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The Python package mlreflect is demonstrated, which implements an optimized

pipeline for the automated analysis of reflectometry data using machine

learning. The package combines several training and data treatment techniques

discussed in previous publications. The predictions made by the neural network

are accurate and robust enough to serve as good starting parameters for an

optional subsequent least-mean-squares (LMS) fit of the data. For a large data

set of 242 reflectivity curves of various thin films on silicon substrates, the

pipeline reliably finds an LMS minimum very close to a fit produced by a human

researcher with the application of physical knowledge and carefully chosen

boundary conditions. The differences between simulated and experimental data

and their implications for the training and performance of neural networks are

discussed. The experimental test set is used to determine the optimal noise level

during training. The extremely fast prediction times of the neural network are

leveraged to compensate for systematic errors by sampling slight variations in

the data.

1. Introduction

X-ray and neutron reflectometry (XRR and NR) are estab-

lished surface scattering techniques that are routinely used to

characterize solid and liquid thin films (Tolan, 1999; Holý et al.,

1999; Braslau et al., 1988; Russell, 1990). They offer a non-

invasive way of determining the structural, morphological and

magnetic properties of a large variety of samples (Neville et

al., 2006; Skoda et al., 2017; Lehmkühler et al., 2008) and can

also be employed in real time for in situ measurements

(Kowarik et al., 2006).

For decades, the conventional way of analyzing reflectivity

data has been the iterative least-mean-squares (LMS) or �2

fitting of the data with a theoretical model (Parratt, 1954;

Abelès, 1950; Heavens, 1955). However, due to the well known

phase problem in scattering, the reconstruction of the scat-

tering length density (SLD) profile from the reflectivity data is

inherently ambiguous. This means that this method typically

requires significant expertise and prior knowledge about the

system, since for all but the simplest cases many possible

solutions exist. Even when the solution space is restricted,

finding the global minimum is usually very time consuming

because there are several local minima on the mean-squared

error (MSE) surface. For this reason, various software

packages have been developed over the years that use

sophisticated minimization algorithms (Björck & Andersson,
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2007; Kienzle et al., 2011; Nelson, 2006; Nelson & Prescott,

2019; Danauskas et al., 2008; Gerelli, 2016). However, all of

these approaches are iterative in nature and thus usually

computationally slow. Recently, machine-learning-based

methods have been proposed that could avoid a lengthy

search of the MSE surface by providing an immediate guess

for the thin-film parameters that is already very close to the

ground truth (Greco et al., 2019; Mironov et al., 2021; Doucet et

al., 2021; Carmona Loaiza & Raza, 2021; Greco et al., 2021) or

by encoding the reflectometry data into a latent space where

the error surface does not have as many local minima

(Andrejevic et al., 2021).

This paper demonstrates a Python-based reflectivity data

analysis pipeline called mlreflect, which combines a fully

connected neural network regressor with several preproces-

sing and postprocessing steps for reliably predicting the

thickness, roughness and SLD of a thin film layer. The prin-

ciple of the neural network itself and the preprocessing have

been discussed previously (Greco et al., 2019, 2021), so here

we focus on the differences between simulated and experi-

mental data and show how this knowledge can be used to

optimize the obtained results further. We tested the perfor-

mance of the pipeline on a large experimental data set of 242

XRR curves from different samples by comparing the result of

the pipeline with manually supervised LMS fits that include

physical knowledge and carefully chosen boundary conditions.

This is a quantitative and qualitative difference compared with

other similar studies, where most of the performance analysis

is done with simulated data. In this context, we discuss the

effect that experimental deviations from the theory can have

on the training and prediction quality of the neural network.

Using an example curve, we show how the extremely fast

prediction speed of the neural network can also be leveraged

to compensate for small experimental errors.

