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Majkrzak,b Mathias Löschea,b,c and Frank Heinricha,b*

aDepartment of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA, bCenter

for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-

6102, USA, and cDepartment of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,

Pennsylvania 15213, USA. *Correspondence e-mail: fheinrich@cmu.edu

A framework based on Bayesian statistics and information theory is developed

to optimize the design of surface-sensitive reflectometry experiments. The

method applies to model-based reflectivity data analysis, uses simulated

reflectivity data and is capable of optimizing experiments that probe a sample

under more than one condition. After presentation of the underlying theory and

its implementation, the framework is applied to exemplary test problems for

which the information gain �H is determined. Reflectivity data are simulated

for the current generation of neutron reflectometers at the NIST Center for

Neutron Research. However, the simulation can be easily modified for X-ray or

neutron instruments at any source. With application to structural biology in

mind, this work explores the dependence of �H on the scattering length density

of aqueous solutions in which the sample structure is bathed, on the counting

time and on the maximum momentum transfer of the measurement. Finally, the

impact of a buried magnetic reference layer on �H is investigated.

1. Introduction

Neutron reflectometry (NR) is a structure determination

technique that resolves the thickness and composition of thin

films at interfaces and surfaces with near-ångström resolution

(Smith & Majkrzak, 2006). Applications of NR reach from

hard-condensed matter (Majkrzak et al., 2006) to soft matter

(Russell, 1990), including structural biology of lipid

membranes (Heinrich & Lösche, 2014). Given the limited

availability of neutrons for scattering experiments and the

flexibility in isotopic labeling of distinct components of the

surface structure, it is worthwhile to optimize the experimental

design with respect to the information gain. Presently, the

design of neutron scattering experiments mostly follows rules

of thumb, i.e. experience gained in similar experiments in the

past. Here, we implement a quantitative and predictive

framework to plan reflectometry work based on rigorous

estimates of the information gained in a particular imple-

mentation of the experiment. With minor changes, this

framework is applicable to X-ray reflectometry and, with some

extension, to neutron and X-ray small-angle scattering.

In the recent past, Bayesian statistical methods have found

applications in reflectometry for robust global model fitting

and the determination of confidence limits on model para-

meters (Sivia & Webster, 1998; Kirby et al., 2012; Maranville et

al., 2016; Lesniewski et al., 2016). In particular, the work of

Sivia and co-workers has provided a solid foundation for the
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application of Bayesian statistics to reflectivity data, discussing

aspects such as parameter estimation, model selection and

experimental design. Our work concerning experimental

optimization adds to this foundation by introducing model

fitting based on a Monte Carlo Markov chain (MCMC)

simulation, which by design yields a sample of the posterior

parameter density function (PDF) (Yustres et al., 2012; Braak

& Vrugt, 2008; Lesniewski et al., 2016). A measure of the

information gain from a given experiment is obtained from

comparing the entropies of the posterior and prior PDFs,

which represent the knowledge about the sample after and

before the experiment, respectively. We show that with these

two additions a flexible numerical framework for experimental

design can be built. In developing this methodology for

reflectometry, we closely follow established implementations

in other fields such as systems biology (Liepe et al., 2013,

2014).

Fig. 1 summarizes the implemented method to quantify the

information gain of an experiment. We start with a model-

dependent description of a hypothetical sample structure S

and instrument configuration E parameterized by a vector � 2
�. (Capital letters denote a random variable, and lower-case

letters denote a particular instance of a random variable.)

Importantly, � is not randomly drawn from � according to the

prior PDF, as we do not optimize over different sample

configurations within the prior. Using a model XS,E(�), noise-

free reflectivity data XS,E(�) ! x(Qz) are simulated over a

finite range of discrete, experimentally accessible momentum

transfer values Qz. Random normal noise z(Qz) is added to

x(Qz) to obtain simulated sets of noisy data y(Qz) that could

have occurred in a real measurement of the hypothetical

structure. The standard deviation �(Qz) of the normal noise Z

depends on the instrument configuration, the momentum

transfer Qz and the value of x(Qz) itself. It generally differs for

every data point. Finally, model parameters are retrieved from

y using an MCMC simulation that returns a sample of the

posterior PDF p(� | y). The information gain of the virtual

experiment is evaluated as the difference in entropy of the

prior and posterior PDFs, �bHH ¼ Hð�Þ �Hð� j YÞ. Since the

MCMC simulation employs the same model that was used to

calculate xðQzÞ, �bHH is a measure of the gain in information

exclusively about model and experimental parameters

contained in �. Other parameters intrinsic to the model that

have fixed values, such as the known scattering length density

of a substrate supporting the interfacial structure and instru-

mental parameters like those defining the resolution function,

do not affect �bHH. To optimize an NR experiment, sample or

experimental properties are systematically varied to deter-

mine the maximum �bHH in the search space.

Different approaches to determine the information content

for small-angle scattering data have been established in the

past (Moore, 1980; Taupin & Luzzati, 1982; Luzzati & Taupin,

1986; Müller et al., 1996; Vestergaard & Hansen, 2006;

Pedersen et al., 2014; Konarev & Svergun, 2015; Larsen et al.,

2018). While the employed methods differ substantially, these

approaches have in common that the information content of

the experiment is quantified either directly from y, or from y

given x and �. Our method is strictly model based and it

describes the information gain from virtual experiments using

a series of discrete information processing steps as shown in

Fig. 1, ultimately comparing the two endpoints of this process

with respect to the information content. This has the advan-

tage that it separates the information gain on model fit para-

meters from known model and experimental parameters,

about which information is also carried by x and y. This

procedure has a substantial advantage over other imple-

mentations in that it can handle information distributed across

multiple related measurements that are analyzed simulta-

neously with one model.

After establishing the methodology, we apply it to a set of

simple model systems, thereby demonstrating the optimization

of fundamental experimental properties, such as counting

time, maximum momentum transfer and the choice of the

scattering length density (SLD) of the bulk solvent in NR

measurements of fluid-immersed samples. These examples

have been chosen to best illustrate the broad usefulness of the

technique, and they can easily be extended to encompass

other experimental situations of practical interest. For

example, while the method described here is applied to the

current generation of monochromatic neutron reflectometers,
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Figure 1
Information processing steps in a virtual reflectivity experiment. The information gain is the difference in entropy between the posterior and prior PDFs.



it can be adapted to other types of reflectometers or be used to

predict the performance of experimental stations under

development.

