼ 8�3V�1b2
H, where V denotes

the scattering volume. bH ¼ 2:70� 10�15 m ��1
B ¼ 2:91 �

108 A�1 m�1 is a constant (with �B the Bohr magneton) that

relates the atomic magnetic moment �a to the atomic

magnetic scattering length bm, given by (Moon et al., 1969)

bm ¼
�nr0

2

�a

�B

f ðqÞ ffi 2:70� 10�15 m
�a

�B

f ðqÞ ffi bH�a: ð6Þ

�n ¼ 1:913 denotes the neutron magnetic moment expressed

in units of the nuclear magneton, r0 ¼ 2:818� 10�15 m is the

classical radius of the electron and f ðqÞ is the normalized

atomic magnetic form factor, which we set to unity, f ffi 1,

along the forward direction. The function eNNðqÞ denotes the

Fourier transform of the nuclear scattering-length density

NðrÞ. The partial SANS cross sections, equations (4) and (5),

are written here in terms of the Cartesian components of the

Halpern–Johnson vector eQQ (sometimes also denoted as the

magnetic interaction or magnetic scattering vector) (Halpern

& Johnson, 1939):

eQQ ¼ q̂q� q̂q� eMM� �
¼ q̂q q̂q 	 eMM� �

� eMM; ð7Þ

where q̂q is the unit scattering vector, and eMMðqÞ ¼
feMMxðqÞ; eMMyðqÞ; eMMzðqÞg represents the Fourier transform of the

magnetization vector field MðrÞ ¼ fMxðrÞ;MyðrÞ;MzðrÞg of the

sample under study. The three-dimensional Fourier-transform

pair of the magnetization is defined as follows:

eMMðqÞ ¼ 1

ð2�Þ3=2

Zþ1
�1

Zþ1
�1

Zþ1
�1

MðrÞ exp �iq 	 rð Þ d3r; ð8Þ

MðrÞ ¼
1

ð2�Þ3=2

Zþ1
�1

Zþ1
�1

Zþ1
�1

eMMðqÞ exp iq 	 rð Þ d3q: ð9Þ

The Halpern–Johnson vector is a manifestation of the dipolar

origin of magnetic neutron scattering, and it emphasizes the

fact that only the components of M that are perpendicular to q

are relevant for magnetic neutron scattering. We note that

different symbols for the Halpern–Johnson vector such as M?,

Q?, S? or q, as in the original paper by Halpern & Johnson

(1939), can be found in the literature. Likewise, in many

textbooks (e.g. Lovesey, 1984; Squires, 2012) eQQ is defined with

a minus sign and normalized by the factor 2�B, which makes it

dimensionless. eQQ is a linear vector function of the components

of eMM. Both eQQðqÞ and eMMðqÞ are in general complex vectors. For

k0 ? H0 and k0 k H0 one finds, respectively (subscripts ? and

k refer to the respective scattering geometry, compare Fig. 1),

q̂q? ¼ f0; sin �; cos �g; ð10Þ

q̂qk ¼ fcos �; sin �; 0g: ð11Þ

Inserting these expressions into equation (7) yields

eQQ? ¼ �eMMx

�eMMy cos2 � þ eMMz sin � cos �eMMy sin � cos � � eMMz sin2 �

8><
>:

9>=
>;; ð12Þ

eQQk ¼
�eMMx sin2 � þ eMMy sin � cos �eMMx sin � cos � � eMMy cos2 �

�eMMz

8><
>:

9>=
>;: ð13Þ

Inspection of equations (4) and (5) shows that the transverse

components eQQx and eQQy give rise to spin-flip scattering, while

the longitudinal component eQQz results in non-spin-flip scat-

tering. Furthermore, if we set � ¼ 0� in equation (12), which

corresponds to the case that the scattering vector is along the

neutron polarization, we see that

eQQ�¼0�

? ¼

�eMMx

�eMMy

0

8<
:

9=
;; ð14Þ

so that the magnetic scattering along the polarization direction

is purely spin flip, and nuclear coherent and magnetic scat-

tering are fully separated in the perpendicular scattering

geometry [compare also with equations (4) and (5) for the

non-spin-flip and the spin-flip SANS cross sections and with

equation (21) for the final polarization]. In the case k0 k H0

[equation (13)], spin-flip scattering probes only the transverse

magnetization Fourier components eMMx;y, whereas the long-

itudinal scattering is entirely contained in the non-spin-flip

channel, in contrast to the k0 ? H0 geometry. We emphasize

that nuclear-spin-dependent SANS is not taken into account

in this paper, so that the corresponding scattering contribu-

tions do not show up in equations (4) and (5).

The total SANS cross section d�=d� can be expressed in

terms of the initial spin populations p
 as (Blume, 1963; Moon

et al., 1969; Schweizer, 2006)

d�

d�
¼ pþ

d�þþ

d�
þ pþ

d�þ�

d�
þ p�

d���

d�
þ p�

d��þ

d�
: ð15Þ

Inserting the above expressions for pþ and p� [equations (2)

and (3)] and for the partial SANS cross sections d�

=d� and

d�
�=d� [equations (4) and (5)], equation (15) evaluates to

d�

d�
¼ K

�
b�2

H j
eNNj2 þ jeQQj2 þ P 	 b�1

H ð
eNNeQQ� þ eNN�eQQÞ

� iP 	 ðeQQ� eQQ�Þ�; ð16Þ

which, using P ¼ f0; 0;Pz ¼ 
Pg, can be rewritten as

d�


d�
¼ K

�
b�2

H j
eNNj2 þ jeQQj2 
 Pb�1

H ð
eNNeQQ�z þ eNN�eQQzÞ

� iPðeQQx
eQQ�y � eQQ�xeQQyÞ

�
: ð17Þ

Since the cross section is a scalar quantity and the polarization

is an axial vector (or pseudovector), equation (16) shows that

the system under study must itself contain an axial vector. As

emphasized by Maleev (2002), examples for such built-in

pseudovectors are related to the interaction of a polycrystal-

line sample with an external magnetic field (inducing an

average magnetization directed along the applied field), the

existence of a spontaneous magnetization in a ferromagnetic

single crystal, the antisymmetric Dzyaloshinskii–Moriya

interaction (DMI), mechanical (torsional) deformation or the

presence of spin spirals. If on the other hand there is no
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preferred axis in the system, then d�=d� is independent of P.

Examples include a collection of randomly oriented non-

interacting nuclear (electronic) spins, which describe the

general case of nuclear (paramagnetic) scattering at not-too-

low temperatures and large applied fields, or a multi-domain

ferromagnet with a random distribution of the domains. The

same condition – existence of an axial system vector – applies

for neutrons to be polarized in the scattering process [compare

the last two terms in equation (21) below].

