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A historical tool for crystallographic analysis is provided by the Hilton net,

which can be used for manually surveying the crystal lattice as it is manifested by

the Kikuchi bands in a gnomonic projection. For a quantitative analysis using

the Hilton net, the projection centre as the relative position of the signal source

with respect to the detector plane needs to be known. Interplanar angles are

accessible with a precision and accuracy which is estimated to be �0.3�. Angles

between any directions, e.g. zone axes, are directly readable. Finally, for the rare

case of an unknown projection-centre position, its determination is demon-

strated by adapting an old approach developed for photogrammetric applica-

tions. It requires the indexing of four zone axes [uvw]i in a backscattered

Kikuchi diffraction pattern of a known phase collected under comparable

geometric conditions.

1. Introduction

1.1. Full automation: a blessing and a curse

In the technique of electron backscatter diffraction

(EBSD), the processing and interpretation of backscattered

Kikuchi diffraction (BKD) and transmission Kikuchi diffrac-

tion (TKD) patterns have been fully automated for many

years. Commercial EBSD software is highly efficient at

discriminating phases from a given fixed list of crystalline

structures via detection and interpretation of Kikuchi bands, if

their BKD signals are sufficiently different. The band detec-

tion is commonly performed by an automated search of

individual peaks in Hough space (Krieger Lassen, 1994).

However, during peak search the crystallographic inter-

relations are completely ignored (Nolze & Winkelmann,

2017). In consequence, a fully automated phase discrimination

reaches its limits if the phases generate comparable Hough

peak distributions, or if they are not included in available

databases or are unknown altogether. An optimization of the

search procedure by variation of peak detection parameters

may improve the discrimination between phases, but any

interpretation of unknown phases remains an unsolved

problem.

1.2. Need for manual pattern interpretation

A professional assessment of unknown phases could partly

be done by a manual analysis of single BKD patterns. A

significant obstacle, however, is the lack of a tool for

measuring the angles between diffracting lattice planes and/or

directions. Although such angles can deliver first indications

for the crystal symmetry or the description and identification

of the translation lattice, appropriate measurement tools are

not generally available.
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An essentially similar task is the labelling of lattice direc-

tions or planes in single BKD patterns without the help of

vendor-specific indexing software. For an unequivocal identi-

fication or verification, knowledge of the angles between such

features is very beneficial.

Therefore, the present work demonstrates alternative ways

of manually determining angles in BKD patterns. For such

measurements, some (nonzero) value for the position of the

signal source with respect to the detecting screen (termed the

projection centre, denoted PC) must be provided. This infor-

mation is typically known, but where this is not the case, a

procedure is given which enables the calculation of this

projection-centre position.

1.3. Crystallographic fundamentals

When dealing with EBSD, it is crucial to realize that both

lattice and structure information for a crystalline phase are

encoded in a single BKD pattern [see e.g. Dingley & Wright

(2009), Wright et al. (2009), Lühr et al. (2016) and Nolze et al.

(2018)]. As for any other physical or chemical crystal property,

BKD patterns have to follow crystallographic laws. Applied

appropriately, they can help to draw lattice-plane traces and

zone axes that are much more accurate than those extracted

automatically by the currently implemented Hough peak-

search method.

These EBSD-relevant fundamentals in geometric crystal-

lography have been known for a long time. They include

Steno’s law of constant angles (Stenonis, 1669), Haüy’s law of

rational indices (Haüy, 1784), the Weiss law of assembly of

zones (Weiss, 1814–1815) and Goldschmidt’s law of compli-

cation (Goldschmidt, 1897a,b). It should be obvious that an

EBSD analysis can only benefit if these fundamentals are fully

considered in the underlying algorithms, e.g. during Kikuchi

band detection.

For the present paper, the relevant basics of a crystal lattice

are so universal that they are even independent of symmetry

and lattice parameters and therefore particularly valuable:

(i) A certain lattice plane (hkl) contains an infinite number

of lattice directions [uvw]i which are defined by

ðhklÞ � ½uvw�i ¼ hui þ kvi þ lwi ¼ 0: ð1Þ

(ii) Two lattice directions always describe a lattice plane,

½uvw�1 � ½uvw�2 ¼ ðhklÞ: ð2Þ

(iii) The intersection of two lattice planes is always a lattice

direction,

ðhklÞ1 � ðhklÞ2 ¼ ½uvw�: ð3Þ

For BKD patterns representing the azimuthal projection of

diffraction phenomena from waves of the same wavelength

with a crystal lattice, certain consequences result:

(i) The crossing point of two (non-identified) lattice-plane

traces defines the intersection point of an (unknown) lattice

direction [uvw] with the projection screen.

