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A method is presented for the measurement of the phase gradient of a

wavefront by tracking the relative motion of speckles in projection holograms as

a sample is scanned across the wavefront. By removing the need to obtain an

undistorted reference image of the sample, this method is suitable for the

metrology of highly divergent wavefields. Such wavefields allow for large

magnification factors that, according to current imaging capabilities, will allow

for nanoradian angular sensitivity and nanoscale sample projection imaging.

Both the reconstruction algorithm and the imaging geometry are nearly

identical to that of ptychography, except that the sample is placed downstream

of the beam focus and that no coherent propagation is explicitly accounted for.

Like other X-ray speckle tracking methods, it is robust to low-coherence X-ray

sources, making it suitable for laboratory-based X-ray sources. Likewise, it is

robust to errors in the registered sample positions, making it suitable for X-ray

free-electron laser facilities, where beam-pointing fluctuations can be proble-

matic for wavefront metrology. A modified form of the speckle tracking

approximation is also presented, based on a second-order local expansion of the

Fresnel integral. This result extends the validity of the speckle tracking

approximation and may be useful for similar approaches in the field.

1. Introduction

New facilities are providing ever more brilliant X-ray sources.

To access the full potential of these sources we need X-ray

optics that are capable of focusing light to meet the require-

ments of various imaging modalities. Thus there is an

increasing need for at-wavelength and in situ wavefront

metrology techniques that are capable of measuring the

performance of these optics to the level of their desired

performance. This is a challenging task, as current X-ray optics

technologies are attaining focal spot sizes below 10 nm

(Mimura et al., 2010; Huang et al., 2013; Morgan et al., 2015;

Bajt et al., 2018; Murray et al., 2019). Furthermore, adaptive

optics are being employed to correct for wavefront aberra-

tions by altering the physical state of a lens system in response

to real-time measurements of wavefront errors (Mercère et al.,

2006; Zhou et al., 2019). Such systems therefore benefit from

fast and accurate wavefront metrology for rapid feedback.

Wavefront metrology techniques generally fall into one of

three categories (Wilkins et al., 2014; Wang et al., 2015): (i)

direct phase measurements, such as interferometry using

crystals (Bonse & Hart, 1965); (ii) phase gradient measure-

ments, such as Hartmann sensors (Lane & Tallon, 1992),

coded aperture methods (Olivo & Speller, 2007) and grating-

based interferometry (David et al., 2002); and (iii) propaga-

tion-based methods sensitive to the second derivative of the
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wavefront’s phase (Wilkins et al., 1996; Wang et al., 2015;

Bérujon et al., 2014).

One such method, falling into the second category above,

was introduced by Bérujon, Ziegler et al. (2012) and Morgan et

al. (2012) (no relation to the current author). This method is a

wavefront metrology technique based on near-field speckle-

based imaging, which was termed the ‘X-ray speckle tracking’

(XST) technique. In XST, the 2D phase gradient of a wavefield

can be recovered by tracking the displacement of localized

‘speckles’ between an image and a reference image produced

in the projection hologram of an object with a random phase/

absorption profile. Additionally, XST can be employed to

measure the phase profile of an object’s transmission function.

Thanks to the simple experimental setup, high angular sensi-

tivity and compatibility with low-coherence sources, this

method has since been actively developed for use in

synchrotron and laboratory light sources [see Zdora (2018) for

a recent review].

In ptychography, a sample is scanned across the beam

wavefront (typically at or near the focal plane of a lens) while

diffraction data are collected in the far field of the sample. An

iterative algorithm is usually employed to update initial esti-

mates for the complex wavefront of the illumination and the

sample transmission functions. If illuminated regions of the

sample overlap sufficiently, then it is possible for a unique

solution for both of these functions to be obtained (Hüe et al.,

2010). Thus, ptychography is an imaging modality that

performs both aberration-free sample imaging and wavefront

metrology simultaneously. This is in contrast to XST where

these two imaging modalities correspond to separate imaging

geometries.

Ptychography can also be performed in the near-field

diffraction regime, as reported for example by Nugent et al.

(1996). Stockmar et al. (2013) found that the illumination must

be sufficiently inhomogeneous to allow for a successful

reconstruction, and those authors suggested the use of an

additional diffuser as a means of achieving this. Consequently,

this near-field ptychographic imaging approach closely

resembles that of many XST-based approaches in its experi-

mental configuration. The key distinction here is that, in

ptychography, a fully coherent wave model is employed. This

can lead to non-unique solutions in situations where an XST-

based approach would yield a well defined solution, although

typically this solution will contain less information at lower

resolution than a successful ptychographic reconstruction.

We propose a combined approach, which we term ptycho-

graphic X-ray speckle tracking (PXST). In this approach,

near-field in-line holograms are recorded as an unknown

sample is scanned across an unknown wavefield. Estimates for

the undistorted sample projection image and the wavefield are

then updated on the basis of the observed speckle displace-

ments. There is no reference image and no additional speckle-

producing object is required. This imaging geometry allows for

XST to be used for highly divergent X-ray beams, thus

expanding the applicability of this simple and robust method

to include next-generation high-numerical-aperture X-ray

lenses.

Bérujon et al. (2014) have proposed a similar method, also

based on XST and compatible with highly divergent beams. In

their approach, the second derivative of the wavefront phase is

measured. Additionally, nanoradian angular sensitivity can be

achieved with relatively small step sizes in the scan of the

sample on a piezo-driven stage (discussed further in the next

section). In contrast, PXST more closely aligns with current

XST-based techniques, such as the ‘unified modulated pattern

analysis’ method of Zdora et al. (2017, 2018), that do not rely

on small sample translations.

In Section 2, we briefly review the XST method and its

extension to PXST. In Section 3 we present the governing

equation, which is based on a second-order expansion of the

Fresnel diffraction integral (presented in Appendix A). The

region of validity for the speckle tracking approximation

determines the applicable imaging geometries, which are

presented in Section 4 and Appendix B. We present the

iterative reconstruction algorithm and the target function,

which is to be minimized by the algorithm, in Section 5.

Conditions for the uniqueness of the solution are discussed in

Appendix C. Finally, the theoretically achievable angular

sensitivity of the wavefront reconstruction and the imaging

resolution of the sample projection image are presented in

Appendix D. For reference, we define the principal

mathematical symbols used throughout the paper in Table 1.

In Table 2, we summarize the main results of this article and

refer the reader to the relevant sections.

2. Background

The problem with wavefront metrology is that it is much more

difficult to measure a wavefront’s phase than its intensity; the

intensity can be measured directly by placing a photon-

counting device at any point in the wavefront’s path, whereas

the phase information is indirectly encoded in the wavefront’s

intensity profile as it propagates through space. For plane-

wave illumination, no measurement of the wavefront’s inten-

sity alone will reveal its direction of propagation. One solution
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Table 1
Symbols.

In(x, z) nth recorded image
Iref(x, z) Reference projection image of the sample
�xn Displacement of sample in transverse plane
T(x) Transmission function of the quasi-2D sample
z1 Source-to-sample distance
z Sample-to-detector distance
z ¼ zz1=ðz1 þ zÞ Effective propagation distance
M ¼ ðz1 þ zÞ=z1 Geometric magnification factor
� Wavelength of radiation
�eff Smallest resolvable speckle displacement in the

plane of the detector
i (�1)1/2

a � b Dot product between vectors a and b
p(x, 0) = w1/2(x) exp[i�(x)] Illumination wavefront in the sample plane; w

and � are the intensity and phase, respectively
p(x, z) = W1/2(x) exp[i�(x)] Illumination wavefront in the detector plane; W

and � are the intensity and phase, respec-
tively

x � (x, y) Transverse coordinate
r � ð@=@x; @=@yÞ Transverse gradient operator



to this problem is to place an absorbing object at a known

point in the path of the light, from which the direction of

propagation can then be inferred from the relative displace-

ment between the centre of the object and the shadow cast on

a screen some distance away, just as the angle of the sun can be

estimated by following the line from a shadow to its object.

This simple idea forms the basis of the Hartmann sensor

(Daniel & Ghozeil, 1992), shown schematically in Fig. 1.

Originally designed to measure aberrations in telescopes and

later for atmospheric distortions, the Hartmann sensor can be

used as an X-ray wavefront metrology tool (Mayo & Sexton,

2004)21 by cutting a regular grid of small holes, spaced at

known intervals (say xi where i is the hole index), in a mask

and then recording the shadow image on a detector, which is

placed a small distance downstream of the mask.

Provided that each hole can be matched with each shadow

image, the angle made between them, �ðxiÞ ¼ arctan ½�xðxiÞ=z�

(in one dimension), is equal to the average direction of

propagation of that part of the wavefront passing through

each hole �ðxiÞ ¼ ð�=2�dÞ
R xiþd=2

xi�d=2 ½@�ðxÞ=@x� dx, where �x(xi)

is the observed displacement along x of the ith shadow, z is the

distance between the mask and the detector, and d is the hole

width.

With a suitable interpolation routine, �(x) can be estimated

from the set of �(xi) and the phase profile can be obtained up

to a constant with

�ðxÞ ’ ð2�=�Þ
R

�ðxÞ dx: ð1Þ

One limitation of this technique is that the resolution obtained

is limited by the spacing between each hole in the mask. For

example, Mercère et al. (2006) used a Hartmann sensor in an

active optic system with a grid of 75 � 75 holes over a

10 � 10 mm area, whereas the CCD detector had a

1024 � 1024 grid of pixels over a 13 � 13 mm area. Thus the

Hartman sensor had a resolution 10.5 times worse than the

CCD detector.

The maximum density of the holes in the grid is limited. This

is because the task of uniquely matching each shadow image

with each hole becomes more difficult as the hole density is

increased – a problem that is easier to appreciate in two

dimensions. In 2012, Bérujon and co-workers realized a simple

yet elegant solution to this problem, one that allowed for an

arbitrarily fine grid of ‘masks’ with a resolution and sensitivity

limited only by the CCD pixel array and the signal-to-noise

ratio (Bérujon, Ziegler et al., 2012). Their solution, XST, is to
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Figure 2
Illustration of the X-ray speckle tracking (XST) principle. Top: as in Fig. 1.
Middle: as in Fig. 1, with the binary mask replaced by a random phase/
absorption mask (dashed outline). Bottom: sub-regions of the measured
shadow image (solid black line) are compared with the reference shadow
image (dashed blue line) to determine displacements (black arrows).

Figure 1
Illustration of the Hartmann sensing principle. Top: phase of the
wavefront incident on the entrance surface of the mask. The phase has
been scaled by �/2� so that the normal to the tangent is parallel to the
local direction of propagation of the wavefront. The arrows indicate the
direction of propagation at the centre of each mask hole. Middle:
intensity of the wavefront as it propagates from the mask (top) to the
detector (bottom). The colour scale is shown on the right. Bottom: the
one-dimensional intensity profile of the wavefront as measured by the
detector.

Table 2
The PXST method.

Governing equation Inðx; zÞ ’ WðxÞIref½uðxÞ ��xn; z� See Section 3 and Appendix A

wðxÞðz=zÞ2Irefðx; zÞ ’ In½u
�1ðxþ�xnÞ; z� Reciprocal form for the above equation; u�1 is the inverse of u

Target function " ¼
P

n

R R
dx ½1=�2

I ðxÞ�fInðx; zÞ

�WðxÞIref ½uðxÞ ��xn; z�g2
Equation (26) in Section 5; to be minimized with respect to Iref, r� and �xn

Geometric mapping uðxÞ ¼ x� ð�z=2�Þr�ðxÞ See equation (54) in Appendix A

u�1ðxÞ ¼ xþ ð�z=2�Þr�ðxÞ Reciprocal form for the above equation; see equation (37) in Appendix A

Imaging geometry See Fig. 3 Described in Section 2

Iterative update algorithm See Fig. 6 Described in Section 3

Angular sensitivity ��� = �eff /z In the plane of the sample; see equation (123)
��� = �eff /zM In the plane of the detector; see equation (126)

Phase sensitivity �� ¼ �� ¼ ð2�=�Þð�2
eff=zMÞ Sample/detector plane; see equation (130)

2 In this work, an array of refractive elements was used rather than a grid of
mask holes.



replace the binary mask of identical holes with a thin random

phase object, such as a diffuser, as shown in Fig. 2. Because the

diffuser is random (in the sense that the modulation of the

beam by the diffuser is both detailed and non-repeating over

the relevant spatial frequencies of the image), the shadow

from each sub-region of the diffuser is unique – encoded by

the speckle pattern seen on the detector – so that one can

therefore consider any point in the diffuser to be the centre of

a virtual Hartmann hole. In this sense, the random object

serves as a high-density fiducial marker for each of the light

rays that pass from the reference or mask plane to the

detector. Note that this approach requires a greater degree of

beam coherence than the Hartman sensor, to the extent

necessary to provide sufficient visibility of the speckles, so that

each speckle pattern can be distinguished from its neighbour.