2. Theory and implementation

2.1. Information content of specular reflection data

A specular neutron or X-ray reflectometry experiment on a

sample S using an experimental configuration E results in a

particular measurement of the data, y 2 Y. Experimental

results are generally analyzed in terms of a model, XS,E(�),

that relates a model parameter vector � 2 � to an expected

experimental outcome ŷy ¼ x. The aim of data analysis is to

find the posterior PDF p(� | y) by which a particular para-

meter vector � is realized given y and XS,E(�). The traditional

task of finding the vector � that produces the best fit to the

data, or the maximum of p(� | y), is therefore only a particular

aspect within this broader definition of data analysis.

The information gain �H is defined as the difference

between the entropy H(�) of the prior PDF p(�), representing

the knowledge before the experiment, and the entropy

H(� | y) of the posterior PDF p(� | y), obtained after the

measurement yielded a particular experimental outcome y 2

Y:

�H ¼ H �ð Þ �H � j yð Þ: ð1Þ

Both entropies are functionals of their respective continuous

PDFs:

H �ð Þ ¼ �
R

p �ð Þ log p �ð Þ d�; ð2Þ

H � j yð Þ ¼ �
R

p � j yð Þ log p � j yð Þ d�: ð3Þ

(All logarithms in this work are taken to the base of two, such

that entropies are calculated in bits.) This approach does not

consider that the experimental outcome y is a random variable

itself, drawn from a pool of possible experimental outcomes Y.

The appropriate, but significantly more expensive, quantity to

calculate is the expected information gain �bHH given all

possible experimental outcomes y, which equals the mutual

information I between the random variables Y and �:

�bHH ¼ H �ð Þ �H � j Yð Þ

¼ H �ð Þ �
R

H � j yð Þ p yð Þ dy ¼ IðY;�Þ: ð4Þ

Using equation (4), �bHH can in principle be computed as a

Monte Carlo integration over � and Y (Liepe et al., 2013). The

prior predictive distribution p(y) additionally needs to be

computed (Liepe et al., 2013), and it can be expressed in terms

of the prior and posterior PDFs using Bayes’ theorem:

p �ð Þ p y j �ð Þ ¼ p yð Þ pð� j yÞ;

p yð Þ ¼
p �ð Þ p y j �ð Þ

pð� j yÞ
:

ð5Þ

The conditional PDF p(y | �) of observing a particular

experimental outcome y, given a parameter vector �, can be

obtained using the model XS,E(�) and instrument-specific

normal variate random noise on n data points of y(Qz) with a

standard deviation �(Qz):

p y j �ð Þ ¼
Yn

i¼1

1

2�ð Þ1=2�i Qz

� � exp �
1

2

yi Qz

� �
� xi Qz

� �
�i Qz

� �" #2( )
:

ð6Þ

In practice, however, such a nested Monte Carlo integration is

computationally costly.1 We therefore approximate �bHH from

the average of up to ten calculations of �H using indepen-

dently simulated experimental data y (Liepe et al., 2013).

2.2. Implementation of the algorithm

2.2.1. Simulation of experimental data. This work is carried

out with simulated data to avoid systematic errors due to

particular experimental instrumentation and to explore a large

parameter space for optimization. Experimental data y(Qz)

are simulated for the Magik reflectometer at the NIST Center

for Neutron Research (NCNR) in Gaithersburg, MD, USA

(Dura et al., 2006), with a beam footprint on the sample

surface of 2.5 � 5 cm, equipped with a fluids cell for solvent-

immersed samples. The models XS,E(�) of interfacial structures

were implementations of stratified slabs of homogeneous SLD

(slab models) (Ankner & Majkrzak, 1992). Noise-free

experimental outcomes x(Qz) were calculated with refl1d

(Kirby et al., 2012). To obtain the final simulated reflectivity

y(Qz), normally distributed random noise z(Qz) with standard

deviations �S,E[Qz, x(Qz), �] was added to x(Qz). A detailed

description of the data simulation is provided in the

supporting information.

For the optimization of a particular experiment, parameter

vectors � 2 � for data simulation should be strictly drawn at

random from � according to the prior PDF p(�) (see Intro-

duction). However, for the problems discussed in this work,

and for many other applications, the sample structure is

sufficiently well known that variations within p(�) are not

expected to significantly affect �H and are negligible

compared with changes in �H that occur when systematically

varying parameters over much larger ranges during the

experimental optimization. Choosing one sample representa-

tion � 2 � from the prior PDF has the additional advantage

that a costly Monte Carlo simulation over the prior PDF,

which would be otherwise necessary, is avoided (Liepe et al.,

2013). For largely unknown sample structures that would be

implemented by a much wider prior PDF, the dependence of

�H on the particular sample representation � 2 � might not

be negligible. In this case, the framework presented in this

work can easily be extended to include a Monte Carlo simu-

lation over the prior PDF.

2.2.2. Entropy of the prior parameter density function.

Lacking more detailed prior knowledge, the prior PDF p(�) is

research papers

J. Appl. Cryst. (2019). 52, 47–59 Bradley W. Treece et al. � Optimization of reflectometry experiments 49

1 With current technology, the computation of p(� | y) for a model of average
complexity used in this work takes approximately 1.5 CPU hours. The
calculation of H(� | y) is negligible in comparison. With a sample size of 1000
in Y, a nested Monte Carlo simulation would average 1500 CPU hours ’ 60
CPU days per �bHH. Optimizations in this work would require the calculation of
between 15 and 200 values of �bHH, requiring 900 to 12 000 CPU days total.



the product of the prior probabilities of the assumed inde-

pendent vector components �i. It is further assumed that the

PDF of each component, p(�i), is constant over an interval ��i

with p(�i) = 1/��i:

p �ð Þ ¼
Q

p �ið Þ ¼
Q

1=��i: ð7Þ

Using equation (2), the entropy of p(�) becomes the sum of

the entropies of the independent p(�i):

H �ð Þ ¼
P

log ��i: ð8Þ

The prior PDF is subjectively set by the experimenter. In

addition to the calculation of �H, it is used to compute the

acceptance probability of new states of the Markov chain

during the MCMC analysis of y(Qz). As such, the choice of

��i affects the posterior PDF in that it excludes parameter

values outside of ��i. Only parameters with non-uniform

contributions to the posterior PDF, or in other words para-

meters that can be resolved with respect to the prior PDF, add

to the information gain (see Section 3.1.3 for a detailed

discussion). A change in interval length ��i for a resolvable

parameter leads to a constant offset in H(�) and, therefore,

�H, which is inconsequential for the purpose of experimental

optimization, as it relies on relative differences in �H.