(ii) Conversely, the connection between two lattice direc-

tions always defines a trace of a lattice plane (hkl), regardless

of whether this plane actually forms a visibly strong Kikuchi

band or not.

Moreover, the most relevant specific properties for a

spherical projection of a crystal lattice are the following:

(i) The intersection of a lattice plane with the projection

sphere defines a great circle.

(ii) The intersection of a Kossel cone with the projection

sphere (Kikuchi band edge) is, however, a small circle.

(iii) The shortest distance between two points on a sphere is

given along the shared great circle. It represents the angle

between the two vectors defined by the centre of the sphere

and the two points.

(iv) The position of the source volume is identical to the

centre of the projection sphere. It is therefore called the

projection-centre (PC) position. PC = [PCx, PCy, PCz] is here

defined in terms of the image coordinate system.

The historical significance of the gnomonic projection for

crystallography is discussed, for example, by Miller (1859),

Hilton (1905), Smith (1919) and Dijkstra (1949). For the

interpretation of BKD patterns some crucial properties are

important:

(i) In the gnomonic projection a (lattice) plane always

becomes a straight line, which is the reason why the Hough

transformation is used for automated band detection.

(ii) The position of the pattern centre PC 0 is a subset of PC.

It indicates the ‘point of no distortion’ and can be described

differently, e.g. regarding the PC as

(a) a perpendicular projection of PC on the projection

plane, i.e. PC 0 = [PCx, PCy, 0] b¼¼ [PCx, PCy], or as

(b) a projected point with the shortest distance to PC.

Alternatively, characteristic properties of the projection can

be used. Thus, PC 0 is also given by

(c) the intersection point of the main axes of (elliptic)

higher-order Laue zone (HOLZ) rings,

(d) the intersection point of all band normals fixed at the

position of the respective smallest band width, or

(e) the projection point of a (crystal) direction which is

invariant during movement of the detection screen.

Finally, well known properties of the visualized object need

to be correctly projected. For crystals this concerns

( f) the very characteristic angles between lattice planes and

directions. Correct projection only results if PC and therefore

also PC 0 are perfectly described. This approach is applied in

EBSDL (Li & Han, 2015) during simultaneous determination

of the Bravais lattice type, lattice parameters and PC.

We will utilize the universal properties of crystals and

projective geometry to demonstrate that the angles between

lattice planes and directions in BKD or TKD patterns are

accessible without specialized software. The precision of the

manual approach presented here is in many cases sufficient for

further phase analysis and discrimination.

2. Angle measurement in BKD patterns

2.1. Band position and diffracting lattice plane

The object of most EBSD measurements is the correct

recognition of the diffracting phase and the derivation of the
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crystal orientation from BKD patterns. To this end, a suitable

number of band-shaped intensity features are automatically

detected. To a first approximation they are correlated with

projections of diffracting lattice planes (hkl)i . Since for many

phases the angles between (hkl)i are characteristic (cf. Steno’s

law), they are used during discrimination between a fixed set

of phases.

The principle of the applied angle determination is based on

the assumption of a purely geometric projection model of

lattice planes, as sketched in Fig. 1. In brief, lattice-plane traces

are used in combination with the shared projection centre PC

to define the relative inclination between (hkl)i .

Alternatively, the trace intersections can be used directly in

order to identify lattice directions [uvw] which have to be

parallel to R (Fig. 1). Angles between [uvw]i are just as

characteristic as angles between (hkl)i but not quite as

convenient to derive automatically.

2.2. Universal protractor for BKD patterns

The necessary angular description of Kikuchi bands is

nowadays generally performed via Hough or Radon trans-

formation of a BKD pattern (Krieger Lassen, 1992). This

operation transforms linear-shaped intensity accumulations

into point-shaped maxima so that from an intensity maximum

in Hough space the former band alignment can be deduced. A

Hough peak encodes the slope � and distance % of a lattice-

plane trace T to the circumference of a circular region of

interest in the BKD pattern. If the projection centre PC is

known, the alignment of the diffracting lattice plane can be

unequivocally described by

R� ¼ T� R: ð4Þ

R is the crystal direction passing through PC and an inter-

section point S and is formed by the two1 concerned lattice

planes (Fig. 1).