In the Hartmann sensor, it is assumed that the mask is well

characterized, so that the shadow positions can be compared

with their ideal positions, which are known a priori. However,

since the mask is no longer a simple geometric object (in the

sense that it is difficult to know a priori the modulation

function of the mask with a sufficient degree of precision), it is

now necessary to record a reference image of the mask with

which to compare the distorted image.

In addition to measurements of a wavefront’s phase, the

XST principle can be extended to incorporate phase imaging

of samples. This can be achieved by recording an image of the

wavefront with the diffuser (acting as a mask) in the beam

path – this image is called the ‘reference’ image. Then, another

image is recorded with an additional sample (the one to be

imaged) placed in the beam path, in addition to the diffuser –

this is referred to simply as the ‘image’. Here the relative

displacements between the ‘reference’ and the ‘image’ are due

not to the phase profile of the wavefront, which affects both

images equally, but to the phase profile of the sample trans-

mission function.

The following two XST imaging configurations were

suggested by Bérujon et al., one for imaging samples and the

other for wavefront metrology:

(i) in the differential configuration a speckle image is

recorded with and without the addition of a sample, and

(ii) in the absolute configuration a speckle image is

recorded at two detector distances with respect to the mask.

In (i), the relative motion of speckles reveals the local phase

gradient of the sample in the beam, whereas in (ii), the total

wavefront phase is recovered and this is therefore useful for

characterizing X-ray beamline optics (this is the configuration

shown in Fig. 2). Of course, it is still possible to characterize

beamline optics in (i) (just not in situ) by placing the optical

element in the sample position. This approach has been useful,

for example, in measuring the phase profile of compound

refractive lens systems (Bérujon, Wang & Sawhney, 2012) but

is impractical for larger systems such as Kirkpatrick–Baez

mirrors.

Since the proposal by Bérujon et al. there have been a

number of substantial improvements: see for example the

extensive review by Zdora (2018). For example, Zanette et al.

(2014) developed a method where a diffuser is scanned so as to

obtain a number of reference/image pairs at different diffuser

positions. This step can add a great deal of redundancy, which

improves the angular sensitivity of the method and even

allows for multi-modal imaging of the sample when employed

in the differential configuration. In subsequent publications,

this approach has been termed the unified modulated pattern

analysis (UMPA) method (Zdora et al., 2017, 2018).

In the absolute configuration, where the reference and

image have been recorded at two detector distances, the

smallest resolvable angular displacement (the angular sensi-

tivity) is given by the ratio of the effective pixel size, which is

the smallest resolvable displacement of a speckle (including

effects such as fringe visibility, finite pixel size, beam coher-

ence and noise), to the distance between the reference and

image planes: �� = d /�z. Therefore, the best accuracy is

obtained by maximizing the distance between the reference

and image planes. However, for highly divergent wavefields, as

would be produced (for example) by a high-numerical-

aperture lens system, there arises an unavoidable trade-off

between the wavefront sampling frequency and the angular

sensitivity. In this situation the ideal location of the image

plane is as far downstream of the lens focus as is required to fill

the detector array with the beam, as this maximizes the

wavefront sampling frequency. In order to minimize ��
(maximize �z) one should then place the reference plane as

close as possible to the beam focus. But in this plane, the

footprint of the beam on the detector may be much smaller

than that in the image plane because of the beam divergence.

This leads to a poorly sampled reference, as only a few pixels

will span the wavefront’s footprint. Therefore, the smallest

resolvable speckle shift will be larger than that obtainable by

plane-wave illumination, by a factor proportional to the beam

divergence.

Realizing this, Bérujon et al. (2014) devised an XST tech-

nique, X-ray speckle scanning (XSS), that relies on small

displacements of the XST mask between acquired images. No

reference is required and the diffraction data are recorded in a

single plane. This enables the sampling frequency to be

maximized by placing the detector such that the divergent

beam fills the pixel array. Without a reference, however, the

speckle locations in one image are instead compared with the

locations observed in neighbouring images. As the speckle

displacements in each image are proportional to the phase

gradient, the differentials of the speckle locations between

images are proportional to the second derivative of the phase;

thus this approach can be viewed as a wavefront curvature

measurement. The achievable angular sensitivity is now

proportional to the step size of the mask, which can be

substantially smaller than the effective pixel size. Interestingly,

this approach is similar in principle to the Wigner-distribution

deconvolution approach described by Chapman (1996).

In the following section, we describe an approach that is

similar in principle to the one described above:

(iii) ptychographic XST: shadow images are recorded as the

mask/object is translated across the wavefront.

In this method (see Fig. 3) the unknown object acts as both

the imaging target and the speckle mask simultaneously. There
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is no special reference image; rather each image serves as a

reference for all other images. Both the wavefront phase

(without the influence of the object) and the object image

(without the influence of wavefront distortions) are deter-

mined in an iterative update procedure. At each iteration,

speckles31 in the recorded images are compared with the

current estimate of the reference (in contrast to the XSS

method). Images are recorded at a fixed detector distance and

there is no trade-off between phase sensitivity and the wave-

front sampling frequency, making this method suitable for

highly divergent beams. Because the speckle displacements

are compared between the image and the estimated reference,

large angular distortions can be accommodated. This is

advantageous because it allows for the sample to be placed

very near the beam focus, where the phase gradients across the

sample surface are largest and where the magnification factor

allows for high imaging resolution and angular sensitivity.

3. The speckle tracking approximation

In this section we describe the governing equation that relates

the measured intensities in each image and the reference in

terms of the wavefront phase. For monochromatic light, in the

Fresnel diffraction regime the image formed on a detector

placed a distance z downstream of an object is given by

Irefðx; zÞ ¼
1

ð�zÞ
2

����
Z Z

Tðx0Þ exp i�
jx� x0j2

�z

� �
dx0
����

2

; ð2Þ

where T(x) represents the exit-surface wave of the light in the

plane z = 0. For plane-wave illumination, under the projection

approximation [see equation 2.39 of Paganin (2006)], T(x) also

represents the transmission function of the object.

Now let us suppose that, rather than plane-wave illumina-

tion, the object is illuminated by a wavefront with an arbitrary

phase (�) and amplitude (w1/2) profile given by p(x, 0) =

w1/2(x)exp[i�(x)]. The observed intensity is now given by

Iðx; zÞ ¼
1

ð�zÞ
2

����
Z

Tðx0Þ pðx0; 0Þ exp i�
jx� x0j2

�z

� �
dx0
����

2

: ð3Þ

For XST-based techniques, the challenge is to relate the

image (I) to the reference (Iref) via a geometric transforma-

tion. Here, the reference as defined in equation (3) represents

an image of the sample, a distance z downstream of the sample

plane, that is neither distorted by wavefront aberrations nor

magnified by beam divergence. For the purposes of this

section, Iref could be a recorded image, but in subsequent

sections we will see that this image can be estimated from a set

of distorted images.

Note that at this point the mathematical description is

rather general. For example, in the differential configuration

of XST, T(x) would represent the wavefront generated by the

diffuser in the plane of the object and p(x, 0) would represent

the transmission function of the object. In what follows,

however, we will continue to describe T(x) as the object or

mask transmission function and p(x, z) as the X-ray beam

profile (unmodulated by the object).

A common approach to this problem is outlined by Zanette

et al. (2014). There, � is expanded to first order, and w1/2 to

zeroth order, in a Taylor series about the point x:

�ðx0Þ ¼ �ðxÞ þ ðx0 � xÞ � r�ðxÞ þ �Hðx
0Þ; ð4Þ

w1=2ðx0Þ ¼ w1=2ðxÞ þ w
1=2
H ðx

0Þ; ð5Þ

where �H(x0) and w
1=2
H ðx

0Þ are the higher-order terms in the

expansion. Now we have, for �H and w
1=2
H ’ 0,

Iðx; zÞ ’
wðxÞ

�z

����
Z Z

Tðx0Þ exp½iðx0 � xÞ � r�ðxÞ�

� exp i�
jx� x0j2

�z

� �
dx0
����

2

¼
wðxÞ

�z

����
Z Z

Tðx0Þ exp
i�

�z
x� x0 �

�z

2�
r�ðxÞ

����
����

2
" #

dx0
����

2

¼ wðxÞIref x�
�z

2�
r�ðxÞ; z

� �
: ð6Þ

This confirms the intuitive assumption that the local gradient

of � at each position along the sample is converted into a

lateral displacement of the speckles observed in the reference.

Equation (6) serves well in the limit where �H and w
1=2
H

approach 0 and is employed in a number of XST-based tech-

niques. For example, in the UMPA approach [see equation (9)

of Zdora (2018)] the governing equation is given by

Iðx; zÞ ¼ wðxÞ Ir þDðxÞ Iref x�
�z

2�
r�ðxÞ; z

� �
� Ir

� �� �
; ð7Þ

where Ir is the mean intensity of the reference pattern and

D(x) is a term the authors refer to as the ‘dark-field signal’.

This term is related to a reduction in fringe visibility due to
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Figure 3
Illustration of the ptychographic XST method. The beamline illumination
was focused (off-axis) in two dimensions by two linear focusing lenses,
with numerical apertures of 0.015 (horizontal) and 0.014 (vertical). The
Siemens star sample was placed 371 mm downstream of the focal plane.
Images were recorded on a CCD pixel array detector 0.71 m downstream
of the focus. The scan data consist of 49 shadow images, recorded as the
sample was translated across the beam profile. The wavefront phase and
reference maps were refined iteratively.

3 In this article we use the word ‘speckle’ loosely, to mean any localized
diffraction feature recorded by the detector. Indeed, our method could just as
well have been referred to as ‘ptychographic X-ray feature tracking’.



fine features in w(x) and, in fact, serves as an alternative

contrast mechanism when solved for in addition to the phase

gradients. Putting this term aside by setting D = 1, one can see

that equation (7) reduces to equation (6).

Given the restrictive nature of the approximations

employed, however, it is not surprising that equation (6)

quickly fails to serve as a valid approximation for larger phase

gradients. To see this, let us consider a well known analytical

solution to I in terms of Iref called the ‘Fresnel scaling

theorem’, which is described in, for example, Appendix B of

Paganin (2006). Simply put, it states that

The projected image of a thin scattering object from a point

source of monochromatic light is equivalent to a magnified

defocused image of the object illuminated by a point source of

light infinitely far away.

The derivation is rather simple and so we shall present it

here using the current notation. Let us say that the image, I, is

formed by the point source of illumination a distance z1 along

the optical axis (the z axis) and that this distance is large

enough that we can ignore intensity variations of the illumi-

nation across the sample surface, so that w1/2(x) = 1. The

probing illumination in the plane of the sample is then given

by pðx; 0Þ ¼ expði�x2=�z1Þ. Substituting this into equation (3)

and completing the square in the exponent, we have

Iðx; zÞ ¼
1

ð�zÞ2

����
Z Z

Tðx0Þ exp
i�x0 2

�z1

� �
exp i�

jx� x0j2

�z

� �
dx0
����

2

¼
1

ð�zÞ
2

����
Z Z

Tðx0Þ exp
i�

�

z1 þ z

zz1

z1

z1 þ z
x� x0

����
����

2
 !

dx0
����

2

¼

�
z1

z1 þ z

�2

Iref

z1

z1 þ z
x;

zz1

z1 þ z

� �
¼ M�2Irefðx=M; z=MÞ; ð8Þ

where the geometric magnification factor M ¼ ðz1 þ zÞ=z1

and z/M is the effective propagation distance (z). But

according to equation (6) we would have

Iðx; zÞ ¼ Iref x�
�z

2�

2�x

�z1

; z

� �
ð9Þ

¼ Iref

z1 � z

z1

x; z

� �
; ð10Þ

with a geometric magnification factor M0 ¼ z1=ðz1 � zÞ, in

contradiction to the result from the Fresnel scaling theorem.