2.2.3. Entropy of the posterior parameter density function.

The posterior PDF is obtained from an MCMC simulation

implemented in refl1d (Kirby et al., 2012) using the simulated

data y and the model XS,E(�) as inputs. MCMC analysis yields

an unnormalized sample of the posterior PDF. We calculated

the entropy of p(� | y) using two different methods. The first

method constructs a multivariate normal (MVN) probability

density approximation from a random sample of 1000 points

of the posterior:

pMVN � j yð Þ ¼
1

2�ð Þd=2
j�j1=2

exp � 1
2 � � �ð Þ

T��1 � � �ð Þ
� �

:

ð9Þ

The vector � is the mean of the sample of d-dimensional

parameter vectors �. |�| denotes the determinant of the

variance–covariance matrix � of �. Both values can be defined

in terms of an expectation value E:

� ¼ E �½ �; ð10Þ

� ¼ E � � �ð Þ � � �ð Þ
T

� �
¼ Covb�i; �jc; 0<i; j<d
� �

: ð11Þ

The entropy of the MVN distribution is then computed as

(Chen et al., 2016)

HMVN � j yð Þ ¼
d

2
log 2�þ

d

2
þ log j�j: ð12Þ

The second method to calculate the entropy of the posterior

follows Kramer et al. (2010). Here, the entropy of the posterior

is obtained by Monte Carlo sampling from the unnormalized

MCMC output using a sample size of 5000, while the

normalization factor is obtained from a kernel density esti-

mate using a Gaussian kernel (Silverman, 1986). In the

following, we denote this approach as the KDN method.

The sample sizes for the MVN and KDN approaches

represent limits for which a computation of an equilibrated

MCMC plus entropy estimate remains feasible given current

computational resources. Because of those limits on sample

size and the high dimensionality of NR models, an accurate

and robust computation of the posterior entropy is often

challenging. The MVN estimate fulfills here the role of a

widely used reference against which the KDN estimate can be

validated. As shown in Section 3, the MVN approximation was

robust over repetitions of MCMC simulations but tended to

underestimate the entropy of the posterior and, therefore,

overestimated �H. This is not unexpected, as the MVN

approximation performs less well on non-normal, i.e. asym-

metric and heavily tailed, distributions (Kramer et al., 2010).

The KDN method proved less robust, in turn, leading to

somewhat larger standard deviations on �H and occasional

outliers that were identified and eliminated.

2.2.4. Information gain. As discussed above, the computa-

tion of �bHH ¼ IðY;�Þ is significantly costlier than calculating

the gain in information �H obtained from only a single

experimental representation y. For large multivariate models

such as those used in NR, computing �bHH is currently not

feasible. The differences between �H and �bHH have been

determined for models with fewer parameters. While signifi-

cant, they were shown to be smaller than the changes in

entropy due to experimental optimization in other applica-

tions (Liepe et al., 2013). This observation is in agreement with

results in this work. We estimated the difference between �bHH
and �H by averaging multiple independent values of �H and

showed that the variations in �H for individual points of the

optimization are significantly smaller than the changes in �H

over the entire range of systematically varied parameters to be

optimized.

2.2.5. Marginalization of the posterior parameter density
function. Most models XS,E contain a subset of nuisance

parameters � that are required for constructing a valid model

but are not of practical interest to the experimenter. Together

with the parameters of interest �, they form the parameter

space � = (�, �). Consequently, the relevant quantity for

optimizing an NR experiment is often the marginal entropy of

the posterior H�(� | y) with respect to the parameters of

interest (Sivia & Webster, 1998; Chen et al., 2016):

H� � j yð Þ ¼ �
R

p � j yð Þ log p � j yð Þ d�: ð13Þ

The marginal posterior PDF p(� | y) is obtained by integrating

the joint probability of � and � over the nuisance parameters �:

p � j yð Þ ¼
R

p �; � j yð Þ d�: ð14Þ

Using an MVN distribution, a marginal entropy H�
MVN(� | y)

is calculated rather easily by dropping the unwanted para-

meters from the covariance matrix and the mean vector:

HMVN
� � j yð Þ ¼

d�

2
log 2�þ

d�

2
þ log j��j: ð15Þ

The computation of a KDN equivalent of the marginal

entropy that involves Monte Carlo sampling from the MCMC-

obtained posterior PDF is difficult and will be the topic of a
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future study. In this work, we exclusively compute total

entropies of the posterior PDF and evaluate confidence limits

on parameters of interest separately for selected points in the

optimization space.

3. Results

3.1. A test structure

For a first demonstration of the method, we start with a

simple artificial interfacial structure: a porous, atomically flat

Si layer suspended above a planar solid Si substrate in

aqueous solvent (Fig. 2). This structure is characterized at first

with one and then with two NR measurements, evaluated with

a simple slab model, and analyzed for the resulting informa-

tion gain under systematic variation of the SLD of the solvent,

�n. Model parameters are provided in Table 1. The aim of the

optimization is to identify the isotopic constitution of the

aqueous solvent that maximizes information gain as �n is

varied between that of H2O (�n ’ �0.5 � 10�6 Å�2) and D2O

(�n ’ 6.5 � 10�6 Å�2).

3.1.1. One solvent contrast. Fig. 3 shows the expected

information gain from a single NR measurement as a function

of the SLD of the aqueous medium that surrounds and

penetrates the porous Si layer (‘one solvent contrast’). The

MVN and KDN methods for entropy determination yield

similar results, with the MVN results consistently slightly

higher than the KDN results. The error bars in Fig. 3 represent

standard deviations from five independent simulations per

data point and allow us to assess the error introduced by

computing �H instead of �bHH. For this particular example, this

error is significantly smaller than the changes in �H due to

variation in solvent SLD.

The minimum information gain is observed under the

condition that the bulk solvent SLD matches that of Si
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Figure 2
(a) Structural model of the test system. A 30 Å-thick porous Si layer (95% Si by volume) is surrounded by aqueous solvent and suspended at a distance
of 20 Å from a solid Si surface. Pores in the Si layer are solvent filled. (b) Calculated reflectivities with simulated noise for three different solvent SLD
values, reflectivity curves that are best fits to the data and their associated SLD profiles (inset). The noisy data and error bars correspond to those
expected in a measurement of this hypothetical sample at a current-generation reactor-based instrument such as the Magik neutron reflectometer at the
NCNR. Error bars represent 68% confidence limits.

Table 1
Simulation parameters and MCMC fit results for a virtual NR measurement of the system shown in Fig. 2 in which one bulk solvent SLD was optimized.

Where ranges are given in the first column, the parameter was systematically varied within these boundaries. Median parameter values and 68% confidence limits
were determined by an MCMC fit of the simulated data and are given for selected solvent SLD values of the entire optimization range shown in Fig. 3.