In the domain of magnetic SANS it is customary to denote

experiments with a polarized incident beam only, and no spin

analysis of the scattered neutrons, with the acronym

SANSPOL. The two SANSPOL cross sections d�þ=d� and

d��=d� (also sometimes denoted as the half-polarized SANS

cross sections) combine non-spin-flip and spin-flip scattering

contributions, according to (p
 ¼ 1)

d�þ

d�
¼

d�þþ

d�
þ

d�þ�

d�
; ð18Þ

d��

d�
¼

d���

d�
þ

d��þ

d�
: ð19Þ

Finally, noting that an unpolarized beam can be viewed as

consisting of 50% spin-up and 50% spin-down neutrons

[compare equations (2) and (3)], the unpolarized SANS cross

section is obtained as [compare equation (15)]

d�

d�
¼

1

2

d�þþ

d�
þ

d�þ�

d�
þ

d���

d�
þ

d��þ

d�

� �

¼
1

2

d�þ

d�
þ

d��

d�

� �
: ð20Þ

The polarization Pf of the scattered beam along the direction

of the incident neutron polarization P is obtained from the

following relation (Blume, 1963; Moon et al., 1969; Schweizer,

2006):

Pf

d�

d�
¼ pþ

d�þþ

d�
þ p�

d��þ

d�
� p�

d���

d�
� pþ

d�þ�

d�

¼ KP b�2
H j
eNNj2 þ jeQQzj

2
� jeQQxj

2
� jeQQyj

2
� �

þ K b�1
H ð
eNNeQQ�z þ eNN�eQQzÞ þ iðeQQx

eQQ�y � eQQ�xeQQyÞ

h i
: ð21Þ

The first four terms in the second line on the right-hand side of

equation (21) demonstrate that nuclear scattering (to be more

precise, the nuclear coherent scattering, the isotopic disorder

scattering, and 1/3 of the nuclear-spin-dependent scattering)

and scattering due to the longitudinal component eQQz of the

magnetic scattering vector eQQ do not reverse the initial polar-

ization, while the two transverse components eQQx and eQQy give

rise to spin-flip scattering. The last two terms in equation (21)

do create polarization: these are the familiar nuclear–magnetic

interference term (eNNeQQ�z þ eNN�eQQz), which is commonly used to

polarize beams, and the chiral term iðeQQx
eQQ�y � eQQ�xeQQyÞ, which is

of relevance in inelastic scattering (dynamic chirality)

(Okorokov et al., 1981; Maleev, 2002; Grigoriev et al., 2015), in

elastic scattering on spiral structures and weak ferromagnets

(canted antiferromagnets) (Thoma et al., 2021), or in the

presence of the DMI in microstructural-defect-rich magnets

(Michels et al., 2019; Quan et al., 2020). We remind the reader

that nuclear-spin-dependent scattering is not taken into

account in the expressions for the magnetic SANS cross

sections. In the general expression for the polarization of the

scattered neutrons, a term iP� ðeNNeQQ� � eNN�eQQÞ appears

(Schweizer, 2006), which is ignored in equation (21). This term

rotates the polarization perpendicular to the initial polariza-

tion and cannot be observed in the uniaxial setup. We

emphasize that in linear neutron polarimetry it is not possible

to distinguish between a rotation of the polarization vector

and a change of its length (Moon et al., 1969; Maleev, 2002).

From equation (21) it follows that the polarization PfðqÞ of

the scattered neutron beam at momentum-transfer vector q

can be expressed as (Maleev et al., 1963; Blume, 1963; Brown,

2006)

Pf ¼

pþ
d�þþ

d�
þ p�

d��þ

d�
� p�

d���

d�
� pþ

d�þ�

d�

pþ
d�þþ

d�
þ pþ

d�þ�

d�
þ p�

d���

d�
þ p�

d��þ

d�

; ð22Þ

which for pþ ¼ 1 (p� ¼ 0) and p� ¼ 1 (pþ ¼ 0) reduces to,

respectively,

Pþf ¼

d�þþ

d�
�

d�þ�

d�
d�þþ

d�
þ

d�þ�

d�

¼ 1� 2

d�þ�

d�
d�þ

d�

; ð23aÞ

P�f ¼

d��þ

d�
�

d���

d�
d���

d�
þ

d��þ

d�

¼ � 1� 2

d��þ

d�
d��

d�

0
B@

1
CA: ð23bÞ

Note that, for the following analysis, we drop the minus sign in

front of the round brackets in equation (23b). For a quanti-

tative analysis of P
f , a theoretical model for the magnetization

Fourier components eMMx;y;zðqÞ and for eNNðqÞ is required. This

will be discussed in the next section.

3. Sketch of micromagnetic SANS theory

Michels et al. (2016) presented a theory for the magnetic

SANS cross section of bulk ferromagnets. The approach,

which considers the response of the magnetization to spatially

inhomogeneous magnetic anisotropy fields and magnetostatic

fields, is based on the continuum theory of micromagnetics,

valid close to magnetic saturation, and takes the antisym-

metric DMI into account. Here, we recall the basic steps and

ideas. The starting point is the static equations of micro-

magnetics for the bulk, which can be derived from the

following expression for the magnetic Gibbs free energy

(Brown, 1963; Aharoni, 2000; Kronmüller & Fähnle, 2003):

G ¼
R
� dV

¼
R �

AðrmÞ2 þD m 	 ðr �mÞ

þ !a �
1
2�0Hd 	M� �0H0 	M

�
dV; ð24Þ
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where the first term denotes the energy due to the isotropic

exchange interaction, the second term is the antisymmetric

Dzyaloshinskii–Moriya energy (assuming a cubic symmetry),

!a is the anisotropy energy density, and the last two terms are

the energies related, respectively, to the dipolar interaction

and the externally applied magnetic field; mðrÞ ¼ MðrÞ=MsðrÞ

(Michels et al., 2016). Variational calculus then leads to the

following balance-of-torques equation:

MðrÞ �HeffðrÞ ¼ 0; ð25Þ

which expresses the fact that at static equilibrium the torque

on the magnetization MðrÞ due to an effective magnetic field

HeffðrÞ vanishes everywhere inside the material. The effective

field is defined as the functional derivative of the ferro-

magnet’s total energy-density functional � with respect to the

magnetization:

Heff ¼ �
1

�0

��

�M

¼ Hex þHDMI þHp þHd þH0; ð26Þ

where Hex ¼ l2
Mr

2M is the exchange field, HDMI ¼ �lDr �M

is due to the DMI, HpðrÞ is the magnetic anisotropy field, HdðrÞ

is the magnetostatic field and H0 is a uniform applied magnetic

field; r2 is the Laplace operator and r ¼ @=@x ex þ @=@y ey þ

@=@z ez is the gradient operator, where the unit vectors along

the Cartesian laboratory axes are, respectively, denoted by ex,

ey and ez (�0, vacuum permeability). The micromagnetic

length scales

lM ¼
2A

�0M2
0

� �1=2

ð27Þ

and

lD ¼
2D

�0M2
0

ð28Þ

are, respectively, related to the magnetostatic interaction and

to the DMI. The values for the DMI constant D and for the

exchange-stiffness constant A are assumed to be uniform

throughout the material, in contrast to the local saturation

magnetization MsðrÞ, which is assumed to depend explicitly on

the position r [see also Metlov & Michels (2015)];

M0 ¼ V�1
R

V MsðrÞ dV denotes the macroscopic saturation

magnetization of the sample, which can be measured with a

magnetometer. Typical values for the above length scales are

lM ffi 5–10 nm (Kronmüller & Fähnle, 2003) and lD ffi 1–2 nm.

However, due to the lack of an established database for D

values, this estimate should be considered with some care.