A similar procedure to the Hough transformation can be

performed manually. To this end, a protractor is helpful, and

this approach was invented as the gnomonic net in crystal-

lography more than a hundred years ago by Hilton (1904,

1905) (Fig. 2). This net, later named after its discoverer,

represents an equatorial or meridional gnomonic net (Amorós

et al., 1975; Terpstra & Codd, 1961). However, it probably fell

out of use after the discovery of X-ray diffraction in 1912 and

the rapid spread of techniques that followed.

Nevertheless, the Hilton net represents the perfect tool for

the convenient manual measurement of the slope � of a lattice-

plane trace and also of the tilt angle % of the corresponding

lattice plane against the detection screen normal. Additionally,

along the great circles (horizontal straight lines) the equi-

angular distance is given as the angle �. Constant � values

form hyperbola arms, representing parts of equidistant small

circles in the gnomonic projection. The resulting grid in the

lower half of Fig. 2 can be easily calculated using

½x; y� ¼ tan� tan2 %þ 1
� �1=2

h i
; tan %

n o
; ð5Þ

i.e. y ¼ tan % defines the distance of the great circles from the

pattern centre PC 0. However, since the traces of lattice planes

are analysed, the angle between the normal vector of (hkl) and

the pattern centre direction is given by ð�=2	 %Þ.

2.3. Measurement and calculation of the angle between (hkl)

2.3.1. Size adjustment of the Hilton net. Whereas the slope

� is independent of PC and PC 0, % is greatly affected, which
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Figure 1
Alignment (slope � and distance % from the pattern centre PC 0) of lattice-
plane traces Ti. ’ describes the angle (essential for EBSD) between the
lattice-plane normals R�i which result from the vector product Ti � R.

Figure 2
The Hilton net. It enables the measurement of the slope � of a lattice-
plane trace, and also its angular distance % to the detection screen normal
(marked PC 0). Additionally, the angular distance � between lattice
directions along a lattice-plane trace can be measured. All angles are
displayed with a step size of 1�. 1 Actually an infinite number of (hkl)i.



requires a calibration of the size of the Hilton net. This is

comparatively straightforward since PC is known. The

projection centre PC is given in relative terms, i.e. the absolute

size of the detector screen and the real distance between the

sample and detector are irrelevant. The reference dimension is

the vertical size of the image (the number of pixels, or a

corresponding size in millimetres) which is defined to be D = 1.

In consequence, a projection centre described as PC =

(0.5, 0.3, 0.8) defines a position of the source volume which has

a distance to the present image of 0.8D. Along the horizontal

image dimension the pattern centre is in the middle of the

image.2 PCy = 0.3 means that, depending on the manufacturer-

dependent definition,3 the pattern centre is 30% away from

the upper pattern edge.

For a proper scaling of the Hilton net, PC can be assumed to

be at the upper edge of the pattern, i.e. PCy = 0, so that the

vertical reference solid angle %0 results:

%0 ¼ arctan
1	 PCy

PCz

� �
¼ arctan

1

PCz

� �
: ð6Þ

In order to generate a correct measurement of % and �, the

sizes of the Hilton net and/or detector image must first be

adapted by fixing the upper edge of the pattern at % = 0, and

enlarging the pattern or the net until the lower edge of the

pattern exactly matches % = %0. Second, for a real survey of %
and �, the Hilton net needs to be shifted until the net origin

and the real PC 0 in the pattern are located on top of each

other.

Summarizing, in addition to the projection-centre position,

the calibration of the Hilton net does not need a diffraction

pattern at all but only any image collected from the camera

displaying e.g. a background only. Also, the absolute size of

the screen is irrelevant, which is quite beneficial since the

physical size of the detecting screen and the image captured by

the camera are commonly not identical.

2.3.2. Alignment of lattice planes. Fig. 3 shows an alter-

native way of adjusting the pattern centre size and the origins

of, respectively, the Hilton net and the BKD pattern in a single

step. This results in the dashed red frame (for � = 0), which

defines both the size (PCz) and position (PCx, PCy) of the

pattern. The Hilton net or BKD pattern needs to be enlarged

and shifted until the pattern fits exactly inside the drawn

frame. Then the net origin and pattern centre are congruent so

that, by rotation around the pinned PC 0, % and � can be

directly measured for any lattice-plane trace (cf. the solid red

line in Fig. 3).

The azimuth angle can be read from the common protractor

which shows � = 71.4 
 0.1�.4 The polar angle between the

screen normal and the lattice-plane trace is given by the

distance of the straight line from PC 0 and results in % ’
43.7 
 0.2�. Repeating this procedure, the alignment of each

lattice-plane trace i can be unambiguously characterized by a

set of ð�; %Þi. These are the preconditions for the determina-

tion of any angle ’i, j between lattice planes i and j.