MCMC fit results (� | y)

Solvent SLD, �n (10�6 Å�2)

Model parameter Parameterized sample representation, � Fit boundaries, prior PDF limits �0.5 2 6.5

Thickness of interstitial water (Å) 20 �10 21 � 1 20 � 7 20.0 � 0.2
Thickness of porous Si layer (Å) 30 �10 29.1 � 0.9 29 � 7 29.8 � 0.2
SLD of porous Si layer (10�6 Å�2) 2.07 �1 2.0 � 0.1 2.1 � 0.1 2.1 � 0.2
Volume fraction of porous Si layer 0.95 �0.05 0.95 � 0.04 0.95 � 0.03 0.95 � 0.04
SLD of solvent, �n (10�6 Å�2) [�0.5, 6.5] �0.5 �0.50 � 0.03 2.1 � 0.1 6.50 � 0.01
Interfacial roughness (Å) 3 �1 2.9 � 0.6 3.0 � 0.7 3.4 � 0.5
Log10 of background† �8 �1 �7.9 � 0.7 �8.1 � 0.6 �8.0 � 0.7

† A constant background is routinely fitted as a free parameter to each experimental NR curve, and the same procedure is adopted here. This parameter accounts for insufficient
background subtraction during data reduction and is a small fraction of the total background (see supporting information).



(�n ’ 2 � 10�6 Å�2). In this case, the porous solvent-filled Si

slab, the substrate and the solvent all have the same SLD and

are thus ‘invisible’ to neutrons. The residual gain at the

minimum of the curve, �H ’ 3 bits, stems from a high

confidence in determining the SLDs of the porous silicon

layer, the bulk solvent and the scattering background. Because

the SLD of the semi-infinite Si substrate is known, the

unknown SLDs are well determined under matching condi-

tions, even though the observed neutron reflectivity is zero.

Other model parameters can only be resolved if the experi-

menter uses a solvent with an SLD different from that of Si.

Consequently, the gain in information increases when its SLD

deviates from that of Si, reaching �H’ 10 bits for H2O-based

solvent and �H ’ 15 bits for D2O. For the same absolute

difference of the solvent SLD from that of Si, positive SLD

deviations yield a larger information gain than negative

deviations. This phenomenon is due to several effects. First,

because the incoherent scattering from D2O is lower than that

from H2O, samples bathed in D2O-rich solvent show lower

intrinsic scattering background. Second, the higher SLDs of

D2O-rich solvents lead to higher neutron reflectivity

throughout the simulated range of Qz (0.08 � Qz � 0.26 Å�1),

which can be determined with higher confidence. Finally, the

presence of a critical angle of total internal reflection in the

NR curve increases the gain in information for solvent SLDs

with �n > 4 � 10�6 Å�2, at which this critical angle can be

observed within the simulated Qz range.

Explicit fit parameters and their uncertainties for three

exemplary bulk solvent SLD values are listed in Table 1. The

parameter uncertainties for �n = �0.5 � 10�6 Å�2 and �n =

6.5 � 10�6 Å�2 are significantly smaller over the entire set of

model parameters, reflecting the increased information gain

for those solvents.

To put the abstract values of �H given in Fig. 3 in

perspective, the following simplified comparison is educative.

Under the assumption that the posterior PDF of a single

uncorrelated parameter can be approximated by a Gaussian

distribution, the contribution of this parameter to the

posterior entropy is determined by the standard deviation � of

the distribution:

H ¼ log � 2�eð Þ
1=2

� �
: ð16Þ

With respect to the entropy of the corresponding uniform

prior PDF over the interval �� [equation (8)], the contribu-

tion to the information gain from this single parameter is

�H ¼ log
��

� 2�eð Þ
1=2
: ð17Þ

A Gaussian posterior PDF with a standard deviation

approximately one-quarter [i.e. 1/(2�e)1/2] of the width of a

uniform prior PDF has the same

entropy as the latter and yields there-

fore zero information gain. Standard

deviations above this threshold contri-

bute a limited loss of information,

particularly for the MVN estimate, only

because of the different functional

forms used to describe the prior and

posterior PDFs. Equations (8) and (16)

also show that decreasing the widths of

either a uniform prior or a Gaussian

posterior PDF by one-half changes the

information gain by �1 bit (while

neglecting parameter correlations).

3.1.2. Two solvent contrasts. The

information gain of an NR experiment

that consists of two reflectivity

measurements with different solvents is

shown in Fig. 4. The two solvent SLDs

in these measurements were indepen-

dently varied between those of pure
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Figure 4
Information gain �H as a function of the aqueous solvent SLDs in two simultaneously evaluated,
independent NR measurements of the model structure in Fig. 2. SLDs are varied in steps of 0.5 �
10�6 Å�2. Entropies of the posterior were calculated using the MVN (a) and KDN (b)
approximations. Symmetry-related data were independently calculated with both methods to
obtain a visual impression of data reproducibility.

Figure 3
Information gain �H as a function of the SLD of the aqueous solvent in a
virtual NR experiment of the model structure shown in Fig. 2. �H
calculated using the MVN and KDN approximations follow each other
closely. Error bars indicate one standard deviation obtained from five
independent simulations.



H2O and D2O, and data analysis was performed under the

constraint that both structural models share the same set of

parameters, except for the two solvent SLDs and their asso-

ciated background levels. The minimum information gain is

observed when both solvent SLDs are �n = 2 � 10�6 Å�2.

Particularly high information gains are found for bulk

compositions at the extreme margins of solvent SLDs, (�n
1,

�n
2 ) = (�0.5 � 10�6 Å�2, 6.5 � 10�6 Å�2). However, a

combination of measurements with pure D2O and an H2O/

D2O mixture with �n = 4 � 10�6 Å�2 (denoted as CM4) yields

a comparable information gain.

Similarly to the previous optimization, the KDN and MVN

entropy estimates in Fig. 4 yield qualitatively equivalent

results. While the MVN estimate slightly overestimates the

information gain, the KDN estimate shows somewhat larger

uncertainties in each data point. In all further examples

discussed in this work, we only used KDN estimates.

Fit parameters and their uncertainties for three regions of

particularly small and large �H (Fig. 4) are provided in

Table 2. For the minimum information gain at (�n
1, �n

2 ) = (2.0�

10�6 Å�2, 2.0 � 10�6 Å�2), the result is comparable to the

experiment with one solvent contrast. Only the parameter

uncertainties for the SLD and volume fraction of the porous

Si, and the SLDs of both bulk solvents, show significant

improvement over the prior PDFs. The parameter uncertain-

ties for (�0.5 � 10�6 Å�2, 6.5 � 10�6 Å�2) and (6.5 �

10�6 Å�2, 4 � 10�6 Å�2) are significantly smaller than for

(2.0 � 10�6 Å�2, 2.0 � 10�6 Å�2) over the entire set of model

parameters.

