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A method for the self-consistent description of the large variations of unit-cell

parameters of crystals with pressure and temperature is presented. It employs

linearized versions of equations of state (EoSs) together with constraints to

ensure internal consistency. The use of polynomial functions to describe the

variation of the unit-cell angles in monoclinic and triclinic crystals is compared

with the method of deriving them from linearized EoSs for d spacings. The

methods have been implemented in the CrysFML Fortran subroutine library.

The unit-cell parameters and the compressibility and thermal expansion tensors

of crystals can be calculated from the linearized EoSs in an internally consistent

manner in a new utility in the EosFit7c program, which is available as freeware

at http://www.rossangel.net.

1. Introduction

The measurement of the response of the unit-cell parameters

and therefore the volume of crystals to hydrostatic pressure

(P) and temperature (T) provides fundamental information

about the nature and anisotropy of the bonding within the

structures of crystals. The variation of the unit-cell volume,

molar volume and density of a material with pressure and

temperature is described by its equation of state (EoS). The

formulae that relate the volume or density of a material to the

applied pressure are based on various assumptions. They

include assumed interatomic potentials and structural

geometries, or an assumed relationship between parameters

and pressure (e.g. the Murnaghan and Tait EoSs), or an

assumed relationship between the strain arising from

compression and the free energy of the solid (e.g. the Birch–

Murnaghan EoS). Thermal EoSs include various purely

parametric forms and those such as the Mie–Grünesien–

Debye EoS that involve assumptions about the phonon

density of states of the solid and its contribution to the heat

capacity and thus the thermal pressure. A full review of EoSs

and these issues has been given by Anderson (1995).

An EoS for volume (and therefore density) describes

isotropic properties. Such EoSs do not describe the anisotropy

of the response of crystal structures to pressure or tempera-

ture, which is described by the second-rank tensors of thermal

expansivity and compressibility. While the variations of indi-

vidual elastic moduli of a crystal (a fourth-rank tensor) with P

and T are related to the Helmholtz free energy (e.g. Stixrude
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& Lithgow-Bertelloni, 2005), the expression involves deriva-

tives of the individual elastic moduli that are often not avail-

able, while the equations cannot easily be reduced to describe

the anisotropic thermal expansion and compressibility under

hydrostatic pressure.

Therefore, the variations of individual unit-cell parameters

of crystals as P and T are changed have been described by

using linearized equations of state in which the individual cell

parameters are cubed and then fitted using the volume EoS

(e.g. Angel, 2000). When applied to unit-cell parameters, these

have been called ‘axial EoS’. Alternatively, the equations for

thermal expansion or compressibility can be converted to

equivalent linear forms to fit unit-cell data (e.g. Kroll et al.,

2014; Murshed et al., 2015). These methods can be extended to

any direction within the unit cell. In most cases they provide

an accurate description of the variation of the individual unit-

cell parameters with P and/or T, and yield linear compressi-

bilities and moduli that agree with those determined by direct

measurements of the elastic tensors. The advantage of these

approaches is that the underlying theory of volume EoSs is

well developed and their limitations in parameter and P and T

space are well understood (e.g. Holzapfel, 2001; Anderson,

1995; Angel et al., 2019), so linearized EoSs can be extra-

polated beyond the range of data with more confidence and

justification than simple polynomial functions of the unit-cell

parameters with P and T.

However, the volume and the unit-cell parameters of a

crystal are not independent of one another, so the use of

independent equations for the variation of the unit-cell

parameters and the volume introduces additional false

degrees of freedom into the description of the behaviour of

the crystal. Furthermore, the relationship between the volume

and the unit-cell parameters imposes specific constraints that

relate the bulk modulus, K ¼ �Vð@P=@VÞ, and its derivatives

to the axial linear moduli, Mi ¼ �aið@P=@aiÞ, and their deri-

vatives. As we prove below, except for cubic crystals, as

pressure is increased the different axial moduli increase at

different rates, and the symmetry constraints relating the bulk

modulus and its derivatives to the linear moduli and their

derivatives are violated if conventional volume and axial EoSs

are used to describe the variation of the moduli with pressure.

The same problem occurs with the thermal expansion coeffi-

cients of the volume and the unit-cell parameters. Therefore,

describing the anisotropic changes with P and T of a unit cell

and its volume with independent EoSs is not physically

consistent.

There is an additional but distinct difficulty that arises when

the crystal has monoclinic or triclinic symmetry. The use of an

axial EoS does not address how to describe the variation of

unit-cell angles with P and T, or composition. This can be

achieved by using the strain tensor and its derivative tensors of

compressibility and thermal expansivity (Nye, 1957; Ohashi &

Burnham, 1973). These define the instantaneous variation of

all of the unit-cell parameters of a crystal, including the unit-

cell angles. The linearized EoS defines the components of

these property tensors that correspond to the axes of the unit

cell, but there is no independent underlying theory that

defines how the other tensor components vary with P and T in

monoclinic and triclinic crystals. This means that a strain

tensor analysis cannot be used to extrapolate the behaviour of

the crystal to P and T ranges beyond that of the data.

