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Errors and ambiguities in the article by Peterson, Olds, McDonnell & Page

[J. Appl. Cryst. (2021), 54, 317–332] are corrected and clarified, respectively.

In the article Illustrated formalisms for total scattering data: a

guide for new practitioners (Peterson et al., 2021) the authors

provide a detailed comparison between the various notations

and formalisms used by the total scattering/pair distribution

function (PDF) community. The paper repeats the relation-

ships already established by Keen (2001), presents look-up

tables for easy conversion between functions, and provides

graphical examples based on calculated neutron scattering

functions of liquid argon and powdered MnO from molecular

dynamics simulations and the cubic crystal structure, respec-

tively. However, there is a confusing choice of units when

some of the functions are presented graphically, leading to a

mis-labelling the y axes of several of the figures. Furthermore,

the low-Q limits have been defined incorrectly, such that they

are only applicable for monoatomic materials. Given the

pedagogical nature of the article (Peterson et al., 2021), we felt

it necessary to provide this corrigendum to clarify any unin-

tended confusion. For greater clarity, we provide a worked

example based on experimental GEM data from BaTiO3

(Senn et al., 2016) in support of these revisions.

As already pointed out by Keen (2001) and Peterson et al.

(2021), in this field different communities lay claim to the

same function names for subtly different definitions. In order

to be completely explicit in this corrigendum we will use the

subscript ‘K’ and superscript ‘PDF’ to clarify multiply defined

functions consistent with the sub/superscripting used by

Peterson et al. (2021) and Keen (2001), respectively. We have

not assigned these additional labels to functions [such as S(Q)

and �(r)] that are defined identically by Keen (2001) and

Peterson et al. (2021). This somewhat tedious notation will be

helpful when presenting clarifying points and is detailed in

Table 1.

Neutron scattering lengths were typically given in units of

10�12 cm, i.e. 10 fm units, a natural working unit since neutron

cross sections are expressed in barns (10�24 cm2) [for example

International Tables for X-ray Crystallography, Vol. III

(1962)]; the powers of ten, although implicitly present, could

be ignored in practice. They are now more commonly tabu-

lated in fm (Sears, 1992) and these are the values used by

Peterson et al. (2021). This has introduced an inadvertent
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scaling error in Figs. 1(e), 1( f), 2(e), 2( f), 3 [GK(r) and T(r)]

and 4 [GK(r) and T(r)] of Peterson et al. (2021); the functions

in the figures with y axes labelled ‘barn’ or ‘barn/Å2’ should be

100� smaller than presented therein. Those functions that are

further scaled by hbcohi
�2 [e.g. F PDF(Q), GPDF(r) or �(r)] are

unaffected as the scattering length units cancel out.

The low-Q limit of total scattering structure factors is

related in a complex way to thermodynamic functions and

fluctuations [see for example Table 30.2 of Cusack (1987)]

most of which, for ‘well behaved’ non-magnetic systems, are

assumed to give a small correction to the expected level. It can

be further complicated by other sources of low-Q ‘small-angle’

scattering, such as from longer-ranged scattering density

variations (e.g. from nanoparticles) and magnetism, all of

which are ignored in the following derivations. The low-Q

limit of the partial total scattering structure factors, Aij(Q), is

given in equation (13) of Keen (2001) and by McGreevy &

Mitchell (1982) and is frequently shown in experimental data

(Fischer et al., 2006; Bowron et al., 2006):

lim
Q!0

AijðQÞ � 1 ’ �0kBT�T � �ij=ci; ð1Þ

where the symbols have their usual meanings [e.g. in the text

following equation (8) of Peterson et al. (2021)]. The first term

on the right-hand side of equation (1) is the isothermal

compressibility term, �, of Bhatia & Thornton (1970). It is

usually small relative to the other terms in the low-Q limit of

the total scattering structure factors (given below) and

frequently treated as zero for data normalization purposes

(although note that this may not always be the case and it may

provide useful physical insight; Cusack, 1987). Aij(Q) is

defined identically by Keen (2001) and Peterson et al. (2021).