As expected, the results agree in the limit z1!1, i.e. in the

limit where the phase gradient approaches 0. Current formu-

lations for XST based on equation (6) (in the absolute

configuration) are expected to perform badly when the

effective source distance, z1, approaches the propagation

distance, z, or (in the differential configuration) when the

sample transmission function departs significantly from the

weak phase approximation.

In a notable departure from this approach, Paganin et al.

(2018) have recently developed an alternative description of

the speckle tracking approximation based on a ‘geometric

flow’ equation:

Iðx; zÞ ’ Irefðx; zÞ �
�z

2�
r � Irefðx; zÞr�ðxÞ

	 

: ð11Þ

This approximation, which closely resembles the transport of

intensity equation (Teague, 1983), has the remarkable prop-

erty that � may be determined analytically from a reference–

image pair, thus permitting the rapid and simple processing of

large tomographic data sets. This approach also assumes small

and local distortions of the reference and is, therefore, ill

suited as an approximation for larger phase gradients. For

example, substituting the quadratic phase for a diverging

wavefield, � ¼ �x2=�z1, into equation (11) yields

Iðx; zÞ ’
z1 � z

z1

Irefðx; zÞ �
z

z1 � z
x � rIrefðx; zÞ

� �
: ð12Þ

This corresponds to a geometric magnification factor of

M00 ¼ ðz1 � zÞ=ðz1 � 2zÞ, once again in contradiction to the

analytical result M ¼ ðz1 þ zÞ=z1.

To see this more clearly, let us examine the exact result of

equation (8) in the limit where M! 1. First, we set 1/M = 1 +

m, so that m! 0 as M! 1. Then we expand Iref(x/M, z/M) to

first order in a Taylor series about x:

Iðx; zÞ ¼ M�2Irefðxþmx; z=MÞ

’ M�2 Irefðx; z=MÞ þmx � rIrefðx; z=MÞ
	 


: ð8aÞ

Comparing the above equation with equation (12), we have

m ¼ �z=ðz1 � zÞ. Solving for the geometric magnification

factor yields M00 ¼ ðz1 � zÞ=ðz1 � 2zÞ as above.

Remarkably, with only a minor modification to the speckle

tracking formula in equation (6), a second-order expansion of

the phase term can be accommodated in the Fresnel integral,

leading to the ‘speckle tracking approximation’:

Iðx; zÞ ’ WðxÞ Iref x�
�z

2�
r�ðxÞ; z

� �
; ð13Þ

z

z

� �2

wðxÞ Irefðx; zÞ ’ I xþ
�z

2�
r�ðxÞ; z

� �
; ð14Þ

where r� and r� are the transverse gradients of the illumi-

nating wavefield phase in the sample and image planes,

respectively (without the influence of the object), and w and W

are the intensity profiles of the illuminating wavefield in the

reference and image planes, respectively. In Fig. 4 we show a

diagram for a hypothetical PXST imaging experiment. This

diagram shows the lens, focal, sample, reference and image

planes. The reference would have been measured by plane-

wave illumination in the plane indicated. A point that is not

illustrated in the diagram is that both the image and the

reference exhibit propagation effects, such as Fresnel fringes.

We note, once again, that the speckle tracking approximation

above applies to more imaging geometries/modalities than

that displayed in Fig. 4.

Equations (13) and (14) are reciprocal statements of the

same approximation and choosing between them is a matter of
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convenience depending on the desired application. We note

here that this approximation makes a distinction between the

phase gradients in the sample and image planes, whereas it is

common to assume that they are similar or related by a lateral

scaling factor (magnification). This distinction is not important

in cases where the separation between these two planes and

the beam divergence is small, but becomes critical for highly

magnified imaging geometries or long propagation distances.

This approximation is not as strong as the ‘stationary phase

approximation’ (Fedoryuk, 1971), which links coherent

propagation theory with geometric optics, although the prin-

ciples used to derive this result are similar. The derivation is

straightforward and self-contained but lengthy, and may be

found in Appendix A.

Equations (13) and (14) possess two beneficial properties

for the current analysis: they relate the image and its reference

via a geometric transformation and they are consistent with

the Fresnel scaling theorem. In fact, the Fresnel scaling

theorem is a special case of the above approximations when

w(x) = 1 and �ðxÞ ¼ �x2=�z1. Evaluating equation (14) for

these values of w and � and using z ¼ zz1=ðzþ z1Þ we have

Iref x;
zz1

zþ z1

� �
¼

z1 þ z

z1

� �2

I xþ
�z

2�

2�x

�z1

; z

� �

¼
z1 þ z

z1

� �2

I x
z1 þ z

z1

; z

� �

and so Iðx; zÞ ¼
z1 þ z

z1

� ��2

Iref x
z1

z1 þ z
;

zz1

z1 þ z

� �
;

ð15Þ

which yield the correct magnification and scaling factors, in

agreement with equation (8). Similarly, we can evaluate

equation (13) using

WðxÞ ¼
z

z

� �2

and �ðxÞ ¼
�x2

z1 þ z
; ð16Þ

where these values for the illumination’s wavefront in the

plane of the detector follow from the Fresnel approximation

for a point source placed a distance z + z1 upstream and from

flux conservation of the beam when w(x) = 1 in the sample

plane.

Evaluating equation (13) yields

Iðx; zÞ ¼
z1

zþ z1

� �2

Iref x�
�z

2�

2�x

z1 þ z
;

zz1

zþ z1

� �

¼
z1

zþ z1

� �2

Iref x
z1

z1 þ z
;

zz1

zþ z1

� �
; ð17Þ

which is, once again, in agreement with equation (8).

In general, for arbitrary �, the phase curvature of the illu-

mination may vary in direction, as is the case (for example) in

an astigmatic lens system, and also with position in the image.

Thus, the magnification is also position dependent and direc-

tional:

MvðxÞ ¼ 1�
�z

2�
r

2
v�ðxÞ

� ��1

; ð18Þ

where rv�(x) is the directional derivative of �(x) along the

unit normal vector v.

Given the extended validity of equation (13), we suggest

that the following modification to the UMPA equation

[equation (7)] will achieve better results:

I xþ
�z

2�
r�ðxÞ; z

� �
’ wðxÞ Ir þDðxÞ½Irefðx; zÞ � Ir�

� �
; ð19Þ

where Iref ¼ hIrefðxÞix, or, using the notation of Zdora (2018),

Iðx� ux; y� uyÞ ’ Tðx; yÞ I0 þDðx; yÞ½I0ðx; yÞ � I0�
� �

: ð20Þ

We also note that, although Paganin et al.’s geometric flow

algorithm [equation (11)] is a poor approximation for larger

distortion factors (large M), it may be a more general physical

description in the limit M! 1. As the authors note, the term

/ rIref � r� in the expansion of equation (11) accounts for

speckle translations that arise from strong intensity gradients

of the reference, i.e. that are not generated from r� alone.

4. Limits to the approximation

The second-order speckle tracking approximation of equa-

tions (13) and (14) is subject to the following approximations:

(1) gðx; x0Þ ’ g½x; uðxÞ� þ 1
2 fr

2�½uðxÞ� þ 2�=�zgjx0 � uðxÞj2,

(2) w1=2ðx0Þ ’ w1=2½uðxÞ�,

(3) zðxÞ ’ z � zz1=ðzþ z1Þ,

where these are additional to the approximations necessary

for the paraxial approximation to hold, uðxÞ ¼ x� ð�z=2�Þ �
r�ðxÞ and gðx; x0Þ � �jx� x0j2=�zþ �ðx0Þ. In general, these

approximations hold best for smooth wavefront amplitudes

w1/2, predominantly quadratic phase � and large spatial

frequencies of the object.

Here, we examine the speckle tracking approximation, in

one dimension, for the imaging geometry depicted in Fig. 4

and with parameters corresponding to a typical experiment
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Figure 4
Schematic diagram for a hypothetical projection imaging experiment. The
illuminating beam propagates from left to right and the solid black lines
indicate the boundaries of the illumination wavefront. The sample is
depicted as a small black filled circle in the sample plane and as a black
circle in the reference and image planes. The red lines depict the
illumination’s wavefront in the sample and image planes, which are not
merely related by transverse magnification. The distorted shape of the
circle in the image plane represents possible distortions of the speckle
produced by the sample and the transverse phase gradients of the
illumination.



utilizing X-ray multilayer Laue lenses. For this example we

choose that the illumination is formed by a lens with a hard-

edged aperture and with the sample placed at two possible

distances from the focal plane, z1 = 500 and 10 mm. The lens

has a numerical aperture of NA = 0.01 and the detector is

placed in the far field of the probe and the sample, with z1 + z =

1 m. This imaging geometry leads to an effective propagation

for plane-wave illumination that is nearly identical to the

distance from the focus to the sample (z ’ z1). The wave-

length is 10�9 m. The sample has a Gaussian profile so that

TðxÞ ¼ 1� n expð�x2=2�2Þ, where n = 1 � i was chosen

arbitrarily and would be proportional to the sample thickness

and the deviation from unity of the refractive index and � is

the sample width, set to one of 0.15 or 0.01 mm below. The

Fresnel number is thus F ’ �2=�z.

The wavefronts in the sample and image planes were

simulated using the discrete form of the Fresnel diffraction

integral. The illumination’s wavefront in the image plane is

given by p(x, z) = cW1/2(x)exp[i�(x)], where c is a complex

pre-factor that does not depend on x, W1/2(x) was calculated

numerically and � is almost quadratic, with �ðxÞ ’ �x2=
½�ðz1 þ zÞ�. Note that �(x), the phase profile of the illumina-

tion in the sample plane, is not given by �x2=�z1 as would be

the case for a point source of light (i.e. for NA!1). This is

because the hard edges of the aperture produce Fresnel

fringes that progress from the edge of the wavefront to the

focal point at x = 0 as one moves from the image to the focal

plane.

To test the validity of the speckle tracking approximation,

we compare these simulated Fresnel images with those formed

by evaluating equation (3). In this case equation (13) can be

evaluated analytically with

WðxÞIref x�
�z

2�
r�ðxÞ; z

� �
¼ WðxÞ

����1þ n
�

�0
exp �

x2

2M2�02

� �����
2

;

ð21Þ

where

�02 ¼ �2
þ i

�z

2�
ð22Þ

and

x�
�z

2�
r�ðxÞ ¼ x

z1

z1 þ z
¼

x

M
: ð23Þ

In order to arrive at the above result, we have assumed that �
is purely quadratic across the wavefront, but this approxima-

tion has not been used when simulating the image according to

Fresnel diffraction theory.

In Appendix B, we suggest a suitable criterion for the

speckle tracking approximation to hold for this imaging

geometry based on the second criterion above,

�zð Þ
1=2
þ�zqT

z1NA
� 1; ð24Þ

where qT = 1/X is the spatial frequency corresponding to full

period features of size X. This criterion holds for features

within the plateau of the illumination profile.

In the first column of Fig. 5, we have placed the sample in

the centre of the illumination profile. Here, the left-hand side

of equation (24) evaluates to 0.8 and one can see that the

fractional differences between the image and the approxima-

tion are small compared with that of the middle column.

There, the sample has been shifted to the edge of the illumi-

nation profile, where the slope of the illumination amplitude is

large. This leads to a breakdown of the

second condition {w1/2(x0) ’ w1/2[u(x)]},

and indeed the discrepancy between the

approximation and the image is largest

near the edge of the pupil region and

slowly reduces for features closer

towards the central region.