2.3.3. Angle measurement. Unfortunately, the angle

between lattice planes cannot be measured directly by the

Hilton net. A classic procedure is to enter all poles in a

stereographic projection and measure the pole distance

manually using the Wulff net. The angular distance between

lattice-plane poles aligned on the shared great circle defines

the interplanar angle. A detailed description of the usage of

stereographic projection in crystallography is given, for

example, by Terpstra & Codd (1961), Hammond (2009),

Barrett (1937) and Johari & Thomas (1969).

Because of the limited precision during manual handling of

the Wulff net and pole drawing, the uncertainty is typically in

the region of 2�. With each additionally performed (manual)

rotation of data the errors increase further. However, such

manual procedures are nowadays easily replaceable by simple

spreadsheets and do not require specialized software.

2.3.4. Angle calculation: standard approach. Default

procedures for the determination of interplanar angles from

EBSD patterns use the geometric relationships sketched in

Fig. 1, cf. e.g. Wright & Adams (1992). The necessary defini-

tion of the lattice-plane traces may utilize a Hough or Radon

transformation (Krieger Lassen, 1992; Schwarzer & Sukkau,

2003), but we can also use ð�; %Þi measured with the Hilton net.

Each trace Ti of a lattice plane (hkl)i can be described by a

linear equation using the measured angles,
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Figure 3
Measurement of the azimuth (% ’ 71.4�) and polar angle (� ’ 43.7�) of a
lattice-plane trace, highlighted by a bold red line. The dashed red frame
indicates the size and position of the backscattered Kikuchi diffraction
pattern for % = � = 0 . This initial alignment automatically defines the real
position of PC 0 in the pattern since it is indicated by the origin (rotation
point) of the Hilton net. The experimental BKD pattern comes from
magnetite (Fe3O4).

2 The length of vector x in Fig. 1 is unconventionally multiplied by the aspect
ratio A of the image, i.e. equal pixel shifts deliver different �PCx = �PCy /A.
3 For different manufacturers, top and bottom are exchanged by a rotation
around x at 0.5y so that (PCx, PCy, PCz)! (PCx, 1 	 PCy, 	PCz).
4 For the precision of 0.1� the spin animation in PowerPoint was used.



yi ¼mi xi þ ni

¼ 	 ðcot �iÞ xi 	
tan %i

sin �i

: ð7Þ

Inserting x1 = 0 and x2 = 1 in equation (7), Ti becomes an

unexpectedly simple vector which only contains the slope of

the trace,

Ti ¼ ½1;mi þ ni; 0� 	 ½0; ni; 0� ¼ ½1;mi; 0�: ð8Þ

The lattice-plane normals R�i and R�j are given by the cross

products between the trace T and the vector R connecting the

intersection S of two traces with PC. This results in a direction

which has the form

R�i k
mi

ni

; 	
1

ni

; 1

� �
: ð9Þ

If R�i is calculated exactly as in expression (9), the required

angle can be computed using

cos ’i;j ¼
R�i � R

�
j

jR�i j jR
�
j j

¼
Vðmimj þ ninj þ 1Þ

m2
i þ n2

i þ 1
� �

m2
j þ n2

j þ 1
� �� 	1=2

: ð10Þ

Note that the factor V = sign(ni) sign(nj) is essential to

discriminate between ’ and the complementary angle (�	 ’).

While the explicit PC is absent from the formula, it is

implicitly considered during scaling of the Hilton net and is

therefore inherent in all %i, i.e. ni .

2.3.5. Angle calculation simplified. Actually, R0�i does not

need to be derived via m and n since it can be computed

directly from % and �:

R0�i ¼
R�i
jR�i j
¼

r0�1;i
r0�2;i
r0�3;i

0
@

1
A ¼ cos �i cos %i

sin �i cos %i

sin %i

0
@

1
A: ð11Þ

Since R0�i in equation (11) is the normalized description of

vector R�i in (9), the calculation of ’i, j in equation (10)

simplifies to a scalar multiplication of vector coefficients:

cos ’i;j ¼R0�i � R
0�
j

¼ r0�1;i r0�1;j þ r0�2;i r0�2;j þ r0�3;i r0�3;j: ð12Þ

Unfortunately, such a procedure is not possible using the

standard Hough transformation since % has to be derived first

from PC and the roughly determined trace position.