Since

FKðQÞ ¼
Pn

i;j¼1

cicj
�bbi

�bbj AijðQÞ � 1
� �

; ð2Þ

this gives rise to the following low-Q limits for the total

structure factors,

lim
Q!0

FKðQÞ ’
Pn
i¼1

ci
�bbi

� �2

��
Pn
i¼1

ci
�bb

2

i ¼ hbcohi
2�� hb2

cohi; ð3Þ

and with S(Q) = FK(Q)/hbcohi
2 + 1 yields

lim
Q!0

SðQÞ ’ ��
hb2

cohi

hbcohi
2
þ 1: ð4Þ

Here we have explicitly propagated � through the equations

above, rather than using it more flexibly [as was done by Keen

(2001)], whilst still bearing in mind that the definition in

equation (1) is not valid in all circumstances (Cusack, 1987).

These limits are different from those given in equations (7)

and (64) and Table 3 of Peterson et al. (2021), which are only

valid for monatomic systems. The corrected behaviour for

various total scattering structure factors is summarized in

Table 2, and the limits are recalculated using the average

neutron scattering length constants in Table 3 to give the

results in Table 4. Taking these points together, and as an

example, we show in Fig. 1 a corrected version of Fig. 1 of

Peterson et al. (2021) with very different low-Q limiting values

and a much-reduced y-axis scale for FK(Q). Fig. 2 and the plots
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Figure 1
Redrawn version of Fig. 1 of Peterson et al. (2021) with corrected limiting
values and scaling. The figure shows the comparison between various
reciprocal-space neutron total scattering data from MnO: (a), (b) S(Q);
(c), (d) F PDF(Q); and (e), ( f ) FK(Q). The upper plots show an overview of
the various functions, although the height of the Bragg peaks is mostly
dictated by the width of the resolution function used (the same width was
used in all plots). The asymptotes at high and low Q are highlighted with
red dashed lines and pertinent values are given in Table 4. The low-Q
limit of F PDF(Q) is a sloped line which only remains linear for an
extended range of Q because these are synthetic data with infinite sample
size (and no magnetic contribution). However, the same behaviour holds
true for highly ordered BaTiO3 in Fig. 2. Note that contributions from the
terms involving � for MnO are effectively zero on the scale of these
figures.

Table 2
Limits of reciprocal-space functions.

This is a corrected version of Table 3 of Peterson et al. (2021) with all low-Q
limits changed and monatomic low-Q limits added. The ‘low-Q limit’ column is
correct for all materials (noting that these expressions are only approximately
followed for measurements of real materials and assume there is no additional
‘small-angle’ scattering) and the ‘monatomic low-Q limit’ largely replicates the
values in the original article. For solids and many liquids, � is usually
considered sufficiently close to zero to be ignored, especially given that these
low-Q limits should only be treated as indicative for real materials.

Function Low Q Monatomic low Q High Q Units

S(Q) �þ 1� hb2
cohi=hbcohi

2 � 1 Unitless

F PDF(Q) 0 0 0 Å�1

FK(Q) hbcohi
2�� hb2

cohi b2
cohð�� 1Þ 0 Barn

Table 1
Connection of formalisms to those found in previous work.

It is fully expected that future publications will not employ the subscript/
superscript used here, but might nonetheless refer to these specific equations
when establishing notation or define equations in terms of S(Q) or �(r) which
have common meaning.

Function Peterson et al. (2021) equation Keen (2001) equation

F PDF(Q) 10 45 (implicit)
S(Q) 4 19/20
FK(Q) 11/13 9/19

GPDF(r) 19 43
gPDF(r) 22 41
�(r) 16 46
GK(Q) 26/27 10/44



of GK(r) and T(r) in Figs. 3 and 4 in the original article need to

be similarly modified but are not included here.

The above discussion also highlights another important

point. Although the scaled functions [S(Q), F PDF(Q) and

GPDF(r) etc., which are divided through by hbcohi
2], are useful

when comparing with models and calculations, the functions

FK(Q), GK(r) etc., which are not scaled by hbcohi
�2, permit a

much more direct and unambiguous assessment of absolute

data normalization when correcting experimental data.

F PDF(Q) and GPDF(r) are more challenging in this regard as

their respective Q- and r-dependent asymptotes to the origin

make determination of the low-Q and low-r trends less

obvious ‘by eye’. S(Q) should also be used cautiously;

although it is unitless this hides the fact that scattering factors

are incorporated within the function, and even though many

S(Q) have a low-Q limit that is close to zero this does not

mean that zero is the limiting value by definition.