2. Description of the analysis pipeline

Our proposed analysis pipeline mlreflect is written entirely in

Python. It is available as open source on GitHub (https://

github.com/schreiber-lab/mlreflect) and can also be down-

loaded directly from the Python Package Index (https://

pypi.org/project/mlreflect/). The supporting information

contains a step-by-step tutorial in the form of executable

Jupyter notebooks (and a PDF version thereof). The tutorial,

installation instructions and a full API documentation of the

mlreflect package are hosted online at https://mlreflect.

readthedocs.io/en/latest/. The neural network itself is imple-

mented using TensorFlow (Abadi et al., 2016). It uses the

matrix formalism implemented in the refl1d package (Kienzle

et al., 2011) to simulate the reflectivity data. The workflow of

the package can be conceptually separated into three steps: (i)

preprocessing, (ii) prediction and (iii) postprocessing, as

depicted in Fig. 1. Each of these steps is described in the

following.

During step (i), the reflectivity data are automatically read

from their raw format and several types of preprocessing

procedures are applied. First, the raw data are converted into

the standard R(qz) format, where R is the normalized reflected

intensity and qz the momentum transfer vector component

along the surface normal [momentum transfer q = (4�/�)sin�,

where � is half the scattering angle and � is the wavelength of

the incident radiation]. The preprocessing operations neces-

sarily depend on how the raw data are saved, but usually the

data have to be corrected in some form. In our case, the raw

data contain the reflected intensity at different scattering

angles, which must be corrected for the varying beam

attenuation at different angles. The intensity is then corrected

to account for the changing beam footprint on the sample at

different angles, which amounts to a multiplication of the data

by a geometric factor (Gibaud et al., 1993). Here we assume a

flat sample and a beam with a Gaussian profile but, in prin-

ciple, corrections for other sample or beam shapes can be

implemented at this stage. The data are then normalized by

dividing by the highest intensity value and transformed from

angular space into qz space.

After that, the intensity values are interpolated on a log-

arithmic scale to 109 equally spaced qz points ranging from

0.02 to 0.15 Å�1, which corresponds to the input size of the

neural network. Lastly, each intensity point is standardized

individually by subtracting the mean and dividing by the

standard deviation of the training set, as described before

(Greco et al., 2021). This ensures that each value of the input

vector is on a similar scale. The effect on the general shape of

the curves is comparable to multiplying the data by the inverse

of the Fresnel reflectivity, RFðqzÞ / q�4
z , but, importantly,

avoids the divergence for small values of qz, i.e. close to and

below the total reflection edge (TRE), where the kinematic

approximation does not hold (Als-Nielsen & McMorrow, 2011).

To obtain the initial parameter prediction [step (ii) in Fig. 1],

the preprocessed input vector is fed into the trained neural

network model. The neural network is a fully connected model

that takes an input of 109 discrete intensity points and outputs

three thin-film parameters: the film thickness, the Névot–

Croce film roughness (Névot & Croce, 1980) and the real part

of the SLD of the film. The model has three hidden layers with

512 neurons each. The training loss was calculated as the
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Figure 1
A schematic description of the analysis pipeline. The pipeline consists of
three main steps: (i) preprocessing, (ii) parameter prediction via the
neural network and (iii) postprocessing. Step (i) includes geometric and
other experiment-specific corrections. The data are also normalized,
transformed into qz space, interpolated and standardized. In step (ii), the
preprocessed data are fed into a trained fully connected neural network
that yields an initial guess for the thin-film parameters. During step (iii),
this initial guess is used as starting parameters for a fast Levenberg–
Marquardt fit that finds the nearest LMS minimum.



mean-squared error between the normalized predicted and

ground truth parameters. This architecture is similar to what

has been described in the literature before (Greco et al., 2019,

2021; Doucet et al., 2021), but to reduce the training and

inference times the number of parameters was reduced. The

model was trained with 250 000 simulated reflectivity curves

with a batch size of 512. For every batch, uniform noise and

curve scaling were applied to each curve to avoid overfitting,

as described previously (Greco et al., 2021). The optimal noise

level during training was identified to be 0.3, which will be

discussed in more detail later. Finally, the inputs were stan-

dardized as described above.