Evaluations such as those shown in Fig. 4 are invaluable to

determine whether it is advantageous in a real experiment to

consecutively measure two NR curves from a sample bathed in

distinct solvents or, rather, to allocate the same total

measurement time to a single measurement with one solvent.

In this example, values at the plot diagonal are consistently

lower than off-diagonal values, which would argue in favor of

conducting two distinct measurements.

3.1.3. Dependence of DH on counting time. Fig. 5(a) shows

the information gain �H as a function of the counting time t

for a single NR measurement of the model structure (Fig. 2)

immersed in D2O. After an initial fast increase of �H within

the first 3 h of measurement, the information gain quickly

enters a region of diminishing return in which further

improvement requires increasingly long counting times. For

the presented example and simulated instrument, we consider

the transition region between those two regimes at 3–6 h an
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Table 2
Results for a virtual NR experiment on the system shown in Fig. 2, which allows for two measurements with two distinct bulk solvent SLDs that were
optimized (Fig. 4) (for other details refer to Table 1).

MCMC fit results (� | y)

Solvent SLDs �n
1, �n

2 (10�6 Å�2)

Model parameter Parameterized sample representation, � Fit boundaries, prior PDF limits (2.0, 2.0) (�0.5, 6.5) (4.0, 6.5)

Thickness of interstitial water (Å) 20 �10 21 � 8 19.9 � 0.2 19.9 � 0.2
Thickness of porous Si layer (Å) 30 �10 29 � 7 30.0 � 0.1 30.2 � 0.2
SLD of porous Si layer (10�6 Å�2) 2.07 �1 2.1 � 0.1 2.08 � 0.03 2.15 � 0.06
Volume fraction of porous Si layer 0.95 �0.05 0.95 � 0.03 0.955 � 0.009 0.97 � 0.02
SLD of solvent 1, �n

1 (10�6 Å�2) [�0.5, 6.5] �0.5 2.1 � 0.1 6.499 � 0.004 6.493 � 0.003
SLD of solvent 2, �n

2 (10�6 Å�2) [�0.5, 6.5] �0.5 2.1 � 0.1 �0.49 � 0.02 4.001 � 0.002
Interfacial roughness (Å) 3 �1 3.0 � 0.7 2.7 � 0.5 3.6 � 0.4
Log10 of background 1 �8 �1 �8.0 � 0.7 �7.9 � 0.7 �8.2 � 0.5
Log10 of background 2 �8 �1 �7.7 � 0.7 �8.0 � 0.7 �7.9 � 0.7

Figure 5
Information gain �H as a function of the counting time t for a single NR measurement of the model structure (Fig. 2) in D2O, calculated using the KDN
estimate and plotted on linear (a) and logarithmic (b) time scales. The continuous curves are fits to equation (23), which describes the information gain as
being limited by the capacity of m0 parallel independent Gaussian channels. The displayed time range in (a) has been shortened to 24 h to focus on
experimentally relevant measurement times. Error bars indicate one standard deviation obtained from ten independent simulations.



optimal range of counting time. The observed time depen-

dence of the information gain is similar to those previously

reported (Pedersen et al., 2014; Berk & Majkrzak, 2009). It

suggests that, at least for this simple test structure, an increase

in neutron flux on future instrumentation will allow for shorter

measurement times but may not yield significantly reduced fit

parameter confidence limits.

To describe the functional form of the relation shown in

Fig. 5, we simplify the situation and consider the capacity of

the Gaussian channel shown in Fig. 1 to be the single limiting

factor for the information gain. In other words, for the current

example we assume that the exact parameter vector � used for

data simulation could be retrieved by the MCMC simulation

given noise-free reflectivity data y(Qz). We therefore neglect

other limiting factors such as the loss of phase information

during reflectivity simulation or shortcomings of the MCMC

algorithm. The capacity C of a communication channel is

defined as the maximum mutual information between the

input X and the output Y for all possible choices of p(x). In

communication theory, C sets the maximum transmission rate

of information over the channel; in our example it constitutes

an upper limit on the information gain on x by knowing y.

As shown in Fig. 1, the Gaussian channel adds random

normal noise z(Qz) with standard deviation �(Qz) to the

noise-free simulated reflectivity x(Qz), thus providing the

reflectivity with noise y(Qz). Since the reflectivity is simulated

for n discrete values of Qz (n data points), such a Gaussian

channel can be described by the combined action of n inde-

pendent parallel Gaussian channels, each of which adds

random normal noise to one data point of the simulated

reflectivity. n independent parallel Gaussian channels have a

combined maximum capacity C that depends on the signal-to-

noise ratio y/� per channel (Cover & Thomas, 2006):

C ¼
Xn

i¼1

1
2 log 1þ

yi Qz

� �2

�i Qz

� �2

" #
: ð18Þ

Neglecting contributions from background subtraction and

incident intensity normalization, the signal-to-noise ratio y/�
can be computed solely from counting statistics. For each

reflectivity data point, y/� depends only on the number of

specular counts N, which is the product of the counting time t

and a constant specular count rate r:

y=� ¼ N=N1=2 ¼ rtð Þ1=2: ð19Þ

We can therefore rewrite the combined capacity of the

Gaussian channels as

C ¼
Pn
i¼1

1
2 log 1þ ritið Þ: ð20Þ

In a typical NR measurement, the signal-to-noise ratio y/� =

(rt)1/2 is kept approximately constant over the entire Qz range

by increasing both counting time and beam cross section as Qz

increases, in order to offset the general Qz
�4 dependence of the

specular reflectivity. We therefore simplify equation (20) by

assuming that all channels have the same relative variance,

which is measured in an effective time t and at an effective rate

r. We arbitrarily choose that t represents the total counting

time of the reflectivity curve (instead of, for example, choosing

the average measurement time per point which would only

change the effective rate).2 On the basis of the Shannon–

Nyquist sampling theorem (Pedersen et al., 2014; Konarev &

Svergun, 2015), the reflectivity data in the example are heavily

oversampled. In addition, R is band limited. Consequently, not

all n channels are independent, and we can write the channel

capacity as that of m effective independent channels (m < n)

(Cover & Thomas, 2006):

C ¼ m 1
2 log 1þ rtð Þ: ð21Þ

The channel capacity C imposes an upper limit on the actual

channel rate I(X, Y), which itself is an upper limit on the

information gain �H of the entire virtual experiment shown in

Fig. 1:

�H ’ �bHH � IðX;YÞ � C: ð22Þ

Consequently, we apply the following equation for analysis of

the KDN-derived information gain (Fig. 5):

�HðtÞ ¼ m0 1
2 logð1þ r0tÞ þ�H0: ð23Þ

The coefficient m0 can be interpreted as the number of inde-

pendent parameters determined in the experiment, and r0 is

associated with an average rate of increase in information gain

per parameter. Fig. 5 shows the fit to �H(t) that yields m0 =

4.2 � 0.1 and r0 = 219 � 5 h�1. The value of m0 indicates four

independent parameters, and inspection of the last column in

Table 1 confirms this estimate, as four out of seven parameters

show a significant improvement over the prior PDF (t = 6 h).