The solution of the linearized version of equation (25) [see

Michels et al. (2016) for details] provides closed-form

expressions for the transverse Fourier components eMMxðqÞ andeMMyðqÞ. Together with theoretical models (or even experi-

mental data) for the longitudinal magnetization Fourier

component eMMzðqÞ and for the nuclear scattering amplitudeeNNðqÞ, these analytical solutions can be employed to compute

the corresponding terms in the SANS cross sections (see

Appendix A) and, hence, to evaluate the final polarizations.

Averaging over the directions of the magnetic anisotropy field

in the plane perpendicular to the applied field, the magnetic

terms for the transverse magnetic field geometry (k0 ? H0,

qx ¼ 0) are

jeMMxj
2
¼

p2

2

eHH2
p 1þ p sin2 �
� 	2

þp2l2
Dq2 cos2 �

h i
þ 2eMM2

zð1þ pÞ
2
l2
Dq2 sin2 �

1þ p sin2 � � p2l2
Dq2 cos2 �

� 	2 ;

ð29Þ

jeMMyj
2
¼

p2

2

eHH2
p 1þ p2l2

Dq2 cos2 �ð Þ þ 2eMM2
z 1þ pl2

Dq2ð Þ
2
sin2 � cos2 �

1þ p sin2 � � p2l2
Dq2 cos2 �

� 	2
; ð30Þ

CTyz ¼
eMMy
eMM�z þ eMM�yeMMz ¼ �

2eMM2
zp 1þ pl2

Dq2ð Þ sin � cos �

1þ p sin2 � � p2l2
Dq2 cos2 �

;

ð31Þ

� 2i	 ¼

2eHH2
pp3 2þ p sin2 �
� 	

lDq cos3 � þ 4eMM2
zpð1þ pÞ2lDq sin2 � cos �

1þ p sin2 � � p2l2
Dq2 cos2 �

� 	2 :

ð32Þ

The results for the parallel field geometry (k0 k H0, qz ¼ 0)

are

jeMMxj
2
¼

p2

2

eHH2
p 1þ pð2þ pÞ sin2 �
� �

þ 2eMM2
zð1þ pÞ

2
l2
Dq2 sin2 �

1þ pð Þ
2

;

ð33Þ

jeMMyj
2
¼

p2

2

eHH2
p 1þ pð2þ pÞ cos2 �
� �

þ 2eMM2
zð1þ pÞ

2
l2
Dq2 cos2 �

1þ pð Þ
2 ;

ð34Þ

CTxy ¼
eMMx
eMM�y þ eMM�xeMMy

¼ �p2

eHH2
ppð2þ pÞ þ 2eMM2

zð1þ pÞ2l2
Dq2

h i
sin � cos �

1þ pð Þ
2

; ð35Þ

	 ¼ 0: ð36Þ

In equations (29)–(36), eHH2
pðq
HÞ denotes the magnitude-

square of the Fourier transform of the magnetic anisotropy

field, and eMM2
zðq
MÞ is the Fourier component of the long-

itudinal magnetization. We also emphasize that

eMMz ffi
eMMs ð37Þ

is assumed in the approach-to-saturation regime, which

Bersweiler et al. (2022) defined for applied fields where the

reduced magnetization M=M0
>
� 90%. These functions char-

acterize the strength and spatial structure of, respectively, the

magnetic anisotropy field HpðrÞ, with correlation length 
H,

and the local saturation magnetization MsðrÞ, with correlation

length 
M.
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pðq;HiÞ ¼
M0

Heffðq;HiÞ
¼

M0

Hi 1þ l2
Hq2

� 	 ð38Þ

is a dimensionless function, where

Heffðq;HiÞ ¼ Hi 1þ l2
Hq2

� 	
ð39Þ

is the effective magnetic field [not to be confused with HeffðrÞ

in equation (25)], which depends on the internal magnetic field

Hi ¼ H0 � NM0 (N, demagnetizing factor), on q ¼ jqj and on

the exchange length of the field

lH ¼
2A

�0M0Hi

� �1=2

: ð40Þ

The latter quantity is a measure for the size of inhomogen-

eously magnetized regions around microstructural lattice

defects (Mettus & Michels, 2015). The Fourier coefficient of

the longitudinal magnetization eMMzðqÞ provides information on

the spatial variation of the saturation magnetization MsðrÞ; for

instance, jeMMzj
2
/ ð�MÞ

2 in a multiphase magnetic nano-

composite, where �M denotes the jump of the magnetization

magnitude at internal (particle–matrix) interfaces (Honecker

& Michels, 2013). Moreover, while the squared Fourier

components and the cross terms are even functions of q, it is

easily seen that the chiral term �2i	ðqÞ [equation (32)] is

asymmetric in q, which is due to the DMI term: at small fields,

when the term / eHH2
p in the numerator of equation (32)

dominates, two extrema parallel and antiparallel to the field

axis are observed, whereas at larger fields, when the term

/ eMM2
z dominates, additional maxima and minima appear

approximately along the detector diagonals (Michels et al.,

2016).

By inserting equations (29)–(36) into the SANS cross

sections (see Appendix A) and by specifying particular models

for the nuclear scattering function eNN2ðq
nucÞ, the longitudinal

magnetic Fourier component eMM2
zðq
MÞ and the Fourier coef-

ficient of the magnetic anisotropy field eHH2
pðq
HÞ, one obtains

P
 as a function of the magnitude and orientation of the

scattering vector q, the applied magnetic field H0, the

magnetic interaction parameters (A, D, M0, �M, Hp, 
M, 
H)

and microstructural quantities (particle-size distribution,

crystallographic texture etc.). We emphasize that the expres-

sions (29)–(36) for the Fourier components can of course also

be employed directly in the SANS cross sections to analyze

experimental scattering data [see e.g. Bersweiler et al. (2022)

for a recent example]. Later on in the paper, for graphically

displaying P
, we have assumed that eNN2, eMM2
z and eHH2

p are all

isotropic (i.e. � independent), as is appropriate for poly-

crystalline texture-free bulk ferromagnets, and that they can

be represented by Lorentzian-squared functions, i.e.

eMM2
zðq
MÞ ¼

A2
M


6
M

1þ q2
2
M

� 	2
; ð41Þ

eHH2
pðq
HÞ ¼

A2
H


6
H

1þ q2
2
H

� 	2 ; ð42Þ

eNN2
ðq
nucÞ ¼ �ðqÞb

2
H
eMM2

zðq
MÞ; ð43Þ

where the amplitudes A2
M and A2

H (both in units of A2 nm�2)

are, respectively, related to the mean-square magnetization

fluctuation and anisotropy-field variation. Of course, other

scattering functions such as the form factor of a sphere and

various structure-factor models (e.g. a Percus–Yevick hard-

sphere structure factor) can be straightforwardly implemented

(Mettus & Michels, 2015). The characteristic structure sizes ofeMM2
z and eHH2

p are generally different. We remind the reader that

these are related, respectively, to the spatial extent of regions

with uniform saturation magnetization (
M) and magnetic

anisotropy field (
H). Measurement of the magnetic-field-

dependent Guinier radius provides a means to determine

these correlation lengths as well as the exchange-stiffness

constant A (Michels et al., 2020). A simple example where


M ¼ 
H is a collection of homogeneous and defect-free

magnetic nanoparticles in a magnetic and homogeneous

matrix. If, on the other hand, atomically sharp grain bound-

aries are introduced into such particles, then the direction of

the magnetic anisotropy field changes due to the changing set

of crystallographic directions at the intraparticle interfaces,

but the value of Ms may remain the same, so that 
H <
M.