In the right column of Fig. 5, the

sample is smaller, with a � value of

0.01 mm, and has been moved closer to

the focal point. The left-hand side of

equation (24) now evaluates to 11.0. As

expected, this increase from 0.8 in the

first column to 11.0 in the right column

corresponds to an increasing discre-

pancy between the speckle tracking

approximation and the image. This

image is in the transition region

between the near-field and far-field

diffraction regimes. Clearly, features in

the diffraction outside of the holo-

graphic region, where W1/2
’ 0, are not

represented at all by the approximation.

In both the second and third exam-

ples shown here, the errors in the
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Figure 5
Comparison between the images formed according to Frensel diffraction theory and the speckle
tracking approximation. In the left and middle columns, the sample has a � width of 0.15 mm and is
placed 500 mm from the focus. In the left column the sample is centred in the beam profile, whilst in
the middle it has been shifted to the edge. In the right column the sample has a � width of 0.01 mm
and is placed 10 mm from the focus. First row: the exit-surface-wave intensities formed by
illuminating a small Gaussian object with divergent illumination (black line). The intensities have
been scaled by the factor z=z. The sample transmission amplitudes are shown in blue. The angles
along the x axis are given by arctanðx=z1Þ and match those of the second row. Second row: the
intensity of the wavefront in the image plane (black line) and the images formed by the speckle
tracking approximation (blue line). The fractional differences are shown in red. The angles are given
by arctan½x=ðz1 þ zÞ�.



speckle tracking approximation are dominated by the error in

the approximation w1/2(x0) ’ w1/2[u(x)]. This is not surprising

given that the zeroth-order expansion of w1/2(x0) about u(x) is

a much stronger approximation than the second-order

expansion of �(x0) about u(x) (both approximations are

necessary to arrive at the speckle tracking formula).

The increased quality of projection images due to smoother

illumination profiles was one of the principle motivations

behind Salditt and collaborators’ efforts to develop an X-ray

single-mode waveguide, in order to improve their tomo-

holographic imaging methods [see for example Krenkel et al.

(2017)].

5. Reconstruction algorithm

In this section we describe the steps necessary to recover

estimates for �(x) and Iref(x) from a series of N measurements

of the kind depicted in Fig. 3, where each recorded image on

the detector corresponds to a translation of the sample in the

transverse plane by �xn (here n is the image index). The

refinement cycle is illustrated in Fig. 6. According to the

speckle tracking approximation of equation (13), the

geometric relationship between the recorded images In(x) and

the unrecorded reference Iref(x) is given by

InðxÞ ¼ WðxÞ Iref x�
�z

2�
r�ðxÞ ��xn; z

� �
: ð25Þ

Translating the sample by �xn along the x axis leads to a

corresponding translation of the reference, because the

convolution integral in equation (2) possesses translational

equivariance.

To recover estimates for �(x) and Iref(x), we choose to

minimize the target function

" ¼
P

n

R
"ðn; xÞ dx

¼
X

n

Z Z
dx

1

�2
I ðxÞ

� InðxÞ �WðxÞ Iref x�
�z

2�
r�ðxÞ ��xn; z

� �� �2

ð26Þ

in an iterative update procedure with respect to r�(x) and (as

needed) �xn, subject to

Irefðx; zÞ

¼

P
n wðxþ�xnÞ In½xþ ð�z=2�Þr�ðxþ�xnÞ þ�xn; z�P

n w2ðxþ�xnÞ
; ð27Þ

where �2
I ðxÞ is the variance of the recorded intensities at each

detector pixel, such that �2
I ðxÞ ¼ hI

2
nðxÞ � hInðxÞi

2
nin. In fact

equation (27) is the analytical solution for the minimum ofP
n "ðn; xÞ with respect to Iref(x) but for �2

I ðxÞ ¼ 1. The reason

we have set �2
I ðxÞ ¼ 1 for the reference update is that, in this

way, the reference is formed preferentially from parts of the

image with larger intensities and thus will not be unduly

affected by detector noise. This is also the update procedure

that is often employed in single-mode ptychographic recon-

structions [see for example equation (7) of Thibault et al.

(2009)].

The update for r�(x) is given by

r�ðxÞ ¼ argminr�

P
n

"ðn; xÞ

� �
; ð28Þ

while holding Iref(x) and �xn constant. Here argminr� means

‘the argument of the minimum’ with respect to r�, which is to

say, the r� that gives rise to the minimum of
P

n "ðn; xÞ. The

minimization is performed by evaluating
P

n "ðn; xÞ for

possible value of r�(x) within a pre-defined search window.

The update for �xn is given by

�xn ¼ argmin�x

R
"ðn; xÞ dx

	 

; ð29Þ

while holding Iref(x) and r�(x) constant. Once again, the

minimization is performed by evaluating the possible value of

�xn within a pre-defined search window.

Additionally, it is often desirable to regularize r�(x)

during the update procedure (especially for the first few

iterations), according to
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Figure 6
Flow diagram for the PXST iterative refinement cycle. A left arrow ( )
represents an update of the item on the left given the items to the right of
the arrow. The dashed line arrows represent optional paths in the
algorithm. Each step in the diagram corresponds to an equation in the
main text: ‘update reference’ to equation (27), ‘update phase gradients’ to
equation (28), ‘update sample translation’ to equation (29), ‘calculate
error’ to equation (26), ‘regularize phase gradients’ to equation (30), and
finally the ‘irrotational constraint’ and ‘integrate phase gradients’ steps to
equation (31).



r�ðxÞ ¼
1

2��2
exp �

x2

2�2

� �� �
	r�ðxÞ; ð30Þ

where 	 is the convolution operator and � is a regularization

parameter that can be reduced as the iterations proceed.

Once the iterative procedure has converged, the phase

profile of the illumination [�(x)] can be recovered from the

gradients [r�(x)] by numerical integration. For this we follow

the method outlined in the supplementary section of Zanette

et al. (2014). Let us label the final value of the phase gradients

by �(x) � r�(x). The procedure is then given by

�ðxÞ ¼ argmin� �ðxÞ � r�ðxÞ
�� ��2h i

; ð31Þ

where r�(x) is evaluated numerically and the minimization is

performed via the least-squares conjugate gradient method.

The fact that � is given by the numerical integration of r�
suggests a further constraint that could be employed in the

update procedure. As noted by Paganin et al. (2018), r� will

be irrotational if � is continuous and single valued because

r� is given by the gradient of a scalar field. This follows from

the Helmholz theorem, which states that any field can be

written as the sum of a gradient and a curl. Since we know that

r� is, by definition, the gradient of �, then the curl must be

zero: r � r� = 0. In the work of Paganin et al., this condition

is automatically satisfied by the solution. Here, however, we

must incorporate this as a separate constraint. An irrotational

field f is one that satisfies

@fyðxÞ

@x
¼
@fxðxÞ

@y
; ð32Þ

where fx(x) and fy(x) are the x and y components of the vector

field, respectively. To ensure that r� is irrotational, one need

only apply the numerical integration in equation (32) followed

by numerical differentiation as needed during the update

procedure. If this condition is not enforced, then the degree to

which the recovered r� is irrotational can be used as a

measure of the fidelity of the result.

Numerical considerations for the implementation of this

iterative update procedure, in addition to the source code

developed to implement the PXST algorithm, have been

published online (see https://github.com/andyofmelbourne/

speckle-tracking).

The algorithm presented here is by no means the only

approach to solve for the phase gradients and the reference.

Indeed, similar problems emerge in many areas of imaging

such as computer vision (Demirci et al., 2006), medical imaging

(Thirion, 1998) and military targeting applications (Kechagias-

Stamatis et al., 2018). In magnetic resonance imaging, the

process of identifying the distortions that relate an image to its

reference is often termed the ‘image registration’ problem and

generating the reference from a set of distorted views is

termed ‘atlas construction’. ‘Diffeomorphic image registra-

tion’ algorithms are popular in that field, many of which are

based on Thirion’s demons and log-demons algorithm

(Thirion, 1998; Lombaert et al., 2014). This approach has been

employed in the context of XST by Berto et al. (2017) to

recover the phase gradients from an image/reference pair.

Others in the XST field use correlation-based approaches,

where the geometric mapping between a small region of the

distorted image and the reference is determined by the point

which provides the greatest correlation coefficient (Zdora,

2018). The approach outlined in this work was employed

because of its simplicity and ease of implementation.

However, it seems likely (in the authors’ view) that one or

more of the other approaches mentioned above could be

adapted to the current problem in order to produce superior

results.

5.1. Example reconstruction

Here we provide a brief example of a PXST reconstruction

from a simulated 1D data set. This example is not intended as

a realistic simulation of an actual experiment: see Morgan et

al. (2020) for experimental results in two dimensions. Rather,

it serves as a simple illustrative check on the basic principles of

PXST.

The simulated sample is similar to that shown in Fig. 2. It

was constructed in Fourier space with a Gaussian intensity

profile and random phases at each pixel. The real-space object

is thus complex valued, so that rays passing through the

sample will be both absorbed and deflected in angle. The

intensity of the illumination profile, in the plane of the

detector, was formed by setting W equal to a top hat function

filtered with a Gaussian kernel. This filter produces a smooth

tapered fall-off in the intensity near the edges of the beam that

helps to avoid aliasing artefacts during numerical propagation

of the wavefront. The phase profile, �, was constructed with

the quadratic function �x2/[�(z1 + z)], where � = 1.2 nm

(1 keV), z = 20 mm and z1 = 40 mm, so that the focal plane of
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Figure 7
Top: intensity of the wavefront propagating from the sample (z = 0) to the
detector plane (z = 20 mm). The linear colour scale ranges from 0 (white)
to the maximum value (black). Middle: stack of the 1D images recorded
as the sample is scanned across the wavefield (to the right). The colour
scale is the same as in the top panel. Bottom: reconstructed and input
phase aberrations in the detector plane. See text for further details.



the illumination is upstream of the sample in the top panel of

Fig. 7 by a distance that is twice the sample-to-detector

distance. This leads to an average magnification factor of 1.5.

In addition to this, a sinusoidal phase profile was added to the

phase in order to simulate the result of aberrations in the lens

system; this can be seen as the dashed black line in the bottom

panel of Fig. 7.

The intensity of the wavefront, I(x, z), propagating from the

exit surface of the sample to the detector plane is shown in the

top panel. Upon close inspection, one can see that the inten-

sities in the plane of the detector are non-trivially related to

those in the exit surface of the sample. As such I(x, 0) cannot

be constructed from I(x, z) by a scaling in x (magnification) or

indeed by any geometric mapping. We make the point again

that in PXST the ‘reference’ is not the sample transmission

profile; rather, it is the intensity profile one would have

observed on a detector placed a distance �zz ¼ zz1=ðz1 þ zÞ ¼

13.3 mm downstream of the sample illuminated by a plane

wave. It is the geometric mapping between the reference (not

the sample transmission) and the recorded images that is used

to reconstruct the phase profile of the illumination.

The advantage of this 1D example is that one can visualize

the entire data set in a single 2D image. In the middle panel of

Fig. 7 the 1D images formed on the detector, as the sample is

scanned across the wavefield, are displayed as an image stack.

Along the vertical axis is the image number and the horizontal

axis is in angle units, which are the angles made from the point

source to each pixel in the image. It is seen that this image

stack consists of a series of lines that appear to flow towards

positive angles as the image number increases. These are the

features in the image that can be obviously tracked through

the stack. In this representation, the gradients of the lines at

each diffraction angle are proportional the local wavefront

curvature. For example, at a diffraction angle of
�0.75 mrad,

the wavefront aberrations have a negative curvature and so

features at this point in the wavefield are demagnified with

respect to the mean. At a diffraction angle of 
0.75 mrad, the

opposite is true (with a greater magnification) and the line

gradients are shallow with respect to those at
�0.75 mrad. In

addition to variations in the geometric magnification, the

wavefront aberrations also locally adjust the effective propa-

gation distance of the speckles. This is a non-geometric effect

and (unlike the local variations in the magnification) is not

accounted for by the PXST reconstruction algorithm. For the

current example, we have deliberately set the aberrations such

that the local magnification and effective propagation distance

vary by a significant fraction across the wavefield. This allows

for their effect to be clearly observed in the simulated data,

but also leads to some errors in the phases.