The training data were generated assuming a sample

structure consisting of a thin film on top of an oxide-capped

silicon substrate, with air as the ambient medium and X-rays

as the probe. The thin-film parameters in the training data

spanned a large range of 20–1000 Å for the thickness, 0–100 Å

for the roughness and 1–14 � 10�6 Å�2 for the SLD. We

restricted the roughness to values no higher than half the

thickness since scenarios with a high relative roughness are

not well described by the theoretical model used. A similar

approach could easily be employed for neutrons or other

sample structures by retraining the neural network with

different training data. We also expect this approach to work

for a larger number of layers, as long as the trained parameter

space does not create too many ambiguous solutions, i.e. the

number and range of fitting parameters should remain similar.

For a larger parameter space, a larger qz range might be

necessary to reduce ambiguity in the data. In our case, the qz

range was limited to avoid conflicts with the Bragg peaks of

organic molecules around 0.3 Å�1 which are not described by

the slab model.

Lastly, during step (iii), the initially predicted thin-film

parameters are fed into an LMS minimizer to obtain the

parameters that produce the best fit. Since the initial predic-

tions are already very close to the ground truth, we chose a

simple Levenberg–Marquardt minimizer (Moré, 1977) over a

more powerful, but slower, algorithm.

3. Performance test on thin films

The performance of the analysis pipeline was tested on 242

experimental XRR curves from in situ and ex situ experiments

on nine organic thin films on Si/SiOx (1–79 curves per sample

at different thicknesses). The distributions of thickness,

roughness and SLD of the films within this test set are shown

in Fig. 2. The measurements were conducted using three

different synchrotron radiation sources, namely the European

Synchrotron Radiation Facility (ESRF; Smilgies et al., 2005),

DESY (Seeck et al., 2011) and the Swiss Light Source (SLS;

Patterson et al., 2005), as well as using our own laboratory

source. To obtain a benchmark, each reflectivity curve was first

fitted on a logarithmic scale with an LMS fit based on the

commonly used differential evolution algorithm (Storn &

Price, 1997) and manually chosen initial values and bounds for

each parameter. The thin-film model used for the fit was the

same as that used for training the neural network. In the

following analysis, we assume that these manually fitted

parameters represent the ‘ground truth’, and thus the

performance of our pipeline will be measured as the absolute

error with respect to this ground truth.

In the following, we compare the ground truth with the

prediction results of the neural network, as well as with the

results of a subsequent automated LMS fit using the predicted

parameters. Across all 242 curves, the neural network

predictions have a median absolute error (median percentage

error) of 6.0 Å (7.1%) for the film thickness, 2.0 Å (12.4%) for

the interface roughness and 0.72 � 10�6 Å�2 (6.8%) for the

SLD. This is a significant improvement on our first published

model (Greco et al., 2019), both on an absolute scale and on a

relative scale, since the possible ranges for the thickness and

roughness parameters have been greatly expanded. Thus, the

network is generalized over a larger parameter space

compared with previously published results. We note that,

since all of our data stem from organic thin films, the SLDs in

the test set are mainly clustered around 10–13 � 10�6 Å�2.

Nevertheless, we assume that our results are not specific to the

SLD range of the test data, since the network was trained

equally with SLDs in the range 1–14 � 10�6 Å�2. We also

highlight the fact that the data set contains curves with a high

roughness-to-thickness ratio where the Kiessig oscillations

are strongly damped. Among the emerging solutions offered

in this field, discussions about the performance on curves

with few to no features are mostly absent. This is of course due

to the challenge of extracting information from data that
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Figure 2
Ground truth distribution of the three sample parameters, (a) thickness, (b) roughness and (c) SLD, within the experimental test set of 242 XRR curves.
The parameters were obtained by a conventional LMS fit.



inherently contain less information. Nevertheless, the network

presented here also performs well on experimental data with

high relative roughness.