Honecker & Michels (2013) showed, assuming 
H ¼ 
M and

using the sphere form factor for both eMM2
z and eHH2

p, that it is the

ratio of Hp=�M (related to the amplitudes AH and AM) that

determines the angular anisotropy and the asymptotic power-

law dependence of d�=d� as well as the characteristic decay

length of spin-misalignment fluctuations. The ratio of nuclear

to longitudinal magnetic scattering is denoted by �, which for

the general case (that the nuclear correlation length 
nuc is

different from 
M) is a function of q. Here, we do not specify a

particular 
nuc and assume this characteristic size to be

contained in �ðqÞ.

4. Polarization of scattered beam

When the expressions for the elastic differential spin-flip and

SANSPOL cross sections d�
�=d� and d�
=d� [equations

(66)–(70)] are inserted into equations (23a) and (23b), and use

is made of the expressions for the magnetization Fourier

components [equations (29)–(36)], one obtains, respectively,

for the transverse and longitudinal scattering geometry

Pþf?ðqÞ ¼

1� 2
h1ðqÞ � i	ðqÞ

h2ðqÞ � b�1
H CTeNNeMMz

sin2 � þ b�1
H CTeNNeMMy

sin � cos � � i	ðqÞ
;

ð44aÞ

P�f?ðqÞ ¼

1� 2
h1ðqÞ þ i	ðqÞ

h2ðqÞ þ b�1
H CTeNNeMMz

sin2 � � b�1
H CTeNNeMMy

sin � cos � þ i	ðqÞ
;

ð44bÞ
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PþfkðqÞ ¼ 1� 2
g1ðqÞ

g2ðqÞ � b�1
H CTeNNeMMz

; ð44cÞ

P�fkðqÞ ¼ 1� 2
g1ðqÞ

g2ðqÞ þ b�1
H CTeNNeMMz

: ð44dÞ

The functions h1ðqÞ, h2ðqÞ, g1ðqÞ and g2ðqÞ are independent of

the incident neutron beam polarization and are defined as

h1ðqÞ ¼ jeMMxj
2
þ jeMMyj

2 cos4 �

þ jeMMzj
2 sin2 � cos2 � � CTyz sin � cos3 �; ð45Þ

h2ðqÞ ¼ b�2
H j
eNNj2 þ jeMMxj

2
þ jeMMyj

2 cos2 �

þ jeMMzj
2 sin2 � � CTyz sin � cos �; ð46Þ

g1ðqÞ ¼ jeMMxj
2 sin2 � þ jeMMyj

2 cos2 � � CTxy sin � cos �; ð47Þ

g2ðqÞ ¼ b�2
H j
eNNj2 þ jeMMxj

2 sin2 � þ jeMMyj
2 cos2 �

þ jeMMzj
2
� CTxy sin � cos �: ð48Þ

At complete magnetic saturation, when MðrÞ ¼ f0; 0;MsðrÞg,

these expressions reduce to

hsat
1 ðqÞ ¼ jeMMsj

2 sin2 � cos2 �; ð49Þ

hsat
2 ðqÞ ¼ b�2

H j
eNNj2 þ jeMMsj

2 sin2 �; ð50Þ

gsat
1 ðqÞ ¼ 0; ð51Þ

gsat
2 ðqÞ ¼ b�2

H j
eNNj2 þ jeMMsj

2; ð52Þ

where eMMsðqÞ is the Fourier transform of MsðrÞ. As can be seen

from equations (44a) and (44b), the difference between Pþf
and P�f resides, for k0 ? H0, in the nuclear–magnetic inter-

ference terms / eNNeMMz and / eNNeMMy, and in 	ðqÞ, while for

k0 k H0 the two polarizations differ only by the term / eNNeMMz

[equations (44c) and (44d)]. We also remind the reader that

the Fourier coefficients in the above expressions are evaluated

in the plane of the detector, which for the perpendicular

scattering geometry corresponds to the plane qx ¼ 0 and for

the parallel geometry to the plane qz ¼ 0 (compare Fig. 1).

The eNNeMMy contribution to equations (44a) and (44b)

requires special consideration. This term is expected to be

negligible for a polycrystalline statistically isotropic ferro-

magnet with vanishing fluctuations of the saturation magne-

tization. This can be seen by scrutinizing the following

expression for the eMMy magnetization Fourier component in the

perpendicular scattering geometry, corresponding to the plane

qx ¼ 0 (Michels, 2021):

eMMy ¼

p eHHpy �
eMMzðqyqz=q2Þ 1þ pl2

Dq2ð Þ � ieHHpxplDqz

h i
1þ pðq2

y=q2Þ � p2l2
Dq2

z

; ð53Þ

where eHHpx and eHHpy denote the Cartesian components of the

Fourier transform of the magnetic anisotropy field. If we

assume that the nuclear scattering is isotropic and that eHHpx andeHHpy vary randomly in the plane perpendicular to the field, then

the corresponding averages over the direction of the aniso-

tropy field vanish. The only remaining term in the eNNeMMy

contribution is then (qy=q ¼ sin �; qz=q ¼ cos �)

CTeNNeMMy

¼ eNNeMM�y þ eNN�eMMy

¼ �
2eNNeMMzp 1þ pl2

Dq2ð Þ sin � cos �

1þ p sin2 � � p2l2
Dq2 cos2 �

; ð54Þ

where we have furthermore assumed that both eNNðqÞ andeMMzðqÞ are real valued, as is done throughout this paper. Note

that equation (54) still needs to be multiplied with the term

sin � cos � in order to obtain the corresponding contribution to

P
f? [compare equations (44a) and (44b)]. For homogeneous

single-phase materials with Ms ¼ constant, the eNNeMMy contri-

bution is expected to be negligible, and we are not aware that

this has been reported experimentally. However, for materials

exhibiting strong spatial nanoscale variations in the saturation

magnetization, i.e. Ms ¼ MsðrÞ, such as magnetic nano-

composites or porous ferromagnets, it should be possible to

observe this scattering contribution in polarized SANS

experiments.

4.1. Sector averages

Carrying out a 2� azimuthal average of P
f ðqÞ, which are

maps with numbers varying between 
1, may result in a

significant loss of information (compare e.g. Figs. 10 and 11

below). It is therefore often advantageous to consider cuts of

P
f along certain directions in q space. This might also be of

relevance for other spin-manipulating techniques such as

SEMSANS, which is a one-dimensional technique that only

measures correlations in the encoding direction (Li et al.,

2021). However, one has to keep in mind that SEMSANS is a

real-space technique that (similar to SESANS and DFI)

essentially measures the cosine Fourier transform of the cross

section. Nevertheless, the analytical expressions for the

magnetization Fourier components can be used in such a

transform to obtain information on the magnetic interactions

via the projected correlation function.