The reconstructed phase profile, after 30 iterations of the

PXST algorithm, is shown as the blue line in the bottom panel

of Fig. 7. The constant, linear and quadratic components of the

phase (or pedestal, tilt and defocus terms, respectively) have

been removed prior to display, to allow the sinusoidal aber-

ration profile to be clearly visualized. Near the edges of the

illumination, W ’ 0 and the phases could not be determined

(as expected). Apart from this, the differences between the

ground truth and reconstructed phase profile (0.1 rad r.m.s.

error) are too small to see in this plot but are still much greater

than the theoretical lower limit of 
0.0001 (this limit is

defined in Appendix D) – owing to the strength of the aber-

rations (as described in the previous paragraph).

6. Discussion and conclusion

We have presented a modified form of the speckle tracking

approximation, valid to second order in a local expansion of

the phase term in the Fresnel integral. This result extends the

validity of the speckle tracking approximation, thus allowing

for greater variation of the unknown phase profile and for

greater magnification factors when the wavefield has a high

degree of divergence (such as that produced by a high-

numerical-aperture lens system) or, when imaging a sample in

the differential configuration of XST, allowing for greater

phase variation across the transmission function of the sample

(such as that produced by a thick specimen). We suggest that

this approximation can be used, with little modification, in

many of the existing XST applications and suggest such a

modification for the UMPA approach.

We have also presented the PXST method, a wavefront

metrology tool capable of dealing with highly divergent

wavefields (like XSS), but unlike XSS, the resolution does not

depend on the step size of the sample translations transverse

to the beam. Coupled with a high-numerical-aperture lens,

PXST provides access to nanoradian angular sensitivities as

well as highly magnified views of the sample projection image.

With a suitable scattering object, which in this case is the

sample itself, a minimum of two images are required, although

more images will improve robustness and resolution.

We must emphasize that it is only the projection image of

the sample that is recovered. The phase and transmission

profile of the sample must be inferred from the projection

image via standard techniques (Wilkins et al., 2014). This is in

contrast to other methods that provide multiple modes of

imaging of the sample, such as the transmission, phase and

‘dark-field’ profiles. What distinguishes PXST from these

methods is that the sample image is obtained in addition to the

wavefield phase in the absolute configuration of XST: that is,

both can be obtained from a single scan series of the sample.

A further application of this method is to use it as an effi-

cient prior step to Fourier ptychography, by recording images

out of focus. The recovered illumination and sample profiles

can be used as initial estimates for a Fourier ptychographic

reconstruction. Experimentally, this additional step can be

achieved simply by moving the sample towards the focal plane

of the lens. In some cases, this additional step would not even

be required, so that speckle tracking followed by ptycho-

graphy could be performed on the same data set.

For experimental results utilizing the PXST method, see

Morgan et al. (2020). These results are based on a campaign of

measurements for the development of a high-numerical-

aperture wedged multi-layer Laue lens systems.
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APPENDIX A
Derivation of the speckle tracking approximation

The Fresnel integral of equation (2) is often referred to as a

point projection mapping. This is because, when the Fresnel

number is �1, the dominant contributions to the integral

typically arise from values of the sample transmission, T(x0),

around the point x (i.e. for x0 ’ x). At this point, the phase

term �(x� x0)2/�z has a spatial frequency qF = (x� x0)/�z’ 0.

For x0 far from x, the phase term causes the integrand to

oscillate rapidly between�T(x0). If T(x0) is bandwidth limited,

with a maximum spatial frequency of (say) qmax, then, for a

sufficiently large |x � x0|, qF 
 qmax and successive oscillations

of the integrand, caused by the phase term, will occur at

roughly the same values of T(x0) and will thus cancel each

other in the integration.

However, in the Fresnel integral of equation (3), the

modulation of T(x0) by pðx0; 0Þ ¼ w1=2ðx0Þ exp½i�ðx0Þ� has

generated an additional phase term, and we would now expect

the dominant contribution to I(x, z) from T(x0) to arise at

values of x0 for which the integrand is smooth. To simplify the

analysis, let us gather the phase terms of the Fresnel exponent

and the incident illumination into a global phase factor

gðx; x0Þ ¼ �ðx0Þ þ
�

�z
ðx� x0Þ

2; ð33Þ

so that the complex amplitude of the Fresnel integral

becomes41

 ðx; zÞ ¼
expð2�iz=�Þ

�i�zð Þ
1=2

Z
Tðx0Þ pðx; x0Þ exp

i�

�z
ðx� x0Þ

2

� �
dx0

ð34Þ

¼
expð2�iz=�Þ

�i�zð Þ
1=2

Z
Tðx0Þw1=2ðx0Þ exp½igðx; x0Þ� dx0: ð35Þ

Note that the global phase term g(x, x0), does not contain any

contribution from the phase of the transmission function

T(x0). Without any prior knowledge of this phase term, our

smoothness condition becomes

@gðx; x0Þ

@x0
¼ r�ðx0Þ �

2�

�z
ðx� x0Þ ¼ 0: ð36Þ

For now, we will define u�1 as the solution to this equation for

x given x0, so that

x ¼ u�1ðx0Þ ¼ x0 þ
�z

2�
r�ðx0Þ: ð37Þ

u�1 is the functional inverse of u, which is yet to be defined. So,

equation (3) now represents the point projection mapping

x0 ! u�1(x0), rather than x0 ! x.

This point is illustrated in Fig. 8 with w1/2(x0) = 1 for three

different values of �(x0). On the vertical axis of each panel, we

plot two real top-hat functions representing possible values for

T(x0). In the two-dimensional domain of the integrand, T(x0) is
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Figure 8
Illustration of the Fresnel integral, with a modulating phase term, for two
top-hat functions. The colour maps display the real part of the
exponential term, R exp½gðx; x0Þ�, with the same colour scale as in Fig. 1.
The alpha channel of the colour scale has been increased in regions where
the spatial frequency of the exponent approaches the pixel size, so as to
make transparent pixels that would otherwise be aliased. Phase terms that
are constant with respect to x have been subtracted before display. These
terms would not affect the final intensity of the image and removing them
more clearly shows the line x0 = u(x) where @g=@x0 ¼ 0. See text for
further details.

4 For simplicity, the following analysis will be presented in one dimension. The
difference between one and two dimensions is mostly in the normalization
constants. At the end of this section we will generalize the result to two
dimensions.



constant along the x axis. The Fresnel integral is performed by

extruding T(x0) along the horizontal axis, multiplying by

exp½igðx; x0Þ� and then integrating along the vertical axis. The

real part of this integral is illustrated along the horizontal axis

of each panel. We can see that the centroids of the features,

before and after the Fresnel integral, follow the point

projection mapping delineated by the dashed line x0 = u(x),

which is defined by the condition @g=@x0 ¼ 0. In the top panel

�(x0) = 0, leading to x0 = u(x) = x. This corresponds to Fresnel

propagation with plane-wave illumination. Therefore, the

separation between the top-hat functions in the sample plane

is equal to the separation between the ‘speckles’ produced by

each top-hat function. In the second panel �(x0) = �x02/(2�z),

corresponding to divergent illumination that would arise from

a point source of illumination, or an ideal lens system with an

infinite numerical aperture. Here x0 = u(x) = 2x/3 and,

consistent with the Fresnel scaling theorem, this leads to both

a geometric magnification (the speckles are separated by a

greater distance than the top hats) and a change in the

effective propagation distance (which can be observed in the

more rapid oscillation of the exponential term). In the final

panel, a sinusoidal phase term has been added to the phase

from the middle panel. Here u(x) does not have a simple form

and both the effective propagation distance and the magnifi-

cation vary with position along the x axis.

This suggests the following modification to the approach

outlined by Zanette and co-workers: instead of expanding

�(x0) and w1/2(x0) about x in equation (3), we should shift this

expansion about the point x0 = u(x). In this way, the Taylor

series expansion will be most accurate over the domain of the

integrand that contributes most to the integral. The Nth-order

Taylor series expansions of g(x, x0) and w1/2(x0) about x0 = u(x)

are given by

gNðx; x0Þ ¼
Xn¼N

n¼0

½x0 � uðxÞ�n

n!

@ng

@x0n

����
x;x0¼uðxÞ

; ð38Þ

w
1=2
N ðx

0
Þ ¼

Xn¼N

n¼0

½x0 � uðxÞ�n

n!

@nw

@x0n

����
x0¼uðxÞ

: ð39Þ

Evaluating equation (38) for N = 1 and equation (39) for N =

0, we have

g1ðx; x0Þ ¼ g½x; uðxÞ� þ
@g

@x0

����
x;x0¼uðxÞ

½x� uðxÞ� ¼ g½x; uðxÞ�;

ð38aÞ

w
1=2
0 ðx

0
Þ ¼ w1=2

½uðxÞ�; ð39aÞ

where the n = 1 term in the expansion of g is zero by

construction. With g ’ g1 and w1=2 ’ w
1=2
0 , equation (34)

becomes

 ðx; zÞ ’
expð2�iz=�Þ

�i�zð Þ
1=2

w1=2
½uðxÞ� expfig½x; uðxÞ�g

Z
Tðx0Þ dx0:

ð34aÞ

Unfortunately, the above expression completely fails to

capture the physics upon which XST methods are based, i.e.

the geometric mapping between I and Iref defined by �. In our

attempt to improve the accuracy of the speckle tracking

approximation, the first-order expansion of g about x0 = u(x)

no longer depends on x0. Thus the integral over x0 in equation

(34) has reduced to the term
R

Tðx0Þ dx0.

With the above result in mind, let us try the following

approach:

Instead of expanding �(x0) to first order and w1/2(x0) to zeroth

order about the point x0 = x, expand g(x, x0) to second order

and w1/2(x0) to zeroth order about the point x0 = u(x).

This approach leads to

g2ðx; x0Þ ¼ g½x; uðxÞ� þ
1

2
r

2�½uðxÞ� þ
2�

�z

� �
½x0 � uðxÞ�2; ð40Þ

where, once again, the n = 1 term for g(x, x0) is zero by

construction in equation (37). Substituting equations (40) and

w1/2(x0) ’ w1/2[u(x)] into (35) then completing the square in

the exponent we can recast the Fresnel integral in the

following form:

 ðx; zÞ ’
expð2�iz=�Þ

�i�zð Þ
1=2

w½uðxÞ� expfig½x; uðxÞ�g

�

Z
Tðx0Þ exp

i�

�z½uðxÞ�
½x0 � uðxÞ�2

� �
dx0; ð41Þ

where we have defined z(x) as

zðxÞ �
1

z
þ
�

2�
r2�ðxÞ

� ��1

: ð42Þ

One can interpret z(x) as the propagation distance required to

locally reproduce the diffraction features in  (x, z) had the

illumination been plane wave [i.e. �(x0) = 1].

We remind the reader that the ‘ref’ subscript refers to the

wavefront that would have been formed with plane-wave

illumination, with p(x, 0) = 1. Here we define  ref as the

complex amplitudes corresponding to the Fresnel integral in

equation (2):

 refðx; zÞ ¼
expð2�iz=�Þ

�i�zð Þ
1=2

Z
Tðx0Þ exp

i�

�z
ðx� x0Þ2

� �
dx0: ð43Þ

Now  (x, z) can be related to  ref(x, z) (where Iref = | ref|
2) by

the substitutions x! u(x) and z! z[u(x)], yielding

 ðx; zÞ ’ exp 2�ifz� z½uðxÞ�g=�ð Þfz½uðxÞ�=zg1=2

� w½uðxÞ� expfig½x; uðxÞ�g reffuðxÞ; z½uðxÞ�g; ð44Þ

Iðx; zÞ ’ fz½uðxÞ�=zgw½uðxÞ� IreffuðxÞ; z½uðxÞ�g: ð45Þ

So far we have avoided a more explicit definition of the

geometric mapping factor u(x); it is currently defined by its

inverse in equation (37). A more meaningful definition can be

obtained by the following consideration. Setting T(x0) = 1,

equation (41) represents the propagation of the incident beam

through free space in the absence of the sample, so that
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pðx; zÞ ’
expð2�iz=�Þ

�i�zð Þ
1=2

w½uðxÞ� expfig½x; uðxÞ�g

�

Z
exp

i�

�z½uðxÞ�
½x0 � uðxÞ�2

� �
dx0

¼ expð2�iz=�Þ z½uðxÞ�=z
� �1=2

w1=2
½uðxÞ� expfig½x; uðxÞ�g

¼ expð2�iz=�ÞW1=2ðxÞ exp½i�ðxÞ�: ð46Þ

Here we have defined

WðxÞ � fz½uðxÞ�=zgw½uðxÞ� and �ðxÞ � g½x; uðxÞÞ� ð47Þ

and W(x) and �(x) are, respectively, the intensity and phase

profiles of the undisturbed beam in the plane of the detector.