The next step in the pipeline is to refine these results further

via an LMS fit, using the predictions from the neural network

as starting parameters. Since the predictions are robust and

already quite close to the ground truth there is no need for

powerful but slow minimization algorithms such as genetic or

differential evolution algorithms, which are normally

employed to find the global minimum. Thus, finding the

minimum takes only a fraction of a second per curve and can

be fully automated. After this refinement procedure, the

median absolute error (median percentage error) was even

closer to the ground truth, at 2.3 Å (2.3%) for the thickness,

1.0 Å (5.8%) for the roughness and 0.47 � 10�6 Å�2 (4.3%)

for the SLD. A comparison of the error distributions before

and after refinement is shown in Fig. 3. A detailed breakdown

of the prediction error with respect to each parameter can be

found in Figs. S2–S10 in the supporting information.

The residual error can be attributed to the fact that every fit

has a finite accuracy and hence the ground truth itself contains

a certain error. We roughly estimate this error to be at least

�10% for each parameter, which would be comparable to the

reported error of the neural network. Thus, these results show

that the analysis pipeline as described above performs simi-

larly to a human researcher in most circumstances. However,

the results were obtained much faster than via a human-

guided fit. Excluding the time it took to train the neural

network (about 20 min for a given sample structure), the

initial parameter predictions of the 242 curves were obtained

after only 1 s, with about two additional minutes for the

further refinement steps, resulting in a total fitting time of

about 0.4 s per curve. In contrast, producing the ground truth

fits took about 6 h because of the need to select fitting

boundaries carefully to prevent the fit from running into non-

physical minima.

4. Differences between simulated and experimental
data

A well known property of artificial neural networks is that

they require large amounts of representative training data to

learn a generalized model and not overfit the training set. In

the context of the work presented here, i.e. supervised learning

using scattering data, this would mean acquiring thousands of

scattering patterns from a large variety of different samples

and analyzing them manually to create the training set. Since

this is quite a time-consuming and challenging task, neural

network models in the field of scattering physics are typically

trained with simulated data based on well established theo-

retical models. In most cases, the simulation is additionally

modified with certain artifacts, such as noise, to mimic

experimental conditions better. However, to what degree this

is necessary is difficult to estimate since the only available

metric is typically the performance on other simulated data

(validation loss), which is expected to decrease with increasing

perturbations.

In this study, we investigated how applying uniform noise to

the training data affects the neural network performance on

our large experimental data set of 242 curves. We trained 11

copies of the same neural network (as described above) with

training data with different noise levels n, where each data

point R�i in the noisy curve was sampled uniformly between

the values Ri(1 � n) and Ri(1 + n). Thus, n denotes the
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Figure 3
(a) Box plots of the absolute errors for 242 measured reflectivity curves for each of the three predicted parameters. The upper and lower edges of the
boxes represent the first and third quartiles, respectively, with the horizontal line inside the boxes denoting the median. The blue boxes represent the
error compared with the pure neural network predictions. The pink boxes represent the error after applying a simple LMS minimization using the neural
network predictions as starting parameters. The green boxes show the error for the case when a qz shift optimization has been performed before the LMS
fit. (b) The same box plots of the median error but this time as a percentage of the ground truth. All results were obtained for a training noise level of
n = 0.3.



maximum relative change in a given data point Ri of a given

simulated curve. The value of n for each trained model ranged

from 0 to 0.5 in increments of 0.05. The applied uniform noise

is not meant to model a specific physical noise type, such as

Poisson noise for counting statistics. Rather, uniform noise

was chosen as a q-independent catch-all noise that affects the

whole curve equally and thus makes the neural network robust

against errors across the entire q range.