Sector averages are straightforwardly obtained by evalu-

ating equations (44a)–(44d) [using equations (45)–(52)] for

certain angles �. For instance, for the perpendicular scattering

geometry and for q along the vertical direction on the detector

(� ¼ 90�), we obtain [	ðq; � ¼ 90�Þ ¼ 0, compare equation

(32)]

Pþf?ðq; � ¼ 90�Þ ¼ 1� 2
jeMMxj

2

b�2
H j
eNNj2 þ jeMMxj

2
þ jeMMzj

2
� b�1

H CTeNNeMMz

;

ð55aÞ

P�f?ðq; � ¼ 90�Þ ¼ 1� 2
jeMMxj

2

b�2
H j
eNNj2 þ jeMMxj

2
þ jeMMzj

2
þ b�1

H CTeNNeMMz

;

ð55bÞ

where [compare equation (29)]
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jeMMxj
2
ðq; � ¼ 90�Þ ¼

p2

2
eHH2

p þ 2eMM2
zl2

Dq2
� �

: ð56Þ

At saturation (Mx ¼ 0), P
f?ðq; � ¼ 90�Þ ¼ 1, except for the

case � ¼ 1, where Pþf?ðq; � ¼ 90�Þ ¼ �1. We also see that

information on the DMI is contained in jeMMxj
2 via the length

scale lD. For lD ¼ 0, jeMMxj
2
¼ ðp2=2ÞeHH2

p.

For the perpendicular scattering geometry and q along the

horizontal direction (� ¼ 0�), we obtain

Pþf?ðq; � ¼ 0�Þ ¼ 1� 2
jeMMxj

2
þ jeMMyj

2
� i	

b�2
H j
eNNj2 þ jeMMxj

2
þ jeMMyj

2
� i	

; ð57aÞ

P�f?ðq; � ¼ 0�Þ ¼ 1� 2
jeMMxj

2
þ jeMMyj

2
þ i	

b�2
H j
eNNj2 þ jeMMxj

2
þ jeMMyj

2
þ i	

; ð57bÞ

where [compare equations (29) and (30)]

jeMMxj
2
ðq; � ¼ 0�Þ ¼ jeMMyj

2
¼

p2

2

eHH2
p 1þ p2l2

Dq2ð Þ

1� p2l2
Dq2

� 	2 ð58Þ

and [compare equation (32)]

i	ðq; � ¼ 0�Þ ¼ �
2eHH2

pp3lDq

1� p2l2
Dq2

� 	2 : ð59Þ

At saturation (Mx ¼ My ¼ 	 ¼ 0) and for nonzero nuclear

scattering, P
f?ðq; � ¼ 0�Þ ¼ 1. For lD ¼ 0, jeMMxj
2
þ jeMMyj

2 =

p2eHH2
p and P
f?ðq; � ¼ 0�Þ contains information on the trans-

verse spin components.

4.2. Saturated state

At saturation and for k0 ? H0, it is readily verified from

equations (44a) and (44b) using equations (49)–(52), 	ðqÞ ¼ 0

and CTeNNeMMy

¼ 0 that

Pþf?ðq; �Þ ¼ 1� 2
sin2 � cos2 �

�� 2�1=2 sin2 � þ sin2 �
; ð60aÞ

P�f?ðq; �Þ ¼ 1� 2
sin2 � cos2 �

�þ 2�1=2 sin2 � þ sin2 �
ð60bÞ

depend exclusively on the ratio

�ðqÞ ¼
eNN2ðqÞ

b2
H
eMM2

s ðqÞ
ð61Þ

of nuclear to longitudinal magnetic scattering [compare

equation (43)]. The possible angular anisotropy of � is not

considered in this paper. Since for k0 k H0 the spin-flip SANS

cross section vanishes at saturation (g1 ¼ 0), we see that

P
fk ¼ þ1. The azimuthally averaged [ð1=2�Þ
R
ð	 	 	Þ d�]

versions of equations (60a) and (60b) read

Pþf?ðqÞ ¼
2�1=2 �1þ �1=2 þ �1þ �1=2



 

� 	
1� 2�1=2ð Þ

2
; ð62aÞ

P�f?ðqÞ ¼ 1�
1

1þ 2�1=2ð Þ
2
: ð62bÞ

The function �ðqÞ can be a monotonically increasing or

decreasing function of q, and it can even exhibit local extrema.

In the following, we will consider the cases of � ¼ constant

and � ¼ �ðqÞ using the experimental data of the soft magnetic

Fe-based alloy NANOPERM (Michels et al., 2012).

4.2.1. a = constant. Fig. 2 displays the two-dimensional

polarization P
f?ðqÞ of the scattered neutrons in the saturated

state as a function of � = constant. The case of constant � is

very rarely realized in experimental situations, and we

consider it here only as a starting point for our discussion and

for the comparison with the experimentally more relevant

situation of � ¼ �ðqÞ. For �! 0 it follows that P
f? ¼ 1 �

2 cos2 � [Figs. 2(a) and 2(e)], while Pþf? ¼ 1� 2 sin2 � [Fig. 2(c)]

and P�f? ¼ 1� 2 sin2 � cos2 �=ð1þ 3 sin2 �Þ [Fig. 2(g)] for

� ¼ 1. When nuclear coherent scattering is dominating

(�!1), we see that P
f? both tend to unity, as expected. The

corresponding 2� azimuthally averaged functions [equations

(62a) and (62b)] are plotted in Fig. 3. One readily verifies that

Pþf? ¼ 0 for �1=2 � 1, which further underlines the loss of
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Figure 2
Plot of Pþf?ðqy; qzÞ (upper row) and P�f?ðqy; qzÞ (lower row) in the saturated state for different values of � (see insets) [equations (60a) and (60b)].



information when a 2� azimuthal average is carried out

[compare e.g. Fig. 2(b)].

4.2.2. a = a(q). Fig. 4 shows the experimentally determined

ratio �expðqÞ (Michels et al., 2012) of nuclear to magnetic

scattering of the two-phase alloy NANOPERM. Within the

experimental q range of 0.03 < q < 0.3 nm�1, these data for

�expðqÞ have been fitted by a power law in 1=q to obtain the

functions P
f?ðqÞ, which are depicted in Fig. 5. The used fit

function for �expðqÞ is

�expðqÞ ¼
0:14853

q
�

0:0264491

q2
þ

0:00176887

q3

�
4:95094� 10�5

q4
þ

5:01767� 10�7

q5
: ð63Þ

This expression will be used in the analysis of the experimental

data (see Section 6).

4.3. Nonsaturated state

Appendix B features some theoretical results for P
f?ðqÞ for

various combinations of the magnetic interaction parameters

[applied magnetic field, ratio of eHH2
p to eMM2

z, 	ðqÞ 6¼ 0]. For a

statistically isotropic ferromagnet, the two-dimensional

distribution of the polarization of the scattered neutrons is

isotropic (� independent) for the longitudinal scattering

geometry (k0 k H0), as are the corresponding SANS cross

sections. This is in contrast to the P
f?ðqÞ for the transverse

geometry (k0 ? H0), which are highly anisotropic. In the

following, we will use the theoretical expressions for P
f?ðqÞ to

analyze experimental data on the soft magnetic two-phase

nanocrystalline alloy NANOPERM.