Furthermore, when two unit-cell determinations are made at

both different P and different T, the strain is defined but the

partitioning of the strain into T- and P-induced components is

not, so the data cannot be interpreted in terms of compression

and thermal expansion. And when the unit-cell angles of

monoclinic and triclinic crystals change significantly from one

measurement to another, the strain tensors do not provide a

unique description of the unit-cell-parameter variation or of

the directions of the principal axes of the strain, which include

the directions of greatest and least strain (e.g. Paufler &

Weber, 1999; Knight, 2010; Langreiter & Kahlenberg, 2015).

This is important when trying to relate the directions of

greatest or least compressibility or thermal expansion to the

crystal architecture and thus the bonding within the crystal

structure.

All of these issues have recently become more important in

mineralogy as host-inclusion piezobarometry has been

developed. This technique uses the stress and the strain

measured in an inclusion crystal trapped inside a host mineral

to determine the P and T under which the inclusion was

trapped. In its simplest isotropic approximation only the

volume equations of state of the minerals are required (Angel,

Mazzucchelli et al., 2014). More recent developments of the

method for anisotropic phases (Alvaro et al., 2020; Mazzuc-

chelli et al., 2019; Gonzalez et al., 2021) require an accurate,

precise and internally consistent description of how the unit-

cell parameters of both the host and inclusion phases change

with pressure and temperature. If the equations for the unit-

cell parameters of a phase do not result in exactly the same

volume as that calculated from its volume EoS, then the small

discrepancies can propagate into significant errors in the

calculation of entrapment conditions.

In this paper we present a simple phenomenological

approach to describe consistently the variation of the unit-cell

parameters of crystals with P and T. It is based on using axial

EoSs to describe the cell-parameter variations, but with

constraints to ensure that full internal consistency is main-

tained between the predicted unit-cell parameters and

volume. We then use the method of Paufler & Weber (1999) to

calculate the compressibility and thermal expansivity tensors

directly from these linearized EoSs at any P and T. This allows

the elastic behaviour of any direction in the crystal structure to

be described in a consistent manner and the principal axes of

the tensors, which include the directions of greatest and least

strain, to be unambiguously defined. We also document how

this method is implemented in a new version of the eos module

in the CrysFML software library and within the established

EosFit7c program for EoS calculations (Angel, Alvaro &

Gonzalez-Platas, 2014). A new utility in the EosFit7c program

allows the user to perform all of the data analysis and EoS

calculations described in this paper. The program is freely

available in compiled form for Windows, Linux and macOS

operating systems at http://www.rossangel.net, together with
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example data sets and complete documentation. The

CrysFML subroutine library (Rodriguez-Carvajal &

Gonzalez-Platas, 2003) is open source and is available at

https://code.ill.fr/scientific-software/crysfml. The architecture

of the EosFit7c program also allows it to be called from other

software such as MATLAB (The MathWorks Inc., Natick,

MA, USA) to perform EoS calculations without the need to

cross-compile software directly with the CrysFML library.

2. Constrained equations of state

2.1. The theoretical basis

The fundamental constraint on the unit-cell parameters of a

crystal is that they must obey the relationship

V ¼ abc 1� cos2 �� cos2 �� cos2 � þ 2 cos � cos � cos �
� �1=2

;

ð1Þ

which for ease of notation we will write as

V ¼ abcA: ð2Þ

The A in (2) represents the entire square-root expression in

(1), which involves only the unit-cell angles. The derivative of

(2) relates changes in the volume to the changes induced in the

unit-cell parameters:

@V

V
¼
@a

a
þ
@b

b
þ
@c

c
þ
@A

A
: ð3Þ

As an example, it follows that the volume compressibility

�V ¼ ð�1=VÞð@V=@PÞ is also related to the compressibilities of

the individual cell parameters [e.g. �a ¼ ð�1=aÞð@a=@PÞ] as

�V ¼
�1

V

@V

@P

� �
T

¼ �a þ �b þ �c �
1

A

@A

@P

� �
: ð4Þ

An equivalent expression exists for thermal expansivity,

�V ¼ ð1=VÞð@V=@TÞ. In crystal systems of orthorhombic and

higher symmetry, the unit-cell angles are fixed by symmetry

and the volume compressibility is just the sum of the linear

compressibilities of the unit-cell axes:

�V ¼
�1

V

@V

@P

� �
T

¼ �a þ �b þ �c: ð5Þ

Further differentiation of (4) gives the relationship between

the first pressure derivatives of the compressibilities of crys-

tals:

�0V ¼
@�V

@P

� �
T

¼ �0a þ �
0
b þ �

0
c þ

1

A2

@A

@P

� �2

�
1

A

@2A

@P2

� �
: ð6Þ

The volume EoS is usually parameterized and expressed in

terms of the isothermal Reuss bulk modulus, K ¼

�Vð@P=@VÞT ¼ 1=�V . The linear compressibilities are the

inverse of the corresponding isothermal Reuss linear moduli,

e.g. Ma ¼ �að@P=@aÞT , so from (4) the relationship between

these moduli must always be

K�1 ¼ M�1
a þM�1

b þM�1
c �

1

A

@A

@P

� �
: ð7Þ

The relationship between the pressure derivative of any

individual compressibility and the pressure derivative of its

corresponding modulus M0i ¼ ð@Mi=@PÞT is

�0i ¼
@�i

@P

� �
T

¼
�M0i
M2

i

; ð8Þ

so that the relationship (6) between the first pressure deriva-

tives of the compressibilities can be expressed in terms of

moduli and their pressure derivatives as

K0

K2
¼

M0a
M2

a

þ
M0b
M2

b

þ
M0c
M2

c

�
1

A2

@A

@P

� �2

�
1

A

@2A

@P2

� �" #
: ð9Þ

Thus, in order to be completely consistent in the description

of the properties of a unit cell, the linearized EoSs of the unit-

cell axes and the volume EoS must obey not only the rela-

tionship given by (1) but also those expressed in equations (7)

and (9), at all pressures.

Examination of these equations shows that this is only

possible for three special cases: first, when the compressi-

bilities, moduli and their derivatives are identical for all

directions in the crystal, which is only true in cubic crystals;

second, when the pressure derivatives of the moduli are all

zero, so that all of the moduli remain equal to their room-

pressure values at all pressures; and third, when the pressure

derivatives (�0i) of the compressibilities are independent of

pressure, which allows the constraints expressed in equations

(4) and (6) to be met at all pressures. However, the last two

cases are physically unrealistic, as non-zero pressure deriva-

tives describe the stiffening of the structure under compres-

sion, and the rate of this stiffening changes with pressure,

which is an intrinsic property of all commonly used EoSs.

As a simple example, the Murnaghan EoS assumes a linear

variation of K (or M for the cell axes) with pressure, corre-

sponding to constant values of K0 and M0. However, equation

(8) shows that constant K0 and M0 do not correspond to

constant values of the pressure derivatives of the compressi-

bilities �0. Therefore, the Murnaghan EoS can only meet the

criterion set by (4) at a single pressure. Even if all of the axes

have the same value of M0, equation (9) shows that K0 for the

volume calculated from the unit-cell-parameter EoS with

constant M0 will vary with pressure, because the values of M

increase with increasing pressure. But the corresponding

Murnaghan EoS for the volume will have, by definition,

constant K0. The consequences of this are shown in Fig. 1, with

a simple example of the volume variation of a soft tetragonal

crystal predicted from the axial EoSs for the unit-cell para-

meters and the EoS for the volume. The parameters V0, K0

and K00 of the volume EoS at the reference conditions (Table 1)

are exactly those required by the constraints given in equa-

tions (1)–(9) above. However, although all of the elastic

properties of the cell and volume obey these constraints at the

reference conditions, they do not obey them at any other

pressure. For example, the axial moduli at 1 GPa will be

Mi ¼ M0 þM0i , so Ma ¼ 45 GPa and Mc ¼ 40 GPa, from

which one obtains [equation (7)] a bulk modulus of

K = 14.4 GPa, whereas the bulk modulus predicted by the
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Murnaghan EoS for the volume (Table 1) would be

15.625 GPa. The Birch–Murnaghan third-order EoS produces

similar discrepancies in the bulk modulus values. Using the

same room-pressure parameters (Table 1), it yields for a

pressure of 1 GPa values of Ma ¼ 44:20 GPa and Mc ¼

38.09 GPa, which imply a bulk modulus of K = 13.99 GPa,

whereas that from the volume EoS is 15.32 GPa. Therefore,

the volume and bulk modulus predicted from the volume EoS

show increasing divergence from the values predicted by the

axial EoS as pressure is increased (Fig. 1); the same behaviour

is exhibited by all other EoS formulations.

The rate at which these differences in volumes and bulk

moduli increase with pressure depends on the bulk modulus,

the elastic anisotropy of the crystal [equations (4) and (7)] and

in particular on the anisotropy of the pressure derivatives of

the axial compressibilities [equations (6) and (9)]. Therefore,

the differences in volume calculations depend on the amount

of compression (fractional volume decrease) applied to the

crystal, not on the pressure itself. The difference in predicted

volumes for the example in Fig. 1 reaches 1% at approxi-

mately 15% volume compression, which occurs at a pressure

of about 2 GPa for this example, corresponding to �K0 /5.

Thus, a stiffer material with the same degree of anisotropy will

only show similar differences in volumes at higher pressures.

For example, the volume differences for TiS2 are only slightly

larger than the estimated experimental uncertainties up to

pressures of 9 GPa (Fig. 2), because it has a K0 three times

larger than the example in Fig. 1. Therefore, whether or not

the effects of anisotropy on the calculation of cell parameters

and volumes is significant depends not only on the elastic

properties of the crystal but also on the precision of the

experimental data, the pressure and compression range being

considered, and the precision and internal consistency

required in calculations.