Fig. 4 shows a comparison of the losses calculated with a

simulated test set and with the experimental test set for each

model. Since the loss is calculated as the mean-squared error

of all three (normalized) sample parameters, it is a unitless

measure for the accuracy of the model. For n = 0, the simu-

lated test set shows a loss close to zero (�10�7), whereas the

loss based on the experimental data is about five orders of

magnitude higher. This shows that, without any noise, the

neural network significantly overfits the simulation and thus

performs suboptimally on real data. As expected, the loss of

the simulated data increases monotonically with increasing

noise. However, the performance on the real data improves

significantly with increasing noise up to a noise level of 0.3–

0.35. Beyond this, still higher noise levels seem again to

worsen the performance. This very clearly demonstrates that

there exists an optimal noise level for which the added noise

acts as an effective regularization technique that prevents

overfitting. If the noise level is too high, however, the conse-

quent lack of information is likely to be detrimental to the

training. Thus, we identified n = 0.3 to be the ideal noise level

for data similar to our testing set, which notably contains data

from different X-ray sources. Fig. S1 in the supporting infor-

mation shows that the optimal training noise does not change

significantly for subsets with different noise levels (0.1–0.5)

within the experimental test set. Thus, we set the default value

of the noise level in our analysis pipeline to 0.3. Data sets that

differ significantly from our test set in terms of experimental

artifacts might of course produce slightly different results,

although we expect the general trend to be the same. This

highlights the importance of having a large experimental test

set with representative experimental artifacts, since metrics

based only on simulated data are clearly not sufficient to

evaluate the training progress.

5. Influence of systematic measurement errors

All reflectometry measurements are performed with a finite

accuracy due to various error sources. These errors are

detrimental to the experiment and can impede the extraction

of information from the data, and therefore should be avoided

or minimized as much as possible. However, a finite error

inevitably remains for every measurement. Among the

possible statistical errors are Poisson noise from counting

statistics, the angular resolution of the diffractometer and the

spectral resolution of the source. Among the systematic errors

are, for example, the convolution of the data with the slit

functions, the accuracy of the sample alignment and the

accuracy of the footprint correction (i.e. how accurately the

beam and sample shape can be determined in practice).

Having imperfect data obviously has an impact on the

analysis, since the data deviate from the ideal physical model

they are compared with. Since the neural network model

presented here is trained to solve a very particular task that

assumes well defined data, these errors can negatively impact

the prediction quality. In general, it is easier to make the

neural network robust against statistical errors by introducing

them during training, as described before. However, some-

times systematic errors, such as a small misalignment, can also

seriously misguide the machine learning prediction, as shown

in Fig. 5. Therefore, it would be useful to correct or

compensate for some of these errors during inference time

after the data have been acquired.

As a solution, we propose an automated method for

sampling through slight variations in the data, exploiting both

the sensitivity and speed of our neural network model. Since

the neural network assumes data that conform to an idealized

physical model, it might fail if the data contain anomalies with

respect to that model. Since predictions with the neural

network are very fast, it is possible to scan through thousands

of modified reflectivity curves in less than a second. For each

of these variants, the log MSE between the data and the

predicted curve can be calculated and only the one with the

lowest error is subsequently selected. We demonstrate an

implementation of this method that identifies small systematic

alignment errors and automatically applies an appropriate

shift to the data.

Fig. 5(a) shows an XRR measurement of a 690 Å thick film

of N,N 0-dioctyl-3,4,9,10-perylenedicarboximide (PDI-C8) on

Si/SiOx, which was measured and tested in addition to the 242

test curves. Here, in contrast to the previously shown test set,

the normal pipeline as described above did not converge to

the correct minimum. The reason for this is the much higher

thickness of the film, which leads to denser Kiessig oscillations

in the data. This, in turn, creates many narrow minima on the
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Figure 4
A comparison of the testing loss calculated from a simulated test set
(100 000 curves, red) and an experimental test set (242 curves, blue) for
different levels of uniform noise n that were applied to the training data.
For each noise level a separate model was trained. With increasing noise
level, the loss from the simulated data increases linearly, while the loss
from the experimental data shows a clear minimum at noise levels of 0.3–
0.35. The error bars represent the standard deviation from five
independent training repetitions.