2.3.6. Example measurement. Independent of the selected

computation path, i.e. using either expression (10) or (12), for

the strongest bands in the pattern in Fig. 3 the interplanar

angles ’i, j can be calculated (see Table 1). Here, only ð�i; %iÞ

for the six strongest bands in the pattern of magnetite in Fig. 3

(Fe3O4, cubic, Fd3m) are considered. They are formed by

{110} and {001}. Possible angles between symmetry-equivalent

{110} are 60, 90 and 120�, whereas between {100} and {110}

angles of 45, 90 and 135� may occur. It is pure coincidence that

all these angles are listed in Table 1, inclusive of small errors

resulting from the inaccurate measurement of � and %. The

maximum deviation of only �0.3� from the ideal angles has

mainly three reasons:

(i) a nearly perfect PC position and thus an optimal scaling

and alignment of the Hilton net,

(ii) the subtle definition of the lattice-plane traces, and

(iii) the semi-manual measurement of the angles % and �.
The uncertainty in the PC position is minimized because the

BKD pattern is from a cubic phase, which excludes any

unforeseeable interferences from lattice-parameter ratios.

Moreover, an extra pattern matching has been applied in

order to obtain the most accurate PC description possible

(Nolze & Winkelmann, 2017).

Regarding the trace description, the typically performed

uncorrelated definition of lattice-plane traces commonly

generates errors which are clearly higher than the small

measurement error of � and % for such a line. The present

state-of-the-art approach is a derivation of individual bands

during a fully automated peak search in Hough space, or

alternatively a manual drawing of lines as approximate centres

of bands. As discussed in the Introduction, however, the trace

positions are constrained by crystallographic fundamentals.

From projective geometry it is well known that only four

lattice-plane traces are required to derive further traces due to

the connection of intersection points (Nolze & Winkelmann,

2017). New traces generate novel intersection points which

can be used again to define further lattice-plane traces, and so

on. The advantage of this approach is that misalignments of

individually drawn traces are prevented. Any correction of a

single line position is of a collective nature since all traces are

connected to each other.

The precision of the manual angle measurement is esti-

mated to be on the scale of �� � 0.1� and �% � 0.3�. Such

small measurement errors were achievable because the spin

animation in PowerPoint (Microsoft Office software) was

used. This type of animation enables a very accurate evalua-

tion of � by the Hilton net.

Despite the half-automated spin animation, the angle

measurement is still counted as a manual procedure. A more

old-fashioned use of a Hilton net pinned and rotated on a

printed BKD pattern would naturally be less correct. We

assume values of ��;�% � 1�.
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Table 1
Computation of interplanar angles between cubic lattice planes using
their traces manually characterized by slope � and distance % to the
pattern centre (in degrees).

The indexing of (hkl) is only given for comprehensibility, i.e. for comparison
with ideal angles.

R�i ’i, j = ffðR�i ;R�j Þ in �, R�j

(hkl) � % (101) (011) (011) (101) (110)

(101) 150.1 34.1
(011) 71.4 43.7 59.7
(011) 315.9 24.3 120.1 90.0
(101) 251.7 16.6 90.0 119.7 60.2
(110) 16.1 7.2 120.0 60.3 59.9 120.1
(001) 107.7 11.2 44.9 45.1 135.1 134.8 90.2



2.4. Angles between lattice directions

2.4.1. Angle measurement. The Hilton net also enables a

direct measurement of angles between directions. Since

angular distances are in general measured along great circles,

the straight lines in the Hilton net are used. Similar to the

Wulff net for a stereographic projection of data, the Hilton net

only needs to be rotated around the projection origin until

both projection points share the same straight line.

As an example, the BKD pattern in Fig. 4 is used. Fig. 4(a)

shows HOLZ rings, which are highlighted by dotted lines in

order to increase their visibility. The cone axis Ri of a HOLZ

ring is defined by a lattice vector Ri � [uvw]i [cf. e.g. Michael

& Eades (2000) and Nolze & Winkelmann (2017)], but its

projected position is often quite vague. Therefore, in Fig. 4(b)

lattice-plane traces are indicated as red lines because their

crossing points define the required zone-axis positions. Note

that the applied drawing procedure also defines zone-axis

positions outside the captured BKD patterns which can be

used as well. In particular, a manual measurement of a longer

distance between poles results in a higher precision of the

measured angle.

The angles measured between the four HOLZ-ring axes are

compared with theoretical values calculated from the lattice

parameters (Table 2). The values show a satisfying coincidence

between measured and expected angles. They also suggest that

the measurement errors are comparable to those reported for

the lattice-plane angles. However, since for the definition of

two zone axes four lattice planes are involved, the error is

assumed to be slightly higher, �� < 0.5�.