Clearly, the unit-cell volume, the unit-cell parameters and

their derivatives [equations (1)–(9)] are not independent

quantities, and therefore the description of their behaviour

with P and/or T by independent EoSs introduces false addi-

tional degrees of freedom. We have also demonstrated here

that, if the variations of all of the unit-cell parameters and

volume are described by realistic EoSs, then the constraints on

the relationship between the elastic properties of the volume

and the unit-cell parameters cannot be met exactly at all

pressures except in special cases. Therefore, it is not physically

consistent to describe the anisotropic evolution of a unit cell

with P and T with completely independent EoSs. The

following examples, grouped by crystal system, show how this

problem can be overcome and a fully self-consistent descrip-

tion of the variation of the parameters of a unit cell of a crystal

can be obtained. Most of the examples illustrate the problem

in the context of isothermal compression, for which the effects

are largest. However, exactly the same methodology can be

applied to thermal expansion or, in general, an EoS describing

how the unit-cell parameters change with P and T, as illu-

strated below with the example of quartz.

2.2. Cubic crystal system

For cubic crystals the general relationship (1) between the

unit-cell edge a and the volume is simplified to V ¼ a3, and it

follows from the constraint equations given above that the

elastic properties of all of the unit-cell edges have the same

relationship to those of the volume. Thus,

�V ¼ 3�a; �V ¼ 3�a; �
0
V ¼ 3�0a; 3K ¼ Ma; 3K0 ¼ M0a: ð10Þ

This means that the variation of the unit cell of a cubic crystal

can be described equally well with either a linearized EoS for

the unit-cell parameter a or an EoS for the volume with the

parameter relations given in (10), which will then hold for all

temperatures and pressures, unlike the example shown in

Fig. 1. In addition, because the thermal expansion and

compressibility are second-rank tensor properties, these are

identical for all directions in a cubic crystal.

2.3. Uniaxial crystal systems

In these crystal systems the values of the unit-cell angles are

fixed by the symmetry so the angle factor A [equations (1) and

(2)] is 1.0 in the tetragonal system and A = sin(120�) for the

trigonal and hexagonal systems in their conventional settings.

Being constant, the angle factor A does not contribute to the

volume derivatives as defined by equation (3). Therefore, for

the uniaxial crystal systems the variation in the unit-cell

parameters can be described by fitting EoSs to any two of a, c

and V, setting the EoS of b to be equal to that of the a axis, and

calculating the properties of the third symmetrically inde-

pendent parameter from the other two. Fig. 2 shows the unit-

cell variation of TiS2 with pressure (Allan et al., 1998) treated

in this way; this is used as an example because TiS2 has a
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Table 1
Properties at reference conditions of an example tetragonal crystal that
obey the symmetry constraints on elastic properties.

a axis, b axis c axis Volume

L0, V0 (Å Å3) 5.0 4.0 100.0
M0, K0 (GPa) 40.0 20.0 10.0
M00, K00 5.0 20.0 5.625

Figure 1
Variation of the unit-cell volume and bulk modulus of a tetragonal crystal
calculated with the EoS parameters listed in Table 1. The EoS parameters
obey the symmetry constraints between volume and axial properties at
P = 0, but under compression the volume and bulk modulus calculated
from the axial EoS deviate significantly from those from the volume EoS.
Murnaghan EoS used for both axes and volume.



layered structure with very strong anisotropy in both the axial

moduli and their pressure derivatives, and it therefore

provides a challenging test. The unit-cell volume calculated

from the axial Birch–Murnaghan EoSs for a and c is indis-

tinguishable on the scale of the figure from the volume EoS

fitted directly to the volume data. In detail, the average misfit

to the data quantified as (Pobs � Pcalc) is 0.024 GPa from the

unit-cell EoS and 0.015 GPa from the direct volume EoS.

From room pressure to 5 GPa, in the middle of the data set

where the elastic parameters are best constrained, the differ-

ence in K and K0 between the two descriptions of the volume is

less than 1.5 e.s.d., but then increases to the level of 2 e.s.d. at

8 GPa. Thus, for this very anisotropic example, the fit of the

axial EoS represents the volume properties almost as well as

the direct fit to the volume data.

The mineral zircon, ZrSiO4, has tetragonal symmetry and is

also strongly elastically anisotropic with the c axis being

almost twice as stiff as the a and b axes (e.g. Özkan et al., 1974;

Ehlers et al., 2022). This makes it challenging to determine the

linear modulus of the c axis from just measurements of the

unit-cell parameters under pressure. Fig. 3 shows that the

behaviour of the c axis of zircon can be well represented by

calculating it as c = V/a2, with the values of V and a obtained

from their corresponding EoSs fitted to the experimental data

(Ehlers et al., 2022). The calculated c-axis variation gives a

value of Mc0 that is within 1 e.s.d. of the value determined by a

combined fit to elasticity and compressional data (Ehlers et al.,

2022), and also reproduces the slight softening (M0c < 0) from 0

to �4 GPa that is apparent in the data (Fig. 3).