MSE surface for the LMS algorithm to get trapped in. As a

result, the neural network prediction needs to be even closer

to the ground truth for the subsequent fit to converge. Table 1

shows the predicted thin-film parameters in comparison with

the ground truth. A possible reason for the suboptimal neural

network prediction might be small imperfections in the data

due to finite measurement errors, such as a small variation in

sample alignment. In regions of high derivatives, even a small

shift in the data along the qz axis can lead to strong differences

in the observed intensities at a given qz value, even on a

logarithmic scale. Of course, if the data have dense oscilla-

tions, this effect becomes more pronounced. For models

trained on simulated data this can be critical, since normally a

substantial change in certain input neurons, especially near the

TRE, corresponds to important information and will be

interpreted by the network accordingly. To check whether this

can be remedied, we shifted the qz values during the inter-

polation step by a small value �qz and repeated the predic-

tion. This was done 1000 times with randomly sampled �qz

ranging from �1 � 10�3 to 1 � 10�3 Å�1. Then, for each

prediction, the quality of the prediction was evaluated by

calculating the log MSE between the corresponding simula-

tion and the measured curve.

When plotting the log MSE between the prediction and the

input against �qz (Fig. 5), we observed a value �qmin =

5.2 � 10�4 Å�1 for which the log MSE shows a clear

minimum. From Fig. 5(a) it is apparent that the predicted

curve based on the shifted data shows much better agreement

with the data than the normal prediction. The corresponding

predicted parameters for �qmin (shown in Table 1) are much

closer to the ground truth values (comparable to the values

given in the previous section). This indicates that there exists a

certain shift �qmin that can (at least partially) compensate for

the experimental error. This is especially valuable since it

allows the pipeline to continue with the LMS refinement step,

which ultimately leads to a near-perfect fit.

Note that �qmin is very small, corresponding to a change in

the angle of incidence of only about 4 � 10�3 � for a wave-

length of 1.54 Å. It seems intuitive that such a small shift in the

data could be caused by a variety of the above-mentioned

error sources. However, although �qmin is seemingly small,

because of the high derivatives close to the TRE and the

Kiessig fringes, shifting the data by �qmin still has a noticeable

effect on each data point. For conventional LMS fitting this

might not seem critical at first, since the MSE surface probably

has a minimum close to the real one in terms of the film

thickness. However, for the roughness and density parameters

this might not be the case, and thus most fitting programs

allow the user to shift the data manually if necessary.

While in principle any type of modification like this could

conceivably be applied to the data to scan for the lowest MSE,

we observed significantly better results with this method

rather than, for example, adding Gaussian noise. This is

because a translation of the curve preserves most of the

information in the data while still varying every data point, in

contrast to Gaussian sampling which is q-independent and

inevitably destroys information.

To test the stability of this method, we applied the �qz

sampling procedure to all 242 curves discussed in the previous

section (where the pipeline already succeeded) and compared

the results with the original mean absolute error. When

looking at Fig. 3, it becomes clear that scanning for �qmin did

not harm the mean absolute error, but instead even improved

the results slightly for all three parameters. While the log MSE

of the predictions is already very close to the minimum, most

of the data probably still have a finite alignment error, but this

was not sufficient to affect the prediction. Hence, this could

still be compensated for by applying a small shift, ultimately

leading to an even better fit. Because this screening for �qz

yielded significant improvements on some data and was
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Table 1
Predicted and fitted thin-film parameters based on the reflectivity data of
a PDI-C8 film on Si/SiOx (shown in Fig. 5).

The ground truth labels were obtained via a manually supervised LMS fit.
After applying the described qz variation, the prediction results improved
significantly. A subsequent LMS refinement only led to comparatively small
improvements.

Thickness (Å) Roughness (Å) SLD (� 10�6 Å�2)

Ground truth 688.3 27.1 10.5
Prediction 536.7 30.3 11.2
Shift + prediction 690.8 31.0 11.0
Shift + prediction + fit 690.5 27.5 10.8

Figure 5
(a) A comparison of the neural network predictions from reflectivity data
from a 690 Å thick PDI-C8 film on Si/SiOx. The blue curve shows the
native prediction and the red curve shows the prediction after the data
were shifted by �qmin = 5.2 � 10�4 Å�1 before the interpolation step. It is
apparent that the latter is in much better agreement with the data. (b) The
log MSE between the predicted curve and the data for different �qz. The
minimum MSE at �qmin is indicated by the dashed line.



relatively fast, we decided to add this routinely to the analysis

pipeline.