The benefit of this calculation is that it provides an inter-

pretation of the mapping function u(x) in terms of the phase

gradient of the illumination in the z plane. To see this, we first

explicitly evaluate �(x) in terms of the incident phase profile

�(x). Substituting x0 = u(x) into equation (33), we have

�ðxÞ ¼ �½uðxÞ� þ
�

�z
½x� uðxÞ�2: ð48Þ

Using the definition for u�1(x) in equation (37), we can then

evaluate

�½u�1
ðxÞ� ¼ �ðxÞ þ

�

�z
x� x�

�z

2�
r�ðxÞ

� �2

¼ �ðxÞ þ
�z

4�
½r�ðxÞ�2: ð49Þ

Taking the derivative of both sides of equation (49) with

respect to x yields

@u�1ðxÞ

@x
r�½u�1ðxÞ� ¼

@

@x
�ðxÞ þ

�z

4�
½r�ðxÞ�2

� �
; ð50Þ

1þ
�z

2�
r

2�ðxÞ

� �
r�½u�1

ðxÞ� ¼ 1þ
�z

2�
r

2�ðxÞ

� �
r�ðxÞ; ð51Þ

r�½u�1
ðxÞ� ¼ r�ðxÞ: ð52Þ

With this equality and the definition for u�1(x) in equation

(37), one can now verify that the following equality holds:

x ¼ u�1ðxÞ �
�z

2�
r�½u�1ðxÞ�: ð53Þ

But since u[u�1(x)] = x we can identify u(x) with

uðxÞ ¼ x�
�z

2�
r�ðxÞ: ð54Þ

Furthermore, we can evaluate z[u(x)] in terms of �(x) by

making use of the following relation:

@

@x
u�1
ðxÞ ¼ 1þ

�z

2�
r

2�ðxÞ

� �
¼

z

zðxÞ
; ð55Þ

where we have used the expression for z(x) in equation (42).

Then, taking the derivative with respect to x of both sides of

equation (53),

@

@x
x ¼ 1 ¼

@

@x
u�1
ðxÞ �

�z

2�
r�½u�1

ðxÞ�

� �

¼
z

zðxÞ
�

z

zðxÞ

�z

2�
r2�½u�1ðxÞ�; ð56Þ

and rearranging, we obtain

z�ðxÞ � z½uðxÞ� ¼ z 1�
�z

2�
r

2�ðxÞ

� �
: ð57Þ

Inserting equations (47), (54) and (57) into equation (44) we

can then write

 ðx; zÞ ’ exp½�2�iz�ðxÞ=��

� pðx; zÞ ref x�
�z

2�
r�ðxÞ; z�ðxÞ

� �
ð58Þ

or, the inverse relationship,

pðx; 0Þ ref½x; zðxÞ� ’ expf�2�i½z� zðxÞ�=�g

�
z

zðxÞ

� �1=2

 xþ
�z

2�
r�ðxÞ; z

� �
: ð59Þ

This formulation of the projected image separates the effects

of the geometric and propagation-based distortions induced in

the detected image by phase variations in the incident illu-

mination. The geometric distortions are captured by the term

(�z/2�)r�(x) and the change in the fringe structure of a

feature by the term z�(x).

For the purposes of the current work, we will ignore

variations in the fringing terms z(x) and z�(x) across the

wavefield and use instead the constants

z�ðxÞ ’ z� � z 1�
�z

2�
hr

2�ðxÞix

� �
; ð60Þ

zðxÞ ’ z �
1

z
�
�

2�
hr2�ðxÞix

� ��1

: ð61Þ

hr
2�(x)ix and hr2�(x)ix are the mean phase curvatures of the

illumination in the plane of the sample and the detector,

respectively. Under the Fresnel approximation, they can be

defined in terms of the effective source distance from the

sample or detector planes. If z1 is the distance between the

entrance surface of the sample and the effective source point,

then

hr2�ðxÞix ¼
2�

�z1

and hr2�ðxÞix ¼
2�

�ðzþ z1Þ
: ð62Þ

Using the above expressions, one can now verify that

z ¼ z� ¼
zz1

zþ z1

: ð63Þ

With the above approximations for z(x) and z�(x) and taking

the mod square of equations (58) and (59), we arrive at the 1D

speckle tracking approximation:

Iðx; zÞ ’ WðxÞ Iref x�
�z

2�
r�ðxÞ; z

� �
; ð64Þ
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wðxÞ Irefðx; zÞ ’
z

z
I xþ

�z

2�
r�ðxÞ; z

� �
: ð65Þ

In two dimensions, the constant prefactor to the Fresnel

integral in equation (34) is 1/(�i�z) [rather than 1/(�i�z)1/2 in

one dimension]. This leads to an altered expression for W:

WðxÞ � z=zð Þ
2
wðxÞ: ð66Þ

Additionally, �zz is now defined by the average wavefront

curvature over the 2D transverse plane:

z � z 1�
�z

2�

1

2
hr2�ðxÞix

� �
; ð67Þ

where the Laplacian operator is now also over the 2D plane,

r2 � @2=@x2 þ @2=@y2. If one accepts the approximation

zðxÞ ’ z from the beginning, then the analysis presented here

in one dimension can be repeated in two by following the

above steps, first along the x axis and then along the y axis. The

result of this procedure is

Iðx; zÞ ’ WðxÞ Iref x�
�z

2�
r�ðxÞ; z

� �
; ð68Þ

wðxÞIrefðx; zÞ ’
z

z

� �2

I xþ
�z

2�
r�ðxÞ; z

� �
: ð69Þ

APPENDIX B
Derivation of the region of validity of the speckle
tracking approximation

In Appendix A, it was shown that the Fresnel integral of T(x)

modulated by p(x, 0),51

 ðx; zÞ ¼
expð2�iz=�Þ

�i�zð Þ
1=2

Z
pðx0; 0ÞTðx0Þ exp

i�

�z
ðx� x0Þ

2

� �
dx0;

ð70Þ

can be approximated by

 ðx; zÞ ’
pðx; zÞ

�i�zð Þ
1=2

Z
Tðx0Þ exp

i�

�z
½x0 � uðxÞ�2

� �
dx0; ð71Þ

subject to the approximations

(1) gðx; x0Þ ’ g½x; uðxÞ� þ 1
2 fr

2�½uðxÞ� þ 2�=�zg½x0 � uðxÞ�2,

(2) w1=2ðx0Þ ’ w1=2½uðxÞ�,

(3) zðxÞ ’ z � zz1=ðzþ z1Þ,

where these are additional to the approximations necessary

for the paraxial approximation to hold, p(x, 0) = w1/2(x) �

exp[i�(x)], p(x, z) = exp(2�iz/�)W1/2(x)exp[i�(x)], u(x) = x �

ð�z=2�Þr�ðxÞ, z1 is the effective distance between the light

source and the sample plane, and gðx; x0Þ � �ðx� x0Þ
2=�z þ

�ðx0Þ.

B1. Requirements

In this section we shall determine the requirements for each

of these three approximations to hold.

B1.1. The first approximation. Let us assume for the

moment that approximations 2 and 3 are valid. In this case, it is

sufficient to require that the Taylor series expansion of g(x, x0)

is valid within the interval of convergence of the Fresnel

integral in equation (71).

In Appendix A, we have intuited that the expansion of

g(x, x0) need only be valid for values of x0 satisfying qg(x, x0) <

qT, where qg(x, x0) are the spatial frequencies of g and qT is the

maximum spatial frequency of T. For values of x0 outside of

this region, successive oscillations of the integrand will occur

at roughly the same magnitude [�T(x0)] with a net zero

contribution to the integral.

So, let us first examine the domain of x0 over which the

expansion is valid. The Lagrange error bound for the Taylor

series expansion of g(x, x0), about x0 = u(x), sets a limit on the

magnitude of the residual:

jRNðx
0; gÞj ¼ jgðx; x0Þ � gNðx; x0Þj

�
M

ðN þ 1Þ!
½x0 � uðxÞ�Nþ1

����
����; ð72Þ

where

@Nþ1g

@x0Nþ1
ðx; x00Þ

����
���� � M for jx00 � uðxÞj< jx0 � uðxÞj: ð73Þ

With the above expression, we can identify the interval 2d� of

x0 about u(x), such that x0 : u(x) � d�! u(x) + d�, for which

the magnitude of the residual |RN| is below some threshold

level of tolerance. So, for N = 2,

@3g

@x0 3
ðx; x0Þ ¼ �ð3Þðx0Þ ð74Þ

and

�ð3Þmax � M ¼ max j�ð3Þðx0Þj : jx0 � uðxÞj � d�
	 


; ð75Þ

we have

E2 ¼
1
6�
ð3Þ
maxd3

� <
1
6 Etol or d� < ðEtol=�

ð3Þ
maxÞ

1=3; ð76Þ

where E2 is the Lagrange error bound for the second-order

expansion of g and Etol is the maximum tolerable error (which

has been implicitly defined so as to absorb the factor of 6).

Now we determine the minimum interval 2dqT
required for

the Fresnel integral in equation (71) to converge near to its

true value.

Let us expand T(x0) as a Fourier series, such that

Tðx0Þ ¼
R

T̂TðqÞ expð2�ix0qÞ dq, where T̂TðqÞ is the complex

amplitude of the qth full-period spatial frequency of T(x0)

corresponding to features of extent X = 1/q.

By the superposition principle, we can select the highest

spatial frequency of T such that T̂TðqÞ ¼ 0 for |q| > qT and

examine the radius of convergence of the integral in equation

(71) for Tðx0Þ ! expð2�ix0qTÞ:
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5 For simplicity, the following analysis will be carried out in one dimension.
Generalization to two dimensions is not required to support the results of this
section.



 ðx; z; qTÞ � pðx; zÞ

�

ZuðxÞþd

uðxÞ�d

expð2�ix0qTÞ exp i�
½x0 � uðxÞ�2

�z

� �
dx0; ð77Þ

where dqT
is given by the value of d for which the above

integral has converged within an acceptable error margin. This

integral can reduced to the following form:

 ðx; z; qTÞ ¼ � � �

Z2=�zð Þ
1=2
ð�zqTþdÞ

2=�zð Þ
1=2
ð�zqT�dÞ

exp ið�=2Þv2
	 


dv

¼ � � �

n
E 2=�zð Þ

1=2
ð�zqT þ dÞ

	 

� E 2=�zð Þ

1=2
ð�zqT � dÞ

	 
o
; ð78Þ

where the function E is known as the Euler or Cornu spiral

and the ‘� � �’ represent terms that are constant with respect to

the integration variable v. The Euler spiral can be constructed

in the complex plane in terms of the Fresnel integrals C and S:

EðxÞ ¼ CðxÞ þ iSðxÞ ð79Þ

¼
Rx
0

cos½ð�=2Þx2� dxþ i
Rx
0

sin½ð�=2Þx2� dx: ð80Þ

As both C and S approach their limit of 1
2 as x!1 with equal

rapidity, we shall examine only the imaginary part of E for

convenience.

In Fig. 9 we plot the imaginary part of the indefinite integral

of equation (78) (shown in green in the second row) as a

function of d. We can see here that for d >
 �zqT the integral

oscillates about 1 and that the amplitude of these oscillations

is dominated by the S½ð2=�zÞ
1=2
ð�zqT � dÞ� term (shown in

orange).