�H0 is the systematic error in calculating the information gain

for t ! 0, which stems from evaluating a uniform posterior

PDF that equals the prior PDF using the KDN estimate (see

Section 3.1.1). �H0 was determined to be �0.89 � 0.05 bits.

The values of �H for 0.375 � t � 3 h show a comparatively

high uncertainty (see Fig. 5). When inspecting individual

parameter uncertainties over this interval (data not shown), it

was found that in this region a transition occurs, in which the

number of independent parameters that can be resolved (are

in scope of the prior PDF) increases from three to four, and

variations in the simulated reflectivity due to random noise

can lead to either outcome in the MCMC analysis. Accord-

ingly, when fitting �H(t) using equation (23) and a limited

time interval 0 � t < 0.375 h, a coefficient m0 = 3.0 � 0.1 is

obtained (fit not shown), which agrees with the ability to

resolve three independent parameters. This indicates that,

strictly, �H(t) has to be fitted piecewise over intervals of t, in

which the number of resolvable independent parameters does

not change. A thorough exploration of this aspect goes beyond

the objective of this work and is left for a future study.

3.1.4. Dependence of DH on the maximum momentum
transfer. Fig. 6 shows the dependence of the information gain

on counting time t and maximum momentum transfer Qz,max
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2 This neglects the diminishing effect of background on the relative variance.
However, the background arising from the D2O solvent in the current sample
is sufficiently small.



of the simulated data for the test structure (Fig. 2) immersed in

D2O [Fig. 6(a)], and two related structures in which all layer

thicknesses are scaled by a factor of 0.5 [Fig. 6(b)] or a factor

of 2 [Fig. 6(c)]. For all three structures, �H shows an increase

with t similar to that in Fig. 5, which is equivalent to a vertical

slice of the independent optimization shown in Fig. 6(a) at

Qz,max = 0.26 Å�1. All structures show a rather sudden

increase in information gain when the reflectivity is extended

beyond a certain critical value of Qz,max, which roughly

matches the position of the second minimum of the reflectivity

curves [Fig. 2(b)]. For the original test structure, this transition

occurs at Qz,max ’ 0.2 Å�1 [Fig. 6(a)], corresponding to the

thicknesses of the Si slab of 30 Å. For sufficiently high Qz,max, a

third reflection minimum can be observed at Qz = 0.3 Å�1,

which stems from the 20 Å-thick interstitial water layer.

However, Fig. 6(a) indicates that extending the reflectivity to

this value does not significantly increase the information gain

further. Accordingly, the thicknesses of both sample layers are

already well resolved when limiting the reflectivity to Qz,max =

0.26 Å�1 (t = 6 h) (see Table 1, last column). This result is

consistent with the canonical resolution estimate (Schalke &

Lösche, 2000), which for Qz,max = 0.26 Å�1 yields a smallest

resolvable structure size of �z = �/Qz,max = 12 Å. A discussion

of the effect of a limited Qz range on the information gain that

goes beyond these rather qualitative arguments will require

theory on time- and bandwidth-limited Gaussian channels

(Cover & Thomas, 2006), and provides a promising avenue for

future studies.

With respect to experimental design, it is useful to deter-

mine the critical value of Qz, max for a particular sample to

avoid spending neutron beamtime at unnecessarily high Qz for

which the signal-to-noise ratio becomes increasingly unfa-

vorable. Real-world samples, as opposed to the simulated

structures used in this work, do not necessarily have a smallest

feature size that would define Qz,max. Therefore, future opti-

mizations using more complex structural models with a larger

range of feature sizes will be of high interest to determine how

to limit the Qz range of a measurement according to the

smallest feature size of interest to the experimenter.

3.2. Influence of the substrate structure on information gain

NR sample substrates are sometimes engineered to contain

one or several nanoscopic layers of high SLD buried near the

interface which are not part of the interfacial structure of

interest. Magnetic reference layers that scatter incident

neutrons differently, depending on the polarization of the

neutron in a magnetic field, can be particularly powerful in

elucidating interfacial details (Holt et al., 2009). Such sample

engineering has been demonstrated to allow for a direct

inversion of reflectivity data in certain cases (Blasie et al., 2003;

Majkrzak et al., 2009). Here we explore the effect of a buried

nanoscopic layer on the information content of NR data using

a previously published test case (Zimmermann et al., 2000;

Majkrzak & Berk, 2003).

Zimmermann et al. (2000) described a set of distinct X-ray

scattering length density profiles that yield nearly indis-

tinguishable reflectivity curves. In turn, this prevents a unique

determination of the SLD profile if any one of those reflec-

tivities were measured. Majkrzak & Berk (2003) constructed a

set of similar neutron SLD profiles that result in the same

ambiguity (profiles 1 and 2 in Fig. 7). Both studies demon-

strated that even partial knowledge of the sample structure

can be insufficient to uniquely determine the SLD profile. It

was shown that additional information, such as embedded

reference structures, is necessary to uniquely determine the

profiles.

Here, we systematically explore this problem by burying a

tunable soft magnetic reference layer of finite thickness near

the substrate surface [gray layer in Fig. 7(a)]. The SLD of the

reference layer attains two values that depend on the polar-

ization of the incident neutrons. The total SLD of the
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Figure 6
(a) Information gain (KDN estimate) as a function of maximum momentum transfer Qz,max and counting time t of the measurement for the model
structure shown in Fig. 2 and related structures in which all layer thicknesses were multiplied by 1/2 (b) and 2 (c). The counting times shown apply to
Qz,max = 0.26 Å�1, but were shorter and longer for smaller and larger Qz,max, respectively, as we have chosen an optimization scheme that preserves the
counting statistics for individual data points, but not the total counting time when varying Qz,max.



reference layer is the sum of the nuclear SLD and the

magnetic splitting, �n
� = �n

nucl
� �n

split. Both parameters depend

on the choice of the magnetic material and were thus

systematically varied in the analysis (see Table 3). For every

point in the optimization space, including those with �n
split = 0,

two reflectivity curves were simulated and analyzed, one for

each neutron polarization. The statistical quality of each curve

is equivalent to that obtained after 30 h counting on the Magik

reflectometer at the NCNR. Reflectivities with �n
split = 0 are

equivalent to those that would be obtained in a non-polarized

NR experiment. The condition at which �n
nucl matches that of

the underlying Si substrate and �n
split = 0 reproduces the

structures described in the original work (Majkrzak & Berk,

2003).