A further stringent test of the method is provided by the

extreme values of properties in the neighbourhood of

continuous displacive phase transitions (e.g. Carpenter, Salje

& Graeme-Barber, 1998; Carpenter & Salje, 1998). In quartz,

the �–� phase transition at �848 K and room pressure (e.g.

Carpenter, Salje, Graeme-Barber, Wruck et al., 1998) is

accompanied by almost infinite thermal expansion and

compressibilities in the low-temperature � phase, the latter

corresponding to the softening of the isothermal bulk modulus

and linear moduli to zero. Fig. 4 shows that the behaviour of

the c axis calculated as c = V/a2 sin(120�) from the volume and

a-axis EoSs is reproduced just as well as the a-axis properties

are predicted by the EoS fitted directly to the a-axis data. In

particular, this calculation for the c axis captures the reduction

of the linear modulus Mc as the transition is approached in the

� phase, the rapid recovery of this modulus in the � phase, and

the negative thermal expansion of the c axis in the � phase.
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Figure 3
Pressure evolution of the unit-cell parameter c of zircon. The symbols are
the measured data, and the line is the predicted evolution calculated from
the EoSs fitted to the a-cell parameter and the volume. Data and EoS
from Ehlers et al. (2022).

Figure 4
Variation of the unit-cell parameters and linear moduli of quartz with
temperature at room pressure. Data points are from Carpenter, Salje,
Graeme-Barber, Wruck et al. (1998) and Lakshtanov et al. (2007). Red
lines are a linear EoS for the a axis fitted to the same PT data as used to
determine the volume EoS (Angel et al., 2017). The blue lines for the c
axis are not fitted to the data, but are calculated from the volume and a-
axis EoSs. The �–� phase transition in quartz is marked by the vertical
dashed line.

Figure 2
Evolution with pressure of the unit-cell parameters and volume of
trigonal TiS2. Data are from Allan et al. (1998). The lines for a and c are
the axial Birch–Murnaghan EoSs fitted to the data, and the black solid
line is the volume variation calculated from these two EoSs. It is almost
indistinguishable from the EoS fitted directly to the P–V data (red dashed
line).



2.4. Orthorhombic crystal system

For orthorhombic crystal systems the unit-cell angles are

constrained to be 90�, the factor A = 1.0, and the volume of the

unit-cell is simply the product V = abc. Therefore, the aniso-

tropy of the elastic properties of the unit cell of an ortho-

rhombic crystal can be described completely by specifying the

EoSs of three of these quantities and calculating the fourth

from them. As for crystal systems of higher symmetry, this also

allows the compressibility of any direction in the crystal to be

calculated at any P and T from the EoS. As an example, Fig. 5

shows the pressure variation of the length of the [111] lattice

vector and the d spacing of the (221) planes in pure forsterite,

Mg2SiO4, calculated using the axial EoSs for the unit-cell axes.

2.5. Monoclinic crystal system

We use the conventional setting of the monoclinic crystal

system with the b axis being unique to describe our metho-

dology for monoclinic crystals. Equivalent expressions for the

relationships between cell parameters follow if a different cell

setting with a different unique axis is chosen. For b unique, the

angle factor in equations (1) and (2) is A ¼ sin �, and the unit-

cell parameters and volume are related by V ¼ abc sin �. It

follows that the unit cell can be completely described by four

of these five parameters. Self-consistent calculations can

therefore be achieved in different ways. We find that for

precise data with � angles greater than 100� both the angle and

the lengths of all directions can be well reproduced (Fig. 6) by

using EoSs fitted to the volume and the cell parameters, and

calculating � ¼ arcsinðV=abcÞ. Note that because of the

trigonometric identity sin � ¼ sinð180� � �Þ one has to specify

whether the � angle is obtuse or acute (greater or less

than 90�).

The uncertainty in the � angle (in degrees) calculated in this

way is �ð�Þ ¼ ð180=�Þ�ðV=abcÞ= cos�, where �ðV=abcÞ is the

combined uncertainty in V=abc. The factor of cos� in the

denominator ensures that the uncertainty in � angle approa-

ches infinity as � approaches 90�; the value calculated from the

EoS becomes less reliable and more sensitive to uncertainties

in V=abc to the extent that the value of � can be completely

dominated by fitting errors and noise in the EoS and the

underlying data, together with numerical precision in the

computer code. The predicted behaviour of both the � angle

and consequently some directions in the crystal can become

completely wrong and unphysical as shown in Fig. 7. An

additional problem is that uncertainties in the EoS parameters

can sometimes result in the ratio V=abc calculated from their

EoS being greater than 1, for which no value of � can be

defined.