5. Experimental details

The polarized neutron experiment was carried out at room

temperature at the instrument D22 at the Institut Laue–

Langevin, Grenoble, France. Incident neutrons with a mean

wavelength of � = 8 Å and a wavelength broadening of

��=� ¼ 10% (FWHM) were selected by means of a velocity

selector. The beam was polarized using a 1.2 m-long remanent

Fe–Si supermirror transmission polarizer (m = 3.6), which was

installed immediately after the velocity selector. A radio-

frequency spin flipper, installed close to the sample position,

allowed us to reverse the initial neutron polarization. The

external magnetic field (provided by an electromagnet) was

applied perpendicular to the wavevector k0 of the incident

neutrons (compare Fig. 1). Measurement of the four partial

POLARIS cross sections d�þþ=d�, d���=d�, d�þ�=d� and

d��þ=d� was accomplished through a polarized 3He spin-

filter cell, which was installed inside the detector housing,

about 1 m away from the sample position. The polarization

between polarizer, radiofrequency flipper and 3He filter was

maintained by means of magnetic guide fields of the order of

1 mT. The efficiencies of the polarizer, spin flipper and 3He

analyzer were, respectively, 90, 99 and 87.5%. The scattered

neutrons were detected by a multitube detector which consists

of 128 � 128 pixels with a resolution of 8 � 8 mm. Neutron

data reduction, including corrections for background scat-

tering and spin leakage (Wildes, 2006), was performed using

the GRASP (Dewhurst, 2021) and BerSANS (Keiderling,

2002; Keiderling et al., 2008) software packages.
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Figure 4
Black circles: experimental ratio �expðqÞ of nuclear to magnetic scattering
of the two-phase alloy NANOPERM (Michels et al., 2012) (k0 ? H0;
�0H0 ¼ 1:27 T; log–log plot). Solid line: power-law fit to parametrize the
experimental data [equation (63)]. The fit has been restricted to the
interval 0.03 < q < 0.3 nm�1, but the fit function is displayed for 0.01 < q <
1.0 nm�1.

Figure 5
Plot of Pþf?ðqÞ (solid line) and P�f?ðqÞ (dashed line) of NANOPERM using
equations (62a) and (62b) with �expðqÞ given by equation (63) and 0.03 <
q < 0.3 nm�1.

Figure 3
Plot of Pþf? and P�f? (see inset) in the saturated state as a function of �
[equations (62a) and (62b)].



The sample under study was a two-phase magnetic nano-

composite from the NANOPERM family of alloys (Suzuki &

Herzer, 2006) with a nominal composition of (Fe0.985Co0.015)90-

Zr7B3 (Suzuki et al., 1994; Ito et al., 2007). The alloy was

prepared by melt spinning, followed by a subsequent

annealing treatment for 1 h at 883 K, which resulted in the

precipitation of body-centered cubic iron nanoparticles in an

amorphous magnetic matrix. The average iron particle size of

D = 15 
 2 nm was determined by the analysis of wide-angle

X-ray diffraction data. The crystalline particle volume fraction

is about 65% and the saturation magnetization of the alloy

amounts to �0M0 ¼ 1:64 T. The exchange-stiffness constant

A ¼ ð4:7
 0:9Þ � 10�12 J m�1 has previously been deter-

mined by the analysis of the field-dependent unpolarized

SANS cross section (Honecker et al., 2013). For the SANS

experiments, several circular discs with a diameter of 10 mm

and a thickness of about 20 mm were stacked and mounted on

a Cd aperture [for further details see Michels et al. (2012) and

Honecker et al. (2013)].

6. Experimental results and discussion

The two-dimensional experimental distribution of the polar-

ization of NANOPERM is depicted in Figs. 6 (Pþf?) and 7 (P�f?)
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Figure 6
Qualitative comparison between experiment and theory. (a)–(d) Two-dimensional experimental polarization Pþf?ðqÞ of the scattered neutrons of
NANOPERM [(Fe0.985Co0.015)90Zr7B3] at a series of applied magnetic fields (see insets). H0 is horizontal in the plane. The range of momentum transfers
is restricted to q<� 0:33 nm�1. (e)–(h) Prediction by the analytical micromagnetic theory (no free parameters) using the experimental ratio �expðqÞ
[equation (63)] and the structural (
M ¼ 
H ¼ D=2 ¼ 7:5 nm) and magnetic (A;M0) interaction parameters of NANOPERM [see text, Michels et al.
(2012) and Honecker et al. (2013)]. The central white octagons mark the position of the beamstop.

Figure 7
Similar to Fig. 6, but for P�f?ðqÞ.



at selected field values together with a qualitative comparison

with the simulated polarization based on the micromagnetic

SANS theory [see Michels et al. (2012) for some selected spin-

resolved SANS cross sections]. The theory uses as input values

the experimental ratio �expðqÞ [equation (63)] and the struc-

tural (
M ¼ 
H ¼ D=2 ¼ 7.5 nm) and magnetic (A;M0) inter-

action parameters. In agreement with the previous

micromagnetic SANS data analysis of this sample (Michels et

al., 2012; Honecker et al., 2013), we have set the ratio

AH=AM ¼ 0:2. We also assumed that both spin-flip channels

are equal, i.e. d�þ�=d� ¼ d��þ=d�, a constraint that was

already imposed during the spin-leakage correction. The

overall qualitative agreement between experiment and theory

(no free parameters) is evident, although the angular aniso-

tropy of the data does not exhibit a large variation with field.

Only at the smallest momentum transfers can one notice a

change in the anisotropy with decreasing field (in particular in

P�f?), which is related to the emerging spin-misalignment

scattering; compare e.g. scattering terms / jeMMyj
2 cos4 � and

/ CTyz sin � cos � in equations (66) and (69). We also note the

existence of (seemingly isotropic) scattering contributions at

small q<� 0:1 nm�1 (especially at 1:27 T), which are probably

due to large-scale structures that are not contained in the

micromagnetic theory [compare Figs. 6(a) and 6(e) and

Figs. 7(a) and 7(e)].

Due to the relatively large statistical noise in the two-

dimensional P
f? maps we did not fit the experimental data

directly to the theoretical expressions. Therefore, in the

following, we consider one-dimensional experimental polar-

ization data, which were obtained by averaging the two-

dimensional polarized SANS cross sections over
8� along the

vertical direction (� ¼ 90�). These averages were used in

equations (23a) and (23b) to obtain P
f?ðqÞ. The resulting data

in Fig. 8 were then fitted using the general equations (44a) and

(44b) (also averaged over 
8� along � ¼ 90�). Adjustable

parameters are the amplitudes (scaling parameters) AM and

AH of, respectively, eMM2
z and eHH2

p as well as the corresponding

correlation lengths 
M and 
H [compare equations (41) and

(42)]. The field-dependent micromagnetic exchange length lH,

which is contained in the dimensionless function pðq;HiÞ

[compare equations (38)–(40)], is computed at each field using

the materials parameters A and M0; A is treated here as an

additional adjustable parameter. For �ðqÞ we used equation

(63), and the DMI has been ignored in the data analysis

(lD ¼ 0). Since the P
f? differ only by the eNNeMMy and eNNeMMz

interference terms, we have fitted the P
f?ðqÞ data corre-

sponding to the same field simultaneously. The applied field

H0 has been corrected for demagnetizing effects.

The fits in Fig. 8 (solid lines) provide a reasonable

description of the experimental data. The obtained values for


M and 
H are shown in Fig. 9; 
H ffi 6–15 nm is at all fields

consistently of the order of the particle size, while 
M takes on

larger values between about 22 and 65 nm. For the exchange-

stiffness constant, we obtain (from the four local fits) best-fit

values in the range A = (4.8–9.7) � 10�12 J m�1. These values

agree very well with data in the literature (Honecker et al.,

2013; Bersweiler et al., 2022).