Since the Hilton net enables angular measurements

between any two directions, a number of possible applications

can be discussed. For instance, the solid angle covered by the

screen used is measurable, band widths can at least be classi-

fied, or the opening angles of the different HOLZ rings in

Fig. 4(a) can be measured and compared. For the last example,

the (actually invisible) zone axis needs to be on the great circle

since only then is the real diameter of the HOLZ ring defined

and the angle measured correctly. Such investigations confirm

that the ellipses formed by HOLZ phenomena are, in fact,

circles on a sphere. Independent of the selected ð�; %Þ but with

the zone axis on the used great circle, the same � (diameter)

results. The two non-equivalent HOLZ rings along [111] and

[111] for schreibersite (space group I4) have a diameter of

19.5�, whereas for [101] and [100] their diameters are 16.5 and

16�, i.e. considerably smaller.

3. Manual determination of the projection centre PC

For all previously discussed applications of the Hilton net the

position of PC was preconditional. We have shown that PC
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Table 2
Comparison of measured angles � using the Hilton net and calculated
angles (a0 = 9.04 Å, c0 = 4.462 Å) between [uvw]i defining the cone axes of
HOLZ rings in Fig. 4.

The precision of a manual measurement depends on % but is commonly not
better than 0.5�.

�i, j = ffð½uvw�i; ½uvw�jÞ

[uvw] [100] [101] [111]

[101] 26.5� (26.27�)
[111] 48.0� (48.12�) 41.5� (41.88�)
[111] 48.0� (48.12�) 63.0� (63.07�) 38.5� (38.48�)

Figure 4
The angular distances between lattice directions defined by four axes of
HOLZ rings [schreibersite, (Fe,Ni)3P]. (a) The blue cross marks the
pattern centre PC 0 as initially derived using the Channel5 software
(Oxford Instruments). (b) The dashed blue frame is used to calibrate the
size of the Hilton net and consider the real position of PC 0. The
intersections of the lattice-plane traces (red lines) are used to define the
correct positions of the wanted zone axes (corners of the black
quadrangle). The Hilton net is aligned to enable measurement of the
angle between two [uvw]i , yielding a value of 
48�.



determines the size of % in terms of the distance to the pattern

centre PC 0, and also determines the size adaptation. In prac-

tice it represents the calibration quality of an EBSD system

and is therefore a basic prerequisite (Randle, 1992; Krieger

Lassen & Bilde-Sørensen, 1993; Krieger Lassen, 1994).

Commonly, PC is roughly known, and despite its imper-

fections its quality is sufficient for the manual analysis of BKD

patterns presented here. However, it may happen that PC is

unknown, cannot be extracted unambiguously, or may be

incorrect and needs to be confirmed again. For such cases it is

desirable to be able to derive a PC position afterwards, i.e.

preferably without any additional manufacturer-specific

information or sophisticated software.

In the past, work has been published (Krieger Lassen, 1999)

which already discussed all available techniques for a deriva-

tion of PC. There are procedures which take advantage of the

fundamental properties of the gnomonic projection, like

shadow techniques (Venables & Bin-Jaya, 1977; Harland et al.,

1981; Day, 1993; Mingard et al., 2011) or the moving-screen

technique (Hjelen et al., 1993), which need access to the

instrument used.

The alternative is the utilization of extremely constrained

crystal properties in combination with the laws of projective

geometry. Unfortunately, seemingly simple analytical

approaches in projective geometry are actually very complex

and have therefore only been solved numerically (Krieger

Lassen & Bilde-Sørensen, 1993; Basinger et al., 2011; Wright et

al., 2012; Nolze et al., 2013, 2018), i.e. due to minimizing the

deviation between an experimental and a simulated signal.

Thus, practically all current procedures are unsuitable for

deriving the PC ad hoc, so an alternative approach is required.

Since we only have the gnomonically projected signal, a

straightforward solution should be based on projective

geometry.

3.1. Determination of |R|

For the determination of the position of the PC, the best

prerequisite is a BKD pattern of a cubic phase showing easily

identifiable poles [uvw], e.g. h001i, h011i and h111i, acquired

under comparable conditions to the unknown phase. For a

cubic phase the symmetry density is quite high, the symmetry

directions are easily detectable and lattice parameters are

irrelevant. As a matter of fact, any clearly identifiable [uvw]i of

a known phase can be used, e.g. the four directions shown in

Fig. 4(a).