The extrema of S(x) are given by

@SðxÞ

@x
¼ sin½ð�=2Þx2

� ¼ 0; ð81Þ

and therefore

xm ¼ � 2mð Þ
1=2: ð82Þ

The extrema of S½ð2=�zÞ
1=2
ð�zqT � dÞ� are therefore located at

dm ¼ m�zð Þ
1=2
þ �zqT for m ¼ 0; 1; 2; . . . : ð83Þ

So, the residual for the integral in equation (78) is propor-

tional to 1/2 � S[(2m)1/2]. Therefore, the integer m will serve

as a measure of convergence for the integral and we can

require that dqT
> dm. Finally, combining equations (76) and

(83) we have, for dqT
< d�,

m�zð Þ
1=2
þ �zqT < Etol=�

ð3Þ
max


 �1=3
: ð84Þ

The above inequality can be seen as a limit for the phase

variation �ð3Þmax or, for a given �ð3Þmax, as a limit on the smallest

features that will be resolved (qT = 1/X) according to the

approximation in equation (71). Setting, m1/2 = 1, multiplying

both sides of equation (84) by �ð3Þmax and raising both sides by

the third power, we have the condition

�zð Þ1=2
þ �zqT

	 
3
=�ð3Þmax � 1: ð85Þ

B1.2. Approximation 2. Assuming for now that approx-

imations 1 and 3 are valid, we require that w1/2(x0)’ w1/2[u(x)]

is valid within the interval |x0 � u(x)| < dw, and that this

interval is larger that dqT
, which is the interval about x0 = u(x)

over which the integral in equation (71) will converge. Making

use, once again, of the Lagrange error bound we have

dw <
Etol

ðw1=2Þ
ð1Þ
max

: ð86Þ

The requirement dw > dqT
leads to

�zð Þ
1=2
þ �zqT

w1=2ð Þ
ð1Þ
max

� 1: ð87Þ

B1.3. Approximation 3. Assuming that approximations 1

and 2 are valid, the governing equation becomes

 ½u�1
ðxÞ; z� ’

p u�1ðxÞ; z
	 

�i�zð Þ

1=2

Z
Tðx0Þ exp

i�

�z�ðxÞ
ðx0 � xÞ

2

� �
dx0;

ð88Þ

where we have used u�1ðxÞ ¼ xþ ð�z=2�Þr�ðxÞ and restored

z�(x) in place of z in equation (71). This approximation, that

zðxÞ ’ z�ðxÞ ’ z, is thus valid in the limit where the residual

term

R ¼
p½u�1ðxÞ; z�

�i�zð Þ
1=2

Z
Tðx0Þ

�
exp

i�

�z
ðx0 � xÞ

2

� �

� exp
i�

�z�ðxÞ
ðx0 � xÞ

2

� ��
dx0 ð89Þ

¼  ½u�1ðxÞ; z� �  ½u�1ðxÞ; z�ðxÞ� ð90Þ
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Figure 9
First row: the Fresnel integral S. Second row: the terms /  (x, z; qT) in
equation (78). For these plots, �z ¼ 2 and the vertical black line is at
d ¼ �zqT.



approaches zero. The conditions under which  (x, z1) ’

 (x, z2), in the Fresnel diffraction regime, are well known: the

requirement is that the Fresnel number F = X2/�|z2 � z1|� 1.

In this case, jz1 � z2j ¼ jz�ðxÞ � zj, which depends on x. To

generalize this requirement across the entire wavefront, we

thus require that

X2=��ðzÞ � 1 ð91Þ

or

F � �ðzÞ=z; ð92Þ

where �(z) is the standard deviation of the effective propa-

gation distance given by �ðzÞ � fh½z�ðxÞ � z�2ixg
1=2 and

F ¼ X2=�z is the Fresnel number for features of size X

propagating a distance z. Under this condition, features of size

X (after correcting for the geometric distortions) will produce

the same image on the detector regardless of their transverse

position along the wavefront.

This condition can be expressed as a constraint on the phase

profile of the beam. Using the definitions for z�(x) [equation

(57)] and z [equation (61)] we have

z�ðxÞ � z ¼
�z2

2�
r

2�ðxÞ � hr2�ðxÞix
	 


; ð93Þ

�ðzÞ ¼
�z2

2�
r

2�ðxÞ � hr2�ðxÞix
	 
2
n o1=2

ð94Þ

¼
�z2

2�
�ð�ð2ÞÞ: ð95Þ

Using the above equation we have that approximation 3 is

valid in the limit

F �
�z2

2�z
�ð�ð2ÞÞ: ð96Þ

B2. Limit on the defocus for an ideal lens

The illumination formed by an ideal lens, with a hard-edged

aperture, has a distinct form (see for example Fig. 4). Within

the plateau of the wavefront the intensity oscillates about a

mean value, while the phase profile is approximately quad-

ratic: �’ �x2/�z1. In this case, approximation 2, that w1/2(x0)’

w1/2[u(x)], is the most onerous of the three. In the above

analysis, we had used the Lagrange error bound to estimate

the maximum distance along the wavefront (|x0 � x|) for which

this approximation will hold. But for the present case, this

estimate is over-bounded given its general nature. Instead, we

propose that an acceptable condition for this approximation is

that w1/2(x0) ’ w1/2[u(x)] will remain valid for |x0 � x| < z1 NA,

where NA is the numerical aperture of the lens and z1 NA is

approximately equal to the half-width of the plateau. Thus we

replace dw ¼ Etol=ðw
1=2Þ
ð1Þ
max with dw = z1 NA and equation (87)

becomes

m�zð Þ
1=2
þ �zqT

z1 NA
� 1; ð97Þ

where this condition applies for features within the plateau of

the illumination.

APPENDIX C
Uniqueness

C1. Pedestal and tilt terms are unconstrained in the
illumination phase profile

In general, the solution to the target function in equation

(26) does not constrain terms proportional to 1, x and y in the

recovered phase profile. These terms are sometimes referred

to as the ‘pedestal’ and ‘tilt’ components of the pupil function.

To see this, consider a phase profile �0 = c + d � x + �, where �
corresponds to the true phase profile in the plane of the

detector and where c and d are constants. This leads to the

phase gradients r�0 = d + r�. Substitution into equation (25)

yields

I0nðxÞ ¼ WðxÞ Iref x�
�z

2�
r�0ðxÞ ��xn; z

� �
ð98Þ

¼ WðxÞ I 0r x�
�z

2�
r�ðxÞ ��xn; z

� �
ð99Þ

¼ InðxÞ for I 0rðx; zÞ ¼ Iref x�
�z

2�
d; z

� �
; ð100Þ

independent of the pedestal term. Also, the tilt in the phase

profile has produced a shift in the reference, which is generally

not detectable unless the position of a feature in the object is

known a priori with respect to the detector.

Alternatively, we could have absorbed the term ð�z=2�Þd as

a constant offset in the sample translation vectors

�x0n ¼ �xn þ ð�z=2�Þd. We note that the tilt terms are typi-

cally unconstrained in speckle tracking techniques, since it is

common to allow for an overall offset in the sample or

detector positions.

C2. Speckle patterns of sufficient density are necessary, but
not sufficient, for a unique solution to exist

Clearly, in the extreme case where no speckles are recorded

the phase is completely unconstrained, so that

I0nðxÞ ¼ WðxÞ Iref x�
�z

2�
r�0ðxÞ ��xn; z

� �
ð101Þ

¼ InðxÞ for Irefðx; zÞ ¼ 1 ð102Þ

and for any �0. This condition could also be reached in the

limit where the fringe visibility of the speckle pattern

approaches zero. The requirement for adequate fringe visibi-

lity is a point which is emphasized by Zanette et al. (2014) as

well as many others in the field (Zdora, 2018). Of course, the

above condition could also be reached for any sub-domain of

x. If, for example, In(x0) = W(x0) for all n, then the phase terms

are unconstrained at the points x0. This suggests a more

general (necessary) condition for a unique solution to exist:

that a speckle of sufficient contrast must be observed at least

once at each position in the image. As an example, the

Hartmann sensor discussed in Section 2 does not satisfy this
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condition and, as such, it is necessary to interpolate values of

� between the mask holes, rendering the method insensitive

to high-order aberrations that lead to rapid variations in ��.

Note that this is not always an issue, especially in cases where

the low-order aberrations of the wavefront are of primary

concern, such as when we wish to correct them by some means,

or when the low-order aberrations are dominant and dominate

the imaging performance of the optic.

In another extreme, the phase is also unconstrained for N =

1, when only a single image has been recorded. This is because

the unknown Iref can be adjusted to accommodate any �0:

I00ðxÞ ¼ WðxÞ Iref x�
�z

2�
r�0ðxÞ ��x0; z

� �
ð103Þ

¼ I0ðxÞ for Irefðx; zÞ ¼
I 00
W

� �
xþ

�z

2�
r�0ðxÞ þ�x0

� �
ð104Þ

and for any �0. This situation has arisen because the observed

speckles are modelled as a function of r� and Iref, both of

which are refined in the PXST method. So if a given speckle is

observed only once, at a location x0, and the phase gradient at

x0 is not otherwise constrained, then multiple solutions for r�
and Iref exist. The above two considerations suggest the more

general (necessary) conditions for a unique solution to exist:

A speckle of sufficient contrast must be observed at least once

at each position in the image, and this speckle must be

observed at least twice and at different positions in the image.

Note that the above constraint does not require that every

speckle must be observed more than once.

This is the ‘speckle density condition’ alluded to in the title

of this section. The easiest way to satisfy this condition is to

use a sample that produces a dense high-contrast array of

speckles on the detector, such as a diffuser. With such a

sample, the above constraint may be satisfied with just two

images (i.e. for N 
 2), provided that the sample step size is

not greater than half the illuminated region of the sample

along the direction of the step.

However, it is possible for a unique solution to exist even

when the sample produces only a single observable speckle in

each image. In this case, the above condition can be satisfied

by scanning the sample such that this speckle is observed at

each point in the image. This is a far less efficient means for

wavefront sensing than using a diffuser. But this generality

allows for nearly any object, such as the Siemens star in Fig. 3

or a Hartmann mask, to be used as a wavefront sensing device.

C3. Ambiguities can arise from unknown sample positions

If the sample translation vectors (�xn) are unknown, then

there exists a family of solutions to equation (25), with each

solution corresponding to a set of translation vectors related

by an affine transformation. Consider a set of translation

vectors �x0n = x0 + A � �xn, where x0 is an overall offset and

the dot product is between the 2 � 2 linear transformation

matrix A and the true sample translation vectors. As described

previously, any overall offset in the translation vectors

generates a corresponding offset in the reference and a tilt

term in the recovered phases. So, neglecting the offset term,

we generate this family of solutions by the substitution �xn =

A�1
� �x0n into equation (25):

InðxÞ ¼ WðxÞ Iref x�
�z

2�
r�ðxÞ �A�1

��x0n; zÞ

� �
ð105Þ

¼ WðxÞ Iref A�1
� A� x�

�z

2�
r�ðxÞ

� �
��x0n

� �
; z

� �
ð106Þ

¼ WðxÞ I0ref x�
�z

2�
r�0ðxÞ ��x0n; z

� �
; ð107Þ

where

�x0n ¼ A ��xn; ð108Þ

I0refðx; zÞ ¼ IrefðA
�1
� x; zÞ ð109Þ

and

r�0ðxÞ ¼ A � r�ðxÞ þ
2�

�z
x�A � xð Þ: ð110Þ

If, on the other hand, the true sample translation vectors are

given by the input values of �xn, but with small random offsets

of mean 0, then the true solution for the phase and reference

can be recovered from the retrieved values by removing the

effect of any affine transformation that may have arisen during

the reconstruction. This can be accomplished by minimizingP
n j�xout

n �A ��xin
n j

2 with respect to A, where �xin
n and

�xout
n are the input and output values of �xn, respectively,

then generating the corresponding solutions for r�0 and I0r
from the above equations. This situation can arise, for

example, from small relative errors in the translation of a

stepper motor or from the pointing jitter of an X-ray free-

electron laser pulse.