This is especially a problem in soft materials such as

molecular crystals, in which the rapid increase in moduli with

pressure and strong anisotropy in M0 means that the volume

variation with pressure includes a significant component from

the variation in the � angle [equation (3)], which in turn means

that the EoSs do not fit the data as well as for stiffer materials

over the same pressure range (compare Figs. 6 and 7). Because

dð100Þ ¼ a sin �, one can also describe the unit cell by an EoS

for this d spacing, or an EoS for dð001Þ ¼ c sin �, plus EoSs for

three of a, b, c and V. However, when the � angle approaches

90�, the evolution of the d spacings with P and T approaches

that of the corresponding unit-cell axes a and c. The value of

the � angle obtained from the two EoSs as
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Figure 5
Pressure evolution of the unit-cell parameters of orthorhombic forsterite,
Mg2SiO4. Data points for cell parameters are from Poe et al. (2010), and
the corresponding lines are the fits of linearized EoSs to these data. Data
points for [111] and (221) were calculated directly from the measured cell
parameters at each pressure, and the corresponding dashed lines are
calculated from the axial EoS.

Figure 6
Unit-cell-parameter and �-angle variation of monoclinic SiO2, coesite,
with pressure (Angel et al., 2001). Solid lines for a, b and c are the fitted
linearized EoSs. Together with the EoS fitted to the unit-cell volume,
these allow the pressure evolution of both the unit-cell angle and
directions in the unit cell (data points) to be accurately reproduced (solid
lines). This includes d(100) which is a principal axis of compression of the
structure and softer than any individual cell edge. The dashed line for the
� angle is a second-order polynomial fit to the data. The dashed lines for
d(100) and [111] calculated from this polynomial and the axial EoS are
indistinguishable from values calculated from the axial EoS plus the
volume EoS.



� ¼ arcsinðdð100Þ=aÞ then suffers the same unreliability just

described.

Because the problem is in the recovery of the � angle from

the calculated cell parameters, an alternative approach is to

describe the variation of the angle directly in terms of P and T.

There is no constraint from theories of elasticity or EoSs that

define how unit-cell angles should change with T or P, so a

phenomenological approach can be adopted. For example, a

polynomial of the angle in P and T or a polynomial of a

trigonometric function or functions of the angle can be used.

The only requirement is that the function chosen provides an

invertible relationship that defines a unique angle for a given

P (or T) and a unique P for a given angle and T. Then, given

that the � angle is defined, EoSs for three of the four para-

meters a, b, c and V are required to complete the description

of the anisotropic properties of the unit cell. While this loses

the advantages of using only the EoS, especially with respect

to extrapolation to conditions beyond the range of the data,

Figs. 6 and 7 show that, if the variation of the monoclinic angle

is accurately represented by a polynomial, the method

provides a good description of the variation of the lengths of

all directions within the crystal while ensuring complete

internal consistency between all calculated cell dimensions at

a given P and T.

2.6. Triclinic crystal system

In the triclinic system there are six cell parameters and the

volume, of which six are required to define the geometry of the

lattice and unit cell. Thus it appears that if EoSs are defined

for a, b and c and also for the three d spacings 100, 010 and

001, then the unit cell is completely defined. However, this is

not the case, because the relationships between the unit-cell

angles and the d spacings take the form

sin � ¼
V

bcd100

: ð11Þ

This defines the unit-cell angle � in terms of V, d100 and two

unit-cell parameters, but the unit-cell angles are required to

calculate the volume through equation (1). If one wants to

retain the advantages of using only EoSs to describe the unit

cell it is therefore necessary specify all seven EoSs for the

three cell axes, three principal d spacings and volume. This

introduces a spurious degree of freedom because the cell

parameters and volume are treated independently and

therefore the self-consistency between the EoSs is not

ensured. This approach also suffers from the same problem of

uncertainties in the unit-cell angles if they approach 90�

(Fig. 8), which then leads to the prediction of unphysical

behaviour of certain directions within the crystal, such as the

[111] lattice vector shown in Fig. 8.

The alternative approach is to use a separate polynomial for

each of the unit-cell angles, in which case the unit-cell is

uniquely and consistently determined in combination with

EoSs for three of the four parameters a, b, c and V. Fig. 8

shows that this provides a more accurate description of the

variation of lengths of different lattice vectors and d spacings

within the unit cell of triclinic crystals. The volume calculated

from the six cell parameters is indistinguishable from the EoS
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Figure 8
Unit-cell-parameter and angle variation of triclinic C4H4N3Cu2I2 with
pressure (Conesa-Egea et al., 2017). Solid lines for a, b and c are the fitted
axial EoSs. The angles calculated (solid lines) from these axial EoSs and
the EoSs for three d spacings and the volume do not match the measured
data. As a consequence, the evolution of directions such as [111] is
predicted to have unrealistic variations with pressure (solid line). The use
of polynomial functions to describe the evolution of the angles with
pressure (dashed lines) together with the same axial EoS for a, b and c
reproduces (dashed lines) the measured variation of d(100) and [111]
with pressure.

Figure 7
Unit-cell-parameter and �-angle variation of monoclinic C4H4N3ClCuI
with pressure (unpublished data). Solid lines for a, b and c are the fitted
axial EoSs. The � angle calculated from these and the volume EoS is
shown as a solid line and does not match the measured data because of
the uncertainties in the EoS parameters of the axial EoSs. These cause the
lengths of vectors not in the (010) plane, such as [111], to have predicted
variations with pressure (solid line) that are unrealistic. The use of a
polynomial function to describe the evolution of the � angle with pressure
(dashed line) together with the same axial EoS reproduces (dashed lines)
the measured variation of d(100) and [111] with pressure.



fitted to the volume, at the scale of the measurement uncer-

tainties in the data.