Moreover, it should be taken into account that the accuracy

of the position of a manually derived PC increases when the

distance between pole projections is larger and the zone-axis

positions are more accurately defined. To reduce positioning

errors as much as possible, for the definition of the zone-axis

positions the previously briefly explained four-line approach is

again recommended [Fig. 4(b)].

The following derivation of PC refers to an analytical

solution initially derived for a similar problem in photo-

grammetry (Killian, 1955a,b). It uses the intersection of four

known zone axes [uvw]i of a cubic phase with a plane

described by the detector screen. In the four-line approach,

the considered [uvw]i do not even have to be visible on the

BKD pattern (point D in Fig. 1). The approach can be adapted

to non-cubic phases using the general equations for �i and �i

in equation (16).

The four [uvw]A–D define two lattice planes (hkl), whose

intersection point provides a fifth lattice direction [uvw]S

ðhklÞ1 ¼ ½uvw�A ½uvw�C;

ðhklÞ2 ¼ ½uvw�B ½uvw�D;
ð13Þ

½uvw�S ¼ ðhklÞ1 ðhklÞ2: ð14Þ

The distances a1, a2, b1 and b2 between the intersections in the

projection plane in Fig. 5 depend on the projection centre

position PC b¼¼ O and the angles between the identified

directions [uvw]i:

�1 ¼ff ½uvw�A; ½uvw�S
� �

;

�2 ¼ff ½uvw�S; ½uvw�C
� �

;

�1 ¼ff ½uvw�B; ½uvw�S
� �

;

�2 ¼ff ½uvw�S; ½uvw�D
� �

:

ð15Þ

All angles can be easily computed, e.g. for a cubic phase by

cos�1 ¼
½uvw�A ½uvw�S

½uvw�A


 

 ½uvw�S



 


¼

uAuS þ vAvS þ wAwS

u2
A þ v2

A þ w2
A

� �1=2
u2

S þ v2
S þ w2

S

� �1=2
: ð16Þ

Since sinð�	 xÞ = sinx, the sine theorem for plane triangles

enables the relationships for OAS, OSC, OBS and OSD to be

established:
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Figure 5
Determination of the projection centre PC b¼¼ O using the intersection of
four known zone axes (Killian, 1955a,b). The unknown angles ’ and  
and the length r = |R| can be derived from a1, a2, b1, b2, b2, �1, �2, �1 and
�2.



r sin �1 ¼ a1 sinð’þ �1Þ;

r sin �2 ¼ a2 sinð’	 �2Þ;

r sin �1 ¼ b1 sinð þ �1Þ;

r sin �2 ¼ b2 sinð 	 �2Þ:

ð17Þ

Using the addition theorem sinðxþ yÞ = sin x cos y +

cos x sin y, all equations in (17) can be converted to

r

sin ’
¼ a1ðcot�1 þ cot ’Þ;

r

sin ’
¼ a2ðcot�2 	 cot ’Þ;

ð18Þ

r

sin 
¼ b1ðcot �1 þ cot Þ;

r

sin 
¼ b2ðcot �2 	 cot Þ;

ð19Þ

which gives four equations with three unknown variables, r, ’
and  . Equalization of the equations in (18) and (19) enables

us to compute ’ and  from measured distances and calcu-

lated angles:

cot ’ ¼
a2 cot �2 	 a1 cot �1

a1 þ a2

; ð20Þ

cot ¼
b2 cot �2 	 b1 cot�1

b1 þ b2

: ð21Þ

Inserting these into (18) and (19), the required distance r = |R|

can be calculated by

r’ ¼ aiðcot �i sin ’þ cos ’Þ; ð22Þ

r ¼ biðcot �i sin þ cos Þ: ð23Þ

and should actually give the same length. However, in contrast

with the expectation of Killian (1955a,b), the two r values are

only approximately equal, i.e. in general only the following

applies:

r’ � r : ð24Þ

The reason for this is that we consider an exactly defined

lattice but measure distances under conditions which are

correlated by the four-line approach but not sufficiently

constrained that they exactly match the considered crystal

metric. However, an adjustment of ai and bi by a slight change

in the four band positions allows us finally to fulfil the exact

condition r’ = r .