6. Fourier transforms as a method for feature
engineering

The specular reflectivity from a single layer on a substrate well

above the critical angle can be approximately described by

RðqzÞ ¼ RFðqzÞ

Z1

�1

d�ðzÞ

dz
exp ðiqzzÞ dz

������

������
2

; ð1Þ

i.e. the product of the Fresnel reflectivity from a flat surface

and the squared Fourier transform of the SLD contrast of the

sample along the surface normal (Als-Nielsen & McMorrow,

2011; Sivia, 2011). Although the phase of the Fourier trans-

form is lost by taking its absolute square, the inverse Fourier

transform of R(qz)/RF(qz) still carries some important infor-

mation, such as the frequency of the Kiessig oscillations (and

thus the film thickness). As a result, performing an inverse

Fourier transform on the reflectivity data presents itself as an

obvious way of creating additional input features that may

facilitate the neural network training.

To test this hypothesis, we trained a neural network model

with an additional preprocessing step before the first layer that

performs a fast Fourier transform on the standardized input

and adds the real and imaginary Fourier components to it,

leading to a input layer size of 219 neurons. All other model

parameters and training ranges were kept the same as

described above. When testing the trained model on the 242

experimental curves, we found that the model performed

similarly to the model without the added Fourier transform.

The median absolute errors (median percentage errors) were

6.2 Å (8.9%) for the film thickness, 2.3 Å (13.3%) for the

interface roughness and 0.76 � 10�6 Å�2 (7.2%) for the SLD,

which are 4, 19 and 6% higher, respectively, than for the base

model.

From this we conclude that the base model (without the

added Fourier transform) had probably already learned to

extract all available frequency information implicitly from the

data, and adding the Fourier components explicitly does not

lead to a better training result. The reason why the results are

slightly worse when the Fourier transform is added might be

the increased number of trainable parameters due to the

larger number of neurons in the model. Thus, more para-

meters need to be optimized to achieve the best training

result, which is generally a more difficult task. For these

reasons, and the added computational requirements during

both training and inference time, we decided not to include the

Fourier transform layer in the default neural network layer of

our analysis pipeline. Nevertheless, we do not rule out that a

suitable implementation of the Fourier transform could be

beneficial for certain scattering geometries.

7. Conclusion

We have demonstrated an optimized analysis pipeline,

mlreflect, based on machine learning for the automated

analysis of reflectivity data. We have tested our pipeline on a

large data set of 242 XRR curves, containing in situ and ex situ

measurements of organic thin films on Si/SiOx substrates,

where it showed a performance comparable to a manually

supervised least-mean-squares fit for most of the data.

Therefore, we conclude that mlreflect is a useful tool for the

automated pre-screening or even on-the-fly analysis of

reflectivity data.

We have also discussed that, for the effective evaluation of

trained machine learning models, a sufficiently large experi-

mental data set is necessary. Most studies so far have mainly

focused on the performance of the model with regard to

simulated data and include only a few, if any, experimental test

data. However, this may be misleading, since our results

clearly show that the performance on simulated data cannot

easily be generalized to experimental conditions.

We have shown the influence of possible systematic errors

(such as misalignment) on the reflectivity data and how the

prediction speed of the neural network model can be

exploited to improve the overall performance by transforming

the data slightly. Our results highlight the necessity of

accounting for these differences between simulated theore-

tical models and real data in order to obtain stable results.

Although the results shown here were demonstrated with

systems of one layer on an Si/SiOx substrate, the neural

network model could easily be retrained to determine any

single layer of any sample structure. While determining

multiple layers at once is possible in principle and has been

demonstrated before, this type of neural network architecture

might not be ideal to tackle this type of inverse problem with

multiple solutions, since they map exactly one solution to a

given input. Therefore, architectures that yield probabilities as

an output might be more suitable for multi-layer problems.
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