Clearly, more experiments are needed in order to further

scrutinize the predictions of the present micromagnetic theory

for the uniaxial polarization analysis of bulk ferromagnets. In
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Figure 8
(Data points) Experimental polarizations Pþf?ðq; � ¼ 90�Þ (a) and P�f?ðq; � ¼ 90�Þ (b) of the scattered neutrons of NANOPERM [(Fe0.985Co0.015)90Zr7B3]
at a series of internal magnetic fields (see inset). For clarity of presentation, error bars are only shown for one field. (Solid lines) Prediction by the
analytical micromagnetic theory [equations (44a) and (44b)] using the ratio �expðqÞ [equation (63)]. Note the different scales on the ordinates in (a)
and (b).

Figure 9
Resulting best-fit values for the correlation lengths 
M and 
H (see inset).
Lines are a guide to the eye.



this respect, the development of computational tools to

directly analyze the two-dimensional polarization maps using

different form-factor and structure-factor expressions for eMM2
z

and eHH2
p, and possibly the inclusion of a particle-size distribu-

tion function, would be desirable. Likewise, SANS measure-

ments at a preferably saturating magnetic field are necessary

to determine the nuclear SANS cross section, e.g. via a hori-

zontal average of the non-spin-flip SANS cross section.

7. Summary and conclusions

We have provided a micromagnetic theory for the uniaxial

polarization of the scattered neutrons of bulk ferromagnets, as

it can be measured by means of the small-angle neutron

scattering (SANS) method. The theoretical expressions

contain the effects of an isotropic exchange interaction, the

Dzyaloshinskii–Moriya interaction, magnetic anisotropy,

magnetodipolar interaction and an external magnetic field.

The theory has been employed to analyze experimental data

on a soft magnetic nanocrystalline alloy; it may provide

information on the magnetic interactions (exchange and DMI

constants) and on the spatial structures of the magnetic

anisotropy and magnetostatic fields. Given that uniaxial

polarization analysis is becoming more and more available on

SANS instruments worldwide and in view of the recent

seminal progress made regarding several techniques which

exploit the neutron polarization degree of freedom to char-

acterize large-scale magnetic structures (SESANS, DFI,

SEMSANS), we believe that the results of this paper open up

a new avenue for magnetic neutron data analysis on meso-

scopic magnetic systems. This is because the presented

micromagnetic SANS framework forms the basis for all of

these new and promising polarization encoding techniques,

with the paper by Rekveldt et al. (2006) providing the relevant

expressions that link the magnetization distribution to the

final polarization and the projected correlation function.

APPENDIX A
Non-spin-flip, spin-flip and SANSPOL cross sections

In this appendix, we present the expressions for the polarized

SANS cross sections in terms of the Fourier componentseMMx;y;zðqÞ of the magnetization. The two non-spin-flip and the

two spin-flip POLARIS cross sections carry, respectively, the

superscripts þþ and �� and þ� and �þ, and the subscripts

? and k refer to the respective scattering geometry (compare

Fig. 1) (Michels, 2014):

d�

?
d�
¼ K

�
b�2

H j
eNNj2 þ jeMMyj

2 sin2 � cos2 � þ jeMMzj
2 sin4 �

� CTyz sin3 � cos � � b�1
H CTeNNeMMz

sin2 �


 b�1
H CTeNNeMMy

sin � cos �
�
; ð64Þ

d�

k
d�
¼ K b�2

H j
eNNj2 þ jeMMzj

2
� b�1

H CTeNNeMMz

� �
; ð65Þ

d�
�?
d�
¼ K

�
jeMMxj

2
þ jeMMyj

2 cos4 � þ jeMMzj
2 sin2 � cos2 �

� CTyz sin � cos3 � � i	
�
; ð66Þ

d�
�k
d�
¼ K jeMMxj

2 sin2 � þ jeMMyj
2 cos2 � � CTxy sin � cos �

� �
;

ð67Þ

where K ¼ 8�3V�1b2
H, and the chiral function 	ðqÞ is given by

	 ¼ eMMx
eMM�y � eMM�xeMMy

� �
cos2 � � eMMx

eMM�z � eMM�xeMMz

� �
sin � cos �:

ð68Þ

Note that 	ðqÞ ¼ 0 for k0 k H0. The two SANSPOL cross

sections d�þ=d� = d�þþ=d� + d�þ�=d� and d��=d� =

d���=d� + d��þ=d� read

d�
?
d�
¼ K

�
b�2

H j
eNNj2 þ jeMMxj

2
þ jeMMyj

2 cos2 �

þ jeMMzj
2 sin2 � � CTyz sin � cos �

� b�1
H CTeNNeMMz

sin2 � 
 b�1
H CTeNNeMMy

sin � cos � � i	
�
; ð69Þ

d�
k
d�
¼ K

�
b�2

H j
eNNj2 þ jeMMxj

2 sin2 � þ jeMMyj
2 cos2 �

þ jeMMzj
2
� CTxy sin � cos � � b�1

H CTeNNeMMz

�
: ð70Þ

The magnetic–magnetic and nuclear–magnetic cross terms

have been abbreviated as follows:

CTyz ¼
eMMy
eMM�z þ eMM�yeMMz; ð71aÞ

CTxy ¼
eMMx
eMM�y þ eMM�xeMMy; ð71bÞ

CTeNNeMMz

¼ eNNeMM�z þ eNN�eMMz; ð71cÞ

CTeNNeMMy

¼ eNNeMM�y þ eNN�eMMy: ð71dÞ

In actual SANSPOL and POLARIS experiments the neutron

optics (polarizer, spin flipper, analyzer) do not work perfectly

and polarization corrections become necessary. The incident

beam polarization efficiency may be denoted by

pþ ¼ Iþ=ðIþ þ I�Þ, where I
 are, respectively, the number of

neutrons with spins aligned antiparallel and parallel with

respect to H0; note that pþ ¼ 1=2 for an unpolarized beam.

The efficiency of the spin flipper is �
 with �þ ¼ 0 for flipper

off and �� ¼ � ffi 1 for flipper on. We emphasize that the half-

polarized SANSPOL cross sections d�þ=d� and d��=d� can

be obtained directly and corrected for nonideal neutron

polarization provided that the parameters pþ and � are known

from reference measurements. For POLARIS, it is necessary

to measure all four partial cross sections d�þþ=d�, d���=d�,

d�þ�=d� and d��þ=d� in order to correct for spin leakage
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between the different channels (Wildes, 2006). Such correc-

tions can e.g. be accomplished by means of the BerSANS

(Keiderling, 2002; Keiderling et al., 2008), Pol-Corr (Krycka et

al., 2012) and GRASP (Dewhurst, 2021) software tools.

Moreover, we note that d�þ�=d� ¼ d��þ=d� for many

polycrystalline bulk ferromagnets (Honecker et al., 2010).

However, in our theoretical treatment we explicitly take into

account the polarization dependence of the SANSPOL and

spin-flip cross sections via the chiral function 	ðqÞ. This is

relevant e.g. for systems where inversion symmetry is broken

and the DMI is operative (Michels et al., 2019; Quan et al.,

2020).