3.2. Determination of PC

For the final calculation of PC we only need the sub-

tetrahedron O–ASB in Fig. 5. We can describe the sides of the

tetrahedron by the following vectors:

SA ¼ a1 ¼ ½ax; ay; 0� ¼ ½xA 	 xS; yA 	 yS; 0�;

SB ¼ b1 ¼ ½bx; by; 0� ¼ ½xB 	 xS; yB 	 yS; 0�;

SO ¼R ¼ ½rx; ry; rz� ¼ ½�PCx;�PCy;PCz�:

ð25Þ

In order to determine the position of O = PC, the scalar

products of R, a1 and b1 are helpful and can either be calcu-

lated by

a1 � R ¼ ja1j jRj cos ’ ¼ a?; ð26Þ

b1 � R ¼ jb1j jRj cos ¼ b?; ð27Þ

or according to (25) by

a1 � R ¼ ðaxex þ ayeyÞ � ðrxex þ ryey þ rzezÞ

¼ axrx þ ayry ¼ a?; ð28Þ

b1 � R ¼ bxrx þ byry ¼ b?; ð29Þ

so that for the pattern centre description rx and ry result in

rx ¼
a?by 	 ayb?

axby 	 aybx

; ry ¼
axb? 	 a?bx

axby 	 aybx

: ð30Þ

Note that, according to (25), rx and ry indicate the deviation

from S to PC 0 in the dimensions used for ai and bi. For the

relative description as used in EBSD systems, these values

need to be recalculated and they will depend on the definition

of the coordinate system.

The distance between the pattern centre and the projection

centre is given by

rz ¼ jRj
2
	 r2

x 	 r2
y

� �1=2 b¼¼ PCz: ð31Þ

For the BKD patterns of magnetite and schreibersite

discussed above, the PC positions have been determined by

pattern matching (PM) and the projective-geometry (PG)

approach presented here. For the latter, the trace positions

were derived using an automated four-line approach, i.e. all

lines are really derived from the previously defined inter-

section points, and the distances and PC were calculated

automatically in a computer program. Additionally, for

magnetite the manual drawing used already was taken to

measure the distances between the five points using a ruler in

order to compute PC. Table 3 contains all the results.

It is encouraging that the two automated techniques deliver

nearly identical values. The purely manual solution is still very

satisfactory for general discussions of symmetries and angle

measurements since the deviations in PC do not affect these

results considerably. Our conclusion is that the applied

approach is trustworthy for BKD patterns where the PC is not
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Table 3
Determination of the projection-centre position applying pattern
matching (PM) (Winkelmann et al., 2018) and projective geometry
(PG) for the BKD patterns displayed in Fig. 3 (magnetite, cubic) and
Fig. 4 (schreibersite, tetragonal).

For magnetite, PC has been also determined completely manually, denoted
PGm.

Phase Method PCx PCy PCz

Magnetite PM 0.493 0.279 0.786
PG 0.491 0.281 0.785
PGm 0.48 0.27 0.78

Schreibersite PM 0.474 0.116 0.704
PG 0.474 0.118 0.705



available but a BKD pattern of a known phase collected under

comparable geometric conditions exists.

4. Summary and conclusions

Although EBSD has existed as a fully automated technique

for decades, the analysis of single patterns is still difficult for

unknown phases which have no match in the supplied data-

bases. In such cases, a manual analysis of BKD patterns offers

the opportunity to carry out systematic investigations like the

correlation of angles between lattice planes and directions or

band widths in order to discover relevant indications for a final

phase identification. This has been already demonstrated by

Martin et al. (2017) for a non-identifiable phase in X-ray

diffractograms collected at a synchrotron facility.

Future possible applications include the determination of

lattice-parameter ratios, or the identification of the Bravais

lattice inclusive lattice parameters, as has been demonstrated

already by Li & Han (2015).

A precondition of a reliable measurement of angles

between lattice planes and directions is a correct definition of

the lattice-plane traces in a BKD pattern. We have discussed a

four-line approach, which consistently fixes the position of all

further bands by crystallographic laws.

For a quantitative analysis of the lattice-plane trace posi-

tions, the projection-centre position can be derived on the

basis of projective geometry. A BKD pattern of a preferably

cubic phase, acquired under comparable geometric conditions,

delivers the position of the PC via the identification of four

zone axes [uvw]i with known indices.

Finally, we have discussed the use of a classical crystal-

lometric tool, namely the equatorial gnomonic Hilton net, for

manual angle measurements in EBSD Kikuchi patterns. The

net enables the computation of interplanar angles and the

direct measurement of angles between any directions, e.g.

zone axes, band widths and HOLZ rings. By discussing the

underlying crystallographic and geometric conditions, we have

provided the theoretical background for improved software-

based solutions for the individual analysis of Kikuchi patterns

of unknown phases.
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