As a worked example of this, we show in Fig. 2 data from

BaTiO3 measured on GEM (Hannon, 2005) at 15 K (Senn et

al., 2016), which have been corrected using the Gudrun

program (Hannon et al., 1990; Soper, 2017). The Ti atoms in

BaTiO3 have a negative neutron scattering length and the

relevant average scattering constants are listed in Table 3. The

high- and low-Q levels of the corrected differential scattering

cross section (they should equal hb2
toti and tend to

�hb2
toti � hb

2
cohi = 0.048, respectively) are immediate indica-

tors of the quality of the data correction [as are the limits of

FK(Q), i.e. after subtraction of hb2
toti; see Fig. 2(a)]. Typically

when correcting data, a ‘good’ low-Q limit is often much

harder to achieve than a ‘good’ high-Q limit. This is especially

the case for time-of-flight neutron diffractometers where data

corrections are usually more challenging in the lower-Q

regime. The low-Q limit of S(Q) should approximately equal

�hb2
cohi=hbcohi

2
þ 1 ¼ �0:911 [Fig. 2(c)]. The low-r levels of

GK(r) = �hbcohi
2 and gPDF(r) = 0 [Figs. 2(b) and 2(d),

respectively]. Here a back-transform correction has been

applied to direct these PDFs to their theoretical values for r <

1 Å; encouragingly these values are maintained to much

higher r, including in the gaps between the first few low-r

peaks. For completeness, plots of F PDF(Q) and GPDF(r) are

shown in Figs. 2(e) and 2( f), respectively.

Finally, we note an inconsistency in the discussion of

symmetric PDF peaks by Peterson et al. (2021). The different r

dependencies mean that it is not possible for all definitions of

the PDF function to show symmetric peaks centred at the

average pairwise distances. A symmetric and centred peak in

GPDF(r) will not be symmetric and centred in gPDF(r)

[equivalent to G0KðrÞ of Keen (2001)]. Symmetric peak fitting

should only be carried out using PDF functions such as

GPDF(r) or D(r) (Olds et al., 2018).

We have worked together on this corrigendum to try to

ensure that these corrections to the Peterson et al. (2021)

paper are clear and that the explicitly labelled functions herein

mean that the relational expressions first established by Keen

(2001) are not confused by the subtly redefined functions

presented by Peterson et al. (2021), thus undermining the

purpose of both papers. Total scattering notation has evolved

over time since the equations were first conceived of by

Zernike and Prins in 1927 (see a recent review and references
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Table 3
Average neutron scattering length constants for selected materials
calculated using neutron scattering lengths and cross sections provided
by Sears (1992).

Note that 1 barn = 10�24 cm2 = 100 fm2.

Peterson et al.
(2021) notation

Keen (2001)
notation

MnO value
(barn)

BaTiO3 value
(barn)

SiO2 value
(barn)

hb2
toti

Pn
i¼1 cib

2
i 0.254 0.325 0.282

hb2
cohi

Pn
i¼1 ci

�bb2
i 0.238 0.277 0.282

hbcohi
2

ð
Pn

i¼1 ci
�bbiÞ

2 0.011 0.145 0.276

Table 4
List of reciprocal-space limits for selected materials with the assumption
that � = 0.

Although many materials have an S(Q) with a limiting value at low Q close to
zero (e.g. SiO2), for materials containing elements with negative neutron
coherent scattering lengths (e.g. MnO and BaTiO3) limQ!0 SðQÞ is often far
from zero.

Material Function Low Q High Q

MnO S(Q) �21.1 1

F PDF(Q) 0 0

FK(Q) �0.237 0

BaTiO3 S(Q) �0.911 1

F PDF(Q) 0 0

FK(Q) �0.277 0

SiO2 S(Q) �0.022 1

F PDF(Q) 0 0

FK(Q) �0.282 0

Figure 2
Experimental neutron total scattering functions from BaTiO3 at 15 K
(Senn et al., 2016), using �0 = 0.0779 atoms Å�3, determined from
Rietveld refinement of the data. The various functions are defined using
the equations given in Table 1. The asymptotes at high and low Q (or r, as
appropriate) are highlighted using red dashed lines with values for
reciprocal-space functions from Table 4; all real-space function limits are
clearly seen to be 0 or 1 except for the low-r limit of GK(r), which is
�hbcohi

2 = �0.145 barn.



therein; Keen, 2020), but it has stabilized over the past 20

years within the now mature total scattering community, in

part through the cross-referencing of equations following

Keen (2001). We as a community have a responsibility to

ensure that we do not further compound any perceived

notational confusion we might be trying to mitigate. Hopefully

Keen (2001) and Peterson et al. (2021) with this corrigendum

article will continue to provide the necessary clarity in total

scattering function definitions.
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