2.7. Implementation in EosFit

These procedures have been implemented in the EoS

module of the CrysFML Fortran subroutine library (Rodri-

guez-Carvajal & Gonzalez-Platas, 2003), including the

description of unit-cell angles by polynomials. Calculations

can be performed with the CELL utility of the EosFit7c

program. EoSs for volumes and cell parameters and, for

triclinic crystals, the EoSs of the principal d spacings can be

loaded from EosFit .eos files or be input directly by the user.

Polynomials to describe the variation of the unit-cell angles in

monoclinic and triclinic crystals can also be stored in, and

loaded from, .eos files. The current version supports simple

polynomials up to third order in P and T, thus allowing a

maximum of ten coefficients of all orders up to P 3 and T3,

together with three cross-terms PT, PT 2 and P 2T. The

program architecture will allow extension to higher-order

polynomials or the implementation of other functions to

describe angle variation, if these are required.

Apart from the constraints imposed by the symmetry of the

crystal system, for example that a = b in uniaxial systems when

the unique axis is specified as c, the choice of which unit-cell

parameter to calculate from the EoSs of the others is a matter

of user choice. Therefore, the program only checks and

restricts the choice of EoSs to those consistent with the crystal

system. Once a set of EoSs have been loaded, the program

checks also for internal consistency of the EoSs, for example

that the pressure scales and the units for cell parameters and

volume are consistent between all of the EoSs. Calculations

are prevented until the EoSs necessary for the crystal system

are loaded. The available commands include the calculation

and output of the full unit-cell parameters at a P and T chosen

by the user, and the output to a file listing the cell parameters

over a range of P or T. The full properties (length, modulus,

thermal expansivity etc.) of any individual direction can be

calculated, as well as lines in P–T space of constant length (i.e.

the linear equivalents of isochors of volume) and lines of

constant ratio between a pair of directions. Pressure can be

calculated from the length of any direction or d spacing in the

crystal. The results of all of these calculations can be written

into text files so that the calculated values can be imported

into plotting software.

With the approach described here there are four different

types of directions (or volume) whose properties are calcu-

lated in different ways. The properties of unit-cell axes (or the

volume) for which EoSs are loaded, or which are symme-

trically equivalent to a cell axis for which an EoS has been

loaded, are calculated directly from their EoSs. All of the

properties of other unit-cell axes or the volume (i.e. those

without a loaded EoS) are calculated directly from the loaded

EoSs from the other axes through the relationships given in

equations (1)–(9). For other, general, directions in the unit cell

the cell parameters are first calculated from the loaded EoSs

and the metric tensor is constructed, from which the length of

the chosen vector is calculated. Properties such as the linear

modulus or thermal expansivity are calculated, numerically

from a spline to a series of length calculations over a small

range of P or T, as appropriate. This numerical approach,

equivalent to that used by Paufler & Weber (1999) and

Langreiter & Kahlenberg (2015), means that the calculated

properties of general directions have lower precision than

those calculated for unit-cell axes for which EoSs are avail-

able, and the precision decreases as the order of the volume

derivative increases; calculated values of the linear modulus M

are more reliable than the derivatives M0 or ð@M=@TÞP.

3. Tensor properties

The directions in a crystal structure of maximum and

minimum thermal expansion or compression are given by the

eigenvectors of the corresponding second-rank tensors. The

eigenvectors are also called the principal axes of the tensor

(Nye, 1957). In crystals of orthorhombic or higher symmetries

the eigenvectors are constrained to be fixed in direction to be

parallel to the axes of the conventional unit cell, and only their

magnitude is a property of the crystal structure. The magni-

tudes of the principal axes, and the corresponding tensor

components, are therefore given by the compressibility and

thermal expansivity of the corresponding unit-cell axes, which

are in turn defined by their axial EoSs.

In monoclinic crystals one principal axis is constrained to lie

parallel to the diad axis. The other two principal axes lie in the

plane perpendicular to the diad axis, but their directions in this

plane are not constrained by symmetry and they can therefore

rotate around the unique axis with a change in P or T. In

triclinic crystals there are no constraints on the directions of

the principal axes of these property tensors, meaning that they

are completely free to rotate. In these cases, the full tensors

must be calculated. The traditional method was to first

calculate the strains between a pair of determinations of the

unit cell of the crystal at different P or T (e.g. Ohashi &

Burnham, 1973; Schlenker et al., 1978) and then divide the

strains by the P or T increment between the measurements to

obtain the compressibility or thermal expansion tensors. This

approach has several widely recognized disadvantages

[discussed by Jessen & Küppers (1991), Paufler & Weber

(1999) and Knight (2010)]. First, it returns a property tensor

that is an average over the finite P or T range between the two

data points. Second, the exact values of the tensor components

are dependent on the initial and final conditions; thermal

expansivity tensors calculated across different temperature

intervals with the same mid-point temperature will have

different values of their components. Third, in cases where

there are significant changes in the unit-cell angles between

the two unit cells, the directions of the eigenvectors of the

strain and property tensors are defined relative to the refer-

ence cell under the assumption that the Cartesian axial system

used to describe the tensors is fixed and does not rotate during

the P and T change. As a consequence, the directions of the

eigenvectors relative to the cell at the mid-point conditions are

undefined, and a different choice of reference cell will lead to
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principal axes with slightly different directions relative to the

underlying crystal structure.