The information gain �H from virtual NR measurements of

profiles 1 and 2 as a function of �n
nucl and �n

split is shown in Fig. 8.

In agreement with the previous work (Majkrzak & Berk,

2003), �H is small for the original configuration without

reference layer (�n
nucl = 2 � 10�6 Å�2, �n

split = 0). Correlation

plots between the fit parameters in this configuration (see

Figs. S5 and S6 in the supporting information) reveal that the

MCMC identifies several distinct solutions for the SLD values

of layers 1–6 of the two interfacial structures shown in Fig. 7.

If one of the neutron-polarization-dependent SLDs of the

reference layer is sufficiently different (by 2 � 10�6 Å�2 or

more) from that of the substrate, a unique solution is obtained.

This is reflected in Fig. 8 by an increase in information gain of

�15 bits; and the parameter correlation plots (see supporting
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Table 3
Results for a virtual reflectivity experiment with polarized neutrons on the system shown in Fig. 7(a).

A 120 Å-thick reference layer is buried beneath the interfacial profile of interest. The SLD of this layer consists of a nuclear part and a magnetic splitting which
leads to distinct SLD values seen by different neutron polarizations in a scattering experiment. The impact of (�n

nucl, �n
split) on �H was systematically evaluated in

this analysis and is presented here for selected values. For other details refer to Table 1.

MCMC fit results (� | y)

SLD of reference layer, (�n
nucl, �n

split) (10�6 Å�2)

Profile 1 Profile 2

Parameter
Parameterized sample
representation, �

Fit boundaries,
prior PDF limits (2, 0) (6, 0) (6, 0) (6, 2)

Nuclear SLD reference layer, �n
nucl (10�6 Å�2) [�2, 10] �0.5 2.000 � 0.002 6.002 � 0.002 5.997 � 0.002 6.002 � 0.002

Magnetic SLD of reference layer, �n
split (10�6 Å�2) [0, 4] �0.5 0.000 � 0.004 0.001 � 0.002 0.001 � 0.002 2.001 � 0.002

SLD layer 1 (10�6 Å�2) 0.6/0.4 [�0.5, 2.5] 0.5 � 0.2 0.601 � 0.006 0.402 � 0.006 0.400 � 0.006
SLD layer 2 (10�6 Å�2) 0.4/0.7 [�0.5, 2.5] 0.6 � 0.1 0.407 � 0.005 0.701 � 0.006 0.698 � 0.006
SLD layer 3 (10�6 Å�2) 0.7/0.5 [�0.5, 2.5] 0.6 � 0.2 0.703 � 0.006 0.493 � 0.006 0.509 � 0.006
SLD layer 4 (10�6 Å�2) 1.4/1.3 [�0.5, 2.5] 1.4 � 0.2 1.400 � 0.006 1.297 � 0.006 1.302 � 0.005
SLD layer 5 (10�6 Å�2) 1.2/1.45 [�0.5, 2.5] 1.4 � 0.1 1.197 � 0.006 1.451 � 0.005 1.437 � 0.005
SLD layer 6 (10�6 Å�2) 1.6/1.3 [�0.5, 2.5] 1.6 � 0.2 1.602 � 0.006 1.304 � 0.006 1.298 � 0.006
Interfacial roughness (Å) 3 [2, 5] 2.7 � 0.5 3.0 � 0.1 2.9 � 0.1 3.09 � 0.08
Log10 background spin "" �8 [�9, �5] �8.1 � 0.2 �8.3 � 0.4 �8.3 � 0.4 �7.9 � 0.2
Log10 background spin ## �8 [�9, �5] �8.0 � 0.1 �7.7 � 0.3 �8.1 � 0.5 �7.7 � 0.4

Figure 7
(a) Two distinct surface structures (profile 1 and profile 2) on an Si substrate in air are indistinguishable by (non-polarized) neutron reflection, as shown
by the red and black reflectivity curves in (b) (Majkrzak & Berk, 2003). However, a reference layer buried beneath the surface structure [gray slab in (a)
with 120 Å thickness and tunable SLD] is able to sufficiently increase the signal-to-noise ratio in the reflectivity to resolve the two profiles (blue and
green curves, exemplarily shown for �n

nucl = 10 � 10�6 Å�2, �n
split = 0). Error bars indicate 68% confidence limits.



information) collapse into one solution. Most notably, a

polarized NR experiment (�n
split
6¼ 0) is not required to

uniquely resolve profiles 1 and 2, as the information gain does

not depend on �n
split, as long as neither of �n

� matches that of

the substrate. Table 3 lists the detailed results and their

confidence limits for four selected points of the optimization:

profile 1 without reference layer, profiles 1 and 2 with refer-

ence layer (�n
nucl = 6 � 10�6 Å�2, �n

split = 0), and profile 2 with

reference layer and magnetic splitting (�n
nucl = 6 � 10�6 Å�2,

�n
split = 2 � 10�6 Å�2). The information gain provided by the

reference layer translates into significantly smaller uncer-

tainties of the SLD values of the surface structure (layers 1–6).

In conclusion, a high-index reference layer boosts the

overall reflectivity of the interfacial structure such that subtle

details buried in noise of the reflectivity of the original

structure become accessible. The near identity of the reflection

spectra is not abrogated by the reference layer, but their

overall magnitude is shifted to a level where the experiment

can distinguish them, given the signal-to-noise ratio of a

typical measurement.

4. Discussion

We have implemented a framework based on Bayesian

statistics and information theory (Liepe et al., 2013) to opti-

mize surface-sensitive scattering experiments by evaluating

their information content as a function of experimental

parameters. The information content �bHH of the experiment is

obtained by approximating the mutual information between

the prior and posterior PDFs using virtual experiments. By

necessity, we applied a number of restrictions to our imple-

mentation. Instead of computing the full mutual information,

we use a single representative parameter vector � from the

prior distribution. We also simulated only up to ten data sets

y(�) per sample representation �, which differ by Gaussian

noise. Analyzing the information gain �H obtained from

those y(�), we showed that the observed standard deviation of

�H is sufficiently small that its average

can be used to approximate �bHH.

We used two approaches to entropy

calculation of the posterior PDF: the

multivariate normal probability density

approximation (MVN estimate) and an

approach that samples directly from

the posterior PDF (KDN estimate)

(Kramer et al., 2010). We observed that

these approaches yield qualitatively

consistent results, as exemplified in

Figs. 3 and 4, in which the MVN

approach tends to overestimate �H.

On the other hand, the KDN algorithm

produces occasional outliers that need

to be eliminated.