C4. An unknown rotation of the sample stage axes with
respect to the detector axes can be corrected

A common systematic error for the input sample positions is

an overall rotation of the axes of the sample translation stages

with respect to the pixel axes of the detector. In this case the

linear transformation matrix reduces to the rotation matrix:

A! Rð�Þ ¼
cos � � sin �
sin � cos �

� �
: ð111Þ

Here, we can make use of the fact that in general r�0 of

equation (110) is not irrotational for � 6¼ 0 and A = R(�). If

(u, v) � r�out then we can require that the vector field

R�1
� (u, v) be irrotational. With R�1 = R(��) and equation

(32), we have

� ¼ argmin�

��
@

@y
ðu cos � þ v sin �Þ

�
@

@x
ð�u sin � þ v cos �Þ

�2�
; ð112Þ

where the derivatives with respect to x and y are evaluated

numerically. However, if the irrotational constraint was

enforced during the reconstruction, then the recovered �xout
n
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is free of the erroneous rotation and no further analysis is

required.

C5. The raster grid pathology produces artefacts for lattice-
like sample translations

A common problem encountered in ptychography is the

‘raster grid pathology’ (Thibault et al., 2009). The raster grid

pathology arises when reconstructing both the illumination

and sample profiles from diffraction data acquired while the

sample is scanned along a regular grid. In that case, the

recovered illumination and sample transmission functions may

be modulated by any function, so long as it is periodic on a

lattice of points upon which all of the sample positions lie.

In many cases, the governing equation for a ptychographic

reconstruction is given by

InðqÞ ¼ F Tðx��xnÞpðx; 0Þ
	 
�� ��2; ð113Þ

where F½�� is the Fourier transformation operator over the

transverse plane and represents the propagation of the exit-

surface wavefront  n(x) � T(x � �xn)p(x, 0) to the detector

(in the far field of the sample). If the sample is translated along

a regular grid, for example, with step size d, then �xn = n � d,

where the vector n = (in, jn) is the 2D lattice index corre-

sponding to the nth image (for integer in and jn). If we make

the substitution p0(x, 0) = f(x)p(x, 0) into the above equation,

then we have

 nðxÞ ¼ T 0ðx� n � dÞ f ðxÞ pðx; 0Þ; ð114Þ

and hence

T 0ðxÞ ¼
 0nðxþ n � dÞ

pðxþ n � d; 0Þ f ðxþ n � dÞ
¼

TðxÞ

f ðxÞ
ð115Þ

if f ðx� n � dÞ ¼ f ðxÞ for all n. The raster grid pathology can be

avoided by ensuring that the sample scan positions lack any

translational symmetry, i.e. by scanning the sample in non-

regular patterns, for example in a spiral grid, or by adding a

random offset to every grid position (Fannjiang, 2019). Given

that equation (113) is just a special case of the Fresnel integral

in equation (2) (from which the speckle tracking approxima-

tion is derived) it is natural to consider whether or not the

same pathology applies here.

One can show that a similar pathology does indeed arise in

the present case. Here, the illumination’s intensity is

constrained during the reconstruction, so instead we make the

substitution p0(x, z) = p(x, z)exp[ig(x)], which is equivalent to

�0(x) = �(x) + g(x), into equation (25):

InðxÞ ¼ WðxÞ I 0r x�
�z

2�
r�0ðxÞ � n � d; z

� �
ð116Þ

¼ WðxÞ I 0r x�
�z

2�
r�ðxÞ þ rgðxÞ½ � � n � d; z

� �
ð117Þ

¼ WðxÞ I 0r x� rgðx� n�dÞ½ � �
�z

2�
r�ðxÞ � n�d; z

� �
ð118Þ

and hence

I 0rðxÞ ¼ Iref xþ
�z

2�
rgðxÞ

� �
ð119Þ

if rgðxÞ ¼ rgðx� n � dÞ for all n. So, rather than modulating

the reference with a periodic function, the pathology here

creates a periodic geometric distortion of the reference.

APPENDIX D
Angular sensitivity and imaging resolution

D1. The resolution of the reference is given by the
demagnified effective pixel size

As discussed in Section 3, the Fresnel scaling theorem states

that the projection image of a thin sample formed by a point-

like source of coherent light produces a magnified and defo-

cused image of the sample. Similarly, in PXST, the ‘reference’

is an idealized image that would have been formed if the

illumination were plane wave (i.e. with a flat phase profile), the

detector were placed a distance z from the plane of the

sample, the detector extended over the entire illuminated

region of the sample and the physical pixel size (�det) were

reduced by the magnification factor M. Assuming that the

speckle tracking approximation holds, and that the aggregate

signal-to-noise level is high, then the resolution of such an

image is given by the demagnified effective pixel size of the

detector (�ref).

The effective pixel size (�eff) can be much smaller than �det

owing to sub-pixel interpolation, which is employed when

registering a speckle across many images. We have found, as

others have noted (Bérujon, Ziegler et al., 2012), that sub-pixel

interpolation can lead to a reduction in the effective pixel size

by a factor of 10 or more depending on the point-spread

function of the detector, the contrast of the speckles, the

signal-to-noise ratio per image and the total number of images.

On the other hand, effects such as the finite source size of the

X-rays will tend to blur-out speckles and increase the effective

pixel size.

Consider the imaging geometry depicted in Fig. 4, for an

incoherent source of X-rays with a Gaussian angular distri-

bution given by exp ð��2=2�2
s Þ, where � is the angle made by a

ray pointing from the incoherent source point to the lens

aperture. Then the image recorded in the detector plane will

be given by

Iðx; z; �sÞ ’
1

2�

z1

z f�s

� �2

exp �
x2

2

z1

z f�s

� �2
" #( )

	 Iðx; zÞ;

ð120Þ

where	 is the convolution operator, f is the focal length of the

lens and I(x, z) is the intensity of the wavefront in the plane of

the detector for an on-axis point source of light. Therefore, the

observed speckles will be broadened by a factor �s zf /z1. In

this regime, the effective pixel size is given by

�eff ¼ �pix �det þ �s z f=z1ð Þ; ð121Þ

�ref ¼ �eff=M; ð122Þ
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where we have used the symbol �pix to represent the fractional

reduction in the effective pixel size due to numerical inter-

polation. For example, with a physical pixel size of �eff =

50 mm, a fully coherent wavefield and �pix = 1, the demagnified

pixel size for the example shown in Fig. 5 (left and middle

columns) would be �ref = 25 nm and for the right column (with

the sample 10 mm from the focus) �ref = 5 Å.

D2. The sample position that maximizes the angular
sensitivity of the wavefront, in the plane of the sample,
depends on the source coherence width

The smallest resolvable angular deviation of the wavefront,

in the plane of the sample, is given by the arctangent of the

smallest resolvable displacement of a speckle over the

distance between the sample and the detector pixel array:

��� ¼ arctanð�eff=zÞ ’ �eff=z; ð123Þ

where we have employed the small-angle approximation in the

last equality. The smallest resolvable increment in the phase

gradient is thus �ðr�Þ ¼ ð2�=�Þ���. We note that ��� is a

lower bound on the angular sensitivity, since the achieved

value will generally be larger than �eff /z because of detector

noise and/or photon counting statistics.

For the imaging geometry depicted in Fig. 4, the optimal

position for the detector will be given by the furthest distance

from the focus such that the footprint of the illumination is

contained within the pixel array, as this maximizes the

sampling frequency of the wavefield. This raises the question,

how far should one place the sample from the focus in order to

maximize the angular resolution (minimize ��)? To answer

this, let us keep the focus-to-detector distance (zt) fixed, so

that zt = z1 + z, and minimize ��� with respect to z1. Inserting

M = zt /z1 and equation (122) into equation (123) and mini-

mizing yields

��� ¼
�det

zt

1þ
f�s

�det

� �1=2
" #2

ð124Þ

for

z1 ¼
zt

1þ �det=f�sð Þ
1=2
: ð125Þ

As the focus-to-sample distance is reduced, the magnification

factor increases (improving the angular sensitivity), while at

the same time the deleterious effects of the finite source size

increase (deteriorating the angular sensitivity). The above

value for z1 represents the optimal compromise between these

two effects.

D3. The sample position that maximizes the angular
sensitivity of the wavefront, in the plane of the detector, is in
the focal plane where the magnification is greatest

The angular resolution for the wavefield in the plane of the

detector (���) is not, in general, the same as the angular

resolution in the plane of the sample. This is because of the

difference in extent between the effective pixel size and the

demagnified effective pixel size due to divergent illuminating

wavefields. ��� is given by

��� ¼ �ref=z: ð126Þ

For a fixed focus-to-detector distance, once again z = zt � z1,

and we have

��� ¼ �pix ðz1=z2
t Þ�det þ ðf=ztÞ�s

	 

: ð127Þ

An interesting feature of the above equation is that the effect

of the source incoherence �pix f�s/zt does not vary with z1; as z1

is decreased the increase in the magnification factor leads to a

corresponding decrease in the effective pixel size due to the

finite source size, but this is exactly balanced by the reduction

in the angle subtended by the demagnified effective pixel size.

Therefore, the optimal position for the sample, in order to

minimize ���, is as close to the focal plane as possible.

However, this can be a dangerous limit to approach, as the

speckle tracking approximation will begin to break down as a

result of the rapidly varying illuminating wavefield – at this

point, it would be necessary to employ a fully coherent model

for the wavefront propagation, for example, by switching to

far-field ptychography. Additionally, it can be beneficial to

increase the focus-to-sample distance for practical reasons; for

example, increasing z1 provides a larger field of view of the

sample in each image which aids in positioning the region of

interest of the sample with respect to the illuminating beam

and, typically, increases the speckle visibility. For these

reasons, it can be beneficial to approach the limit where

�det=M ’ �s or z1 ’ zt�s=�det: ð128Þ

Here z1 has been increased until the demagnified pixel size is

approximately equal to the demagnified feature size one

would observe from a point-like object owing to incoherence

alone. This represents the transition between modes where

��� is dominated by the detector pixel size (larger z1) and by

the finite source size (smaller z1).

D4. Although the angular sensitivities of the wavefields in the
sample and detector planes differ, the phase sensitivities are
equal and are both minimized by maximizing the magnifi-
cation

The difference between ��� and ��� may at first appear

to be a curious asymmetry. However, the phase sensitivities in

the planes of the sample and the detector are in fact equal for

a given sample position. For divergent illumination, the

angular distribution of the wavefield in the sample plane is

larger than that of the wavefield in the detector plane by a

factor of M. On the other hand, the sampling frequency of the

wavefield in the sample plane is also larger by the factor M. So,

when propagating uncertainties in the angular distributions to

the integrated phase profiles, these two effects cancel.

Recall the relationship between the integrated phase profile

and the angular distribution of the wavefield in equation (1).

Uncertainties in the angular distribution are thus scaled by the

step size in x after integration, so that
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�� ’ �ref

2�

�
��� ¼ �ref

2�

�

�eff

z
; ð129Þ

�� ’ �eff

2�

�
��� ¼ �eff

2�

�

�ref

z
: ð130Þ

Therefore, with �ref = �eff /M, we have that �� ¼ �� ’
ð2�=�Þ�2

eff=M and both are minimized by placing the sample as

close as possible to the focal plane, as described in the

previous subsection.

Acknowledgements

We would like to acknowledge Timur E. Gureyev, for proof

reading the manuscript and for fruitful discussion on the

theory of X-ray wave propagation. We also acknowledge

Chufeng Li for additional proof reading, as well as the two

anonymous referees of this article, whose critiques and

suggestions have improved the quality of this work.

Funding information

Funding for this project was provided by the Australian

Research Council Centre of Excellence in Advanced Mol-

ecular Imaging (AMI), the Gottfried Wilhelm Leibniz

Programme of the Deutsche Forschungsgemeinschaft (DFG),

and the Cluster of Excellence ‘CUI: Advanced Imaging of

Matter’ of the DFG – EXC 2056 – project ID 390715994.

References

Bajt, S., Prasciolu, M., Fleckenstein, H., Domaracký, M., Chapman,
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