To avoid these problems, Paufler & Weber (1999) devel-

oped the alternative approach of defining the thermal

expansion tensor directly in terms of the derivatives of the

unit-cell parameters with respect to temperature. They used

polynomials to determine the unit-cell-parameter changes

with temperature, from which the temperature derivatives are

derived analytically and the thermal expansion tensor is

unambiguously defined for any temperature within the range

of the data. The values of the tensor components and the

directions of the eigenvectors are not averages but are defined

at the same temperature as one another (Paufler & Weber,

1999; Langreiter & Kahlenberg, 2015). The same approach can

be applied to determine the compressibility tensor from a

series of unit-cell determinations with pressure (Knight, 2010).

The method does not rely on the algebraic form of the

equations used to describe the cell-parameter variations, so

the thermal expansion and compressibility tensors can be

calculated from the temperature and pressure derivatives of

the linearized EoSs of crystals.

3.1. Implementation in EosFit

In the EoS module of the CrysFML library (Rodriguez-

Carvajal & Gonzalez-Platas, 2003) we implement the princi-

ples of the method of Paufler & Weber (1999). In crystal

systems of higher than monoclinic symmetry, the only non-

zero tensor components for the conventional choices of

orientation of the Cartesian axes are the diagonal components.

These are calculated directly from the set of self-consistent

linearized EoSs fitted to the unit-cell parameters, with the

components of the compressibility tensor being the inverse of

the corresponding linear moduli. In monoclinic and triclinic

crystal systems, the values of the tensor components also

depend on the choice of orientation of the Cartesian axes

relative to the crystallographic axes, and on the derivatives of

real and reciprocal angles. If the real-space angles are

described by polynomial functions, their derivatives are taken

directly from the functions. Otherwise their derivatives are

calculated by splines over a small range of T and P around the

point at which the tensor is required. The derivatives of the

reciprocal-space angles are always calculated by splines. The

equations of Paufler & Weber (1999) provide the equations for

one orientation of the Cartesian axes, those of Tribaudino et

al. (2011) for a second, and those for two further commonly

used orientations of the Cartesian axes were derived from

these and coded into the CrysFML library. All three possible

orientations of monoclinic unit cells are also supported.

The CELL utility of EosFit7c allows the user to calculate the

property tensors from a set of self-consistent linearized EoSs.

Facilities are provided to list the tensor components over a

range of P or T, along with the eigenvalues of the properties

and the directions of the principal axes (eigenvectors) relative

to the Cartesian axes and the real and reciprocal unit-cell axes.

A calculation of the nearest low-index plane normal and

lattice vector is also provided to aid the user to relate the

directions of the principal axes to the structure of the crystal.

If the original unit-cell data are available, the results can be

compared with the property tensors calculated by the finite

difference between consecutive cell determinations by the

STRAIN utility of EoSFit7c. Note that the STRAIN utility

supports several different strain definitions (Zotov, 1990),

which should become equivalent in the infinitesimal limit

represented by the derivative approach used here.

4. Conclusions

We have proved algebraically in equations (1)–(9) that the

volume variation of a crystal with P and T predicted from its

unit-cell parameters described by conventional linearized

(axial) EoSs is never exactly the same as that from a volume

EoS, unless the crystal is cubic. Using independent EoSs for

the symmetrically distinct unit-cell parameters and the volume

is therefore always physically inconsistent and introduces false

additional degrees of freedom. This applies to all types of EoS.

The physical inconsistency arises from the anisotropy in the

pressure derivatives of the axial compressibilities. Whether or

not this is a significant issue for a given crystal depends on the

degree of elastic anisotropy, the range of compression of

interest, and the precision of experimental data or the preci-

sion and internal consistency required in calculations.

Discrepancies are greatest for highly anisotropic soft materials

such as many metal–organic frameworks and molecular crys-

tals. If internal consistency is important, we have described

how the full variation of the unit-cell parameters, volumes and

elastic properties of a crystal can be described by suitable

combinations of the axial and volume EoSs for each crystal

system, and we have provided the tools for such calculations in

the 2021 release of the EosFit7c program. The consistency of

such calculations has been demonstrated with examples from

all crystal systems. The example of zircon demonstrates that

the method is also useful for determining the elastic properties

of very stiff directions in a crystal that are too stiff to deter-

mine precisely by direct experimental measurement.
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