Results on a simple reflectometry

problem of a fluid-immersed sample

(Fig. 2) demonstrated the usefulness of

our approach. They confirm existing

best practices on choosing the isotopic composition of

aqueous solvents (Figs. 3 and 4). For this example, the largest

gains in information were obtained when the scattering

contrasts between different components of the sample struc-

ture – such as the substrate, the interfacial structure and the

surrounding aqueous solvent – were large. The least gain in

information was obtained when the SLD of the solvent was

matched to that of the substrate and the interfacial structure.

Under contrast-matching conditions, when zero reflectivity is

measured, the computed information gain was larger than

zero. Since the model contains implicit parameters, such as

that of the substrate SLD, even measuring zero reflectivity

provides information.

Our approach explicitly simulates background levels for

different isotopic compositions of aqueous solvents and air.

H2O-based solvents create a large incoherent background and

yield the lowest signal-to-noise ratio in the measured reflec-

tivity. Therefore, predominantly H2O-based solvents are at a

disadvantage over D2O-based solvents with comparable

scattering contrast to the substrate and interfacial structure. In

Fig. 3, this effect contributes to an asymmetry in information

gain around the minimum located at substrate-matching

conditions (�n = 2 � 10�6 Å�2). Similarly, Fig. 4 shows that a

combination of CM4 (�n = 4 � 10�6 Å�2) and D2O yields the

same information gain as a combination of H2O and D2O,

although the latter creates the greater overall scattering

contrast and should, therefore, provide more information.

We showed for the same sample structure that an extension

of the measurement time t per reflectivity curve above the

empirically determined optimal value of 3–6 h on the simu-

lated instrumentation is ineffective, as the information gain is

a logarithmic function of t (Fig. 5). Furthermore, we deter-

mined the number of independent parameters supported by

the data and the model by modeling the information gain as

being limited by the Gaussian channel at the center of our

optimization procedure (see Fig. 1). We neglected other losses

of information that might occur during the calculation of the
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Figure 8
Information gain �H (KDN estimate) for profiles 1 (a) and 2 (b) as functions of the nuclear and
magnetic SLDs of a buried reference layer (see Fig. 7).



noise-free reflectivity x, and we relied on the assumption that

the MCMC robustly finds the global solution of the fitting

problem. In quantitative terms, the fit of the time dependence

to equation (23) suggested that a measurement can resolve

four independent parameters in this example. Equation (23)

further allowed us to independently determine the rate of

information gain as a function of measurement time per

independent parameter. This constitutes an improvement over

similar studies in small-angle scattering (Pedersen et al., 2014).

We also studied the dependence of �H on the maximum

momentum transfer Qz,max in a measurement. Fig. 6 visualizes

a result that is consistent with the rule of thumb expressed as

the canonical resolution of a reflectivity experiment. For

optimal information gain, a measurement must extend to a

value of Qz that depends on the smallest feature size of the

sample. We showed for our example that extending the

measurement beyond this value does not yield a significant

increase in information gain, other than that stemming from

the time spent measuring additional data points. Moreover,

Fig. 6 demonstrates that the transition from ignorance to

knowledge is rather sudden at this particular value of Qz (left

to right) – in contrast to the steady logarithmic increase in

information gain as a function of simulated counting times

(bottom to top).

While the virtual sample structure has a smallest length

scale of 20 Å, real samples typically do not have such a limit.

Nevertheless, the conclusion can be drawn that spending

measurement time to assess reflectivities beyond the Qz,max

that is associated with the smallest feature size of interest to

the experimenter is not advisable. These conclusions are

drawn from the simple structure investigated here; but the

clarity of the result indicates that the general approach will

probably also yield valuable and interesting results for more

complex systems. Here, we have not explicitly tested the main

consequence of the Shannon–Nyquist sampling theorem – the

notion that a minimum spacing between data points in Qz is

required to resolve a structure in real space with a limited total

length (Vestergaard & Hansen, 2006; Shannon, 1949).

However, this requirement is fulfilled in all virtual experi-

ments simulated here; in fact, the simulated reflectivities are

typically heavily oversampled.

While reference layers of high SLD and, in particular,

magnetized reference layers probed with spin-polarized

neutrons are increasingly used in NR investigations, details of

how and to what degree they boost the information gain from

the experiment have not been systematically investigated.

Surprisingly, we found that performing a spin-polarized

experiment is not required for maximum information gain in

our example (see Fig. 8). Magnetic splitting of the reference

layer SLD is only effective if the nuclear SLD is near that of

the Si substrate. However, once the nuclear SLD is shifted

away from �n
nucl = 2� 10�6 Å�2, the information gain is largely

independent of the splitting. Our results show essentially

uniform information gain for 0 � �n
split
� 4 � 10�6 Å�2, for

sufficiently large �n
nucl > 4 � 10�6 Å�2. Fig. 7(b) visualizes the

mechanism by which the nanoscopic reference layer increases

the information gain. While the interference structure of the

reflectivity curve from the sample with the reference layer is

more regular than that without, showing how the high-SLD

layer dominates the signal, the details of the interference

pattern can be more precisely determined because the signal is

raised above the noise. Therefore, profiles 1 and 2 can be

distinguished on a sample with a reference layer, but not

without such a layer.

Because spin-polarized measurements typically occur at 1/2

of the unpolarized beam intensity, we conclude that polarized

reflectometry is not always effective for measurements such as

those discussed here. It will be interesting to study how more

complex samples, such as partially hydrated sample structures,

are affected by reference layers. The result that a polarized

neutron measurement is not required to resolve the sample

structure does not contradict theoretical work that polarized

reflectometry and magnetic reference layers are sufficient to

analytically reconstruct the SLD profile of certain classes of

samples (direct inversion) (Majkrzak et al., 2009), nor that

analytical data inversion recovers the maximum information

content from the experimental data (phase-inversion prin-

ciple) (Berk & Majkrzak, 2009).

5. Conclusion

We implemented a Bayesian and information theoretical

framework to determine the information gain from reflecto-

metry experiments with the purpose of experimental optimi-

zation. We applied this framework to a selection of test

problems, demonstrating its usability and confirming many

best practices that have guided the design of reflectometry

experiments for a long time. At the same time, we gained non-

intuitive insights that challenge some of them. A next step in

this development will be an extension to more complex, and

more relevant, applications of reflectometry in current

research. Marginalization of the posterior PDF will be

required to tailor the experiment effectively to a subset of

parameters that are of immediate interest to the experimenter.

With this in place, we predict significant utility of this frame-

work for the optimization of reflectometry experiments from

complex biomimetic interfaces.
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McGillivray, D. J., Lösche, M., O’Donovan, K. V., Mihailescu, M.,
Perez-Salas, U., Worcester, D. L. & White, S. H. (2006). Rev. Sci.
Instrum. 77, 074301.
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