APPENDIX B
Selected results for the polarization of the scattered
neutrons of bulk ferromagnets

In this appendix we provide some selected graphical repre-

sentations for the dependency of the polarization of the

scattered neutrons on the magnitude and orientation of the

scattering vector, the applied magnetic field, the ratio of AM to

AH, the ratio of nuclear to longitudinal magnetic scattering,

and the DMI (via the exchange length lD). Only results for

k0 ? H0 are shown. The following materials parameters are

used: A = 4.7 pJ m�1; �0M0 ¼ 1.64 T (lM ffi 2.1 nm); D =

2 mJ m�2 (lD ffi 1.9 nm) (Honecker et al., 2013).

Fig. 10 shows the two-dimensional final polarization

P
f?ðqy; qzÞ and Fig. 11 depicts the corresponding 2�
azimuthally averaged data P
f?ðqÞ for different values of the

applied magnetic field Hi, � ¼ �ðqÞ [equation (63)],

AH=AM ¼ 0:5, lD ¼ 0. The local extrema in P
f?ðqÞ at small q

are due to �expðqÞ; setting � ¼ constant results in smooth and

continuously decaying functions. Figs. 12 and 13 display the

polarization P
ðqÞ for different ratios of AH=AM (Fig. 12) and

for different (constant) � values (Fig. 13) at a constant field of

�0Hi ¼ 0.3 T and for lD ¼ 0. Including the DMI results in

asymmetric P
 patterns at nonsaturating fields (see Fig. 14).

For the calculation of P
 according to equation (44a), we have

up to now assumed Lorentzian-squared functions for eMM2
zðq
MÞ

and eHH2
pðq
HÞ [compare equations (41)–(42)] with 
M ¼ 
H ¼

D=2 ¼ 7:5 nm. The effect of a hard-sphere form factor for eMM2
z

and eHH2
p with different values for 
M and 
H is depicted in

Fig. 15. Here, peak-type features may appear in P
, which

might be detected in highly monodisperse particulate systems.
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Figure 10
Plot of Pþf?ðqy; qzÞ (upper row) and P�f?ðqy; qzÞ (lower row) for different applied magnetic fields Hi (see insets). � ¼ �ðqÞ [equation (63)], AH=AM ¼ 0:5,
lD ¼ 0.

Figure 11
2� azimuthally averaged Pþf?ðqÞ (a) and P�f?ðqÞ (b) of the data shown in Fig. 10.
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Figure 12
Plot of Pþf?ðqy; qzÞ (upper row) and P�f?ðqy; qzÞ (lower row) for different ratios of AH=AM (see insets). � ¼ �ðqÞ [equation (63)], �0Hi ¼ 0:3 T, lD ¼ 0.

Figure 14
Effect of the DMI. Plot of Pþf?ðqy; qzÞ (upper row) and P�f?ðqy; qzÞ (lower row) as a function of Hi (see insets). � ¼ �ðqÞ [equation (63)], AH=AM ¼ 1,
lD ¼ 1:9 nm.

Figure 13
Plot of Pþf?ðqy; qzÞ (upper row) and P�f?ðqy; qzÞ (lower row) for different values of � ¼ constant (see insets). AH=AM ¼ 0:2, �0Hi ¼ 0:3 T, lD ¼ 0.
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Barquı́n, L. & Johansson, C. (2018). Phys. Rev. B, 98, 224420.

Bersweiler, M., Adams, M. P., Peral, I., Kohlbrecher, J., Suzuki, K. &
Michels, A. (2022). IUCrJ, 9, 65–72.

Bloch, F. (1936). Phys. Rev. 50, 259–260.
Bloch, F. (1937). Phys. Rev. 51, 994.
Blume, M. (1963). Phys. Rev. 130, 1670–1676.
Brandt, B. van den, Glättli, H., Grillo, I., Hautle, P., Jouve, H.,

Kohlbrecher, J., Konter, J. A., Leymarie, E., Mango, S., May, R. P.,
Michels, A., Stuhrmann, H. B. & Zimmer, O. (2006). Eur. Phys. J.
B, 49, 157–165.

Brown, P. J. (2006). Neutron Scattering from Magnetic Materials,
edited by T. Chatterji, pp. 215–244. Amsterdam: Elsevier.

Brown, P. J., Forsyth, J. B. & Tasset, F. (1993). Proc. R. Soc. London A,
442, 147–160.

Brown, W. F. Jr (1963). Micromagnetics. New York: Interscience
Publishers.

Burgy, M., Hughes, D. J., Wallace, J. R., Heller, R. B. & Woolf, W. E.
(1950). Phys. Rev. 80, 953–960.

Chatterji, T. (2006). Neutron Scattering from Magnetic Materials.
Amsterdam: Elsevier.

Dewhurst, C. D. (2021). Graphical Reduction and Analysis SANS
Program (GRASP). Institut Laue–Langevin, Grenoble, France.

Drabkin, G. M., Okorokov, A. I. & Runov, V. V. (1972). JETP Lett. 15, 324.
Dufour, C., Fitzsimmons, M. R., Borchers, J. A., Laver, M., Krycka,

K. L., Dumesnil, K., Watson, S. M., Chen, W. C., Won, J. & Singh, S.
(2011). Phys. Rev. B, 84, 064420.

Grigoriev, S. V., Kraan, W. H., Rekveldt, M. Th., Kruglov, T. &
Bouwman, W. G. (2006). J. Appl. Cryst. 39, 252–258.

Grigoriev, S. V., Sukhanov, A. S., Altynbaev, E. V., Siegfried, S.,
Heinemann, A., Kizhe, P. & Maleyev, S. V. (2015). Phys. Rev. B, 92,
220415.

Grutter, A. J., Krycka, K. L., Tartakovskaya, E. V., Borchers, J. A.,
Reddy, K. S. M., Ortega, E., Ponce, A. & Stadler, B. J. H. (2017).
ACS Nano, 11, 8311–8319.

Halpern, O. & Holstein, T. (1941). Phys. Rev. 59, 960–981.
Halpern, O. & Johnson, M. H. (1939). Phys. Rev. 55, 898–923.
Hasz, K., Ijiri, Y., Krycka, K. L., Borchers, J. A., Booth, R. A.,

Oberdick, S. & Majetich, S. A. (2014). Phys. Rev. B, 90, 180405.
Honecker, D., Dewhurst, C. D., Suzuki, K., Erokhin, S. & Michels, A.

(2013). Phys. Rev. B, 88, 094428.
Honecker, D., Ferdinand, A., Döbrich, F., Dewhurst, C. D.,
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Figure 15
Results for the azimuthally averaged Pþf?ðqÞ using the sphere form factor
(instead of Lorentzian-squared functions) for both eMM2

zðq
MÞ and eHH2
pðq
HÞ.

(a) Field dependence (see inset) of Pþf?ðqÞ for 
M ¼ 7:5 nm and

H ¼ 8:5 nm. (b) Pþf?ðqÞ at �0Hi ¼ 0:3 T, 
M ¼ 7:5 nm, but for increasing

H (see inset). (c) Pþf?ðqÞ at �0Hi ¼ 0:3 T, 
H ¼ 7:5 nm, but for increasing

M (see inset). � ¼ �ðqÞ [equation (63)], AH=AM ¼ 0:2, lD ¼ 0.
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