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In most cases, the analysis of small-angle and wide-angle X-ray scattering

(SAXS and WAXS, respectively) requires a theoretical model to describe the

sample’s scattering, complicating the interpretation of the scattering resulting

from complex heterogeneous samples. This is the reason why, in general, the

analysis of a large number of scattering patterns, such as are generated by time-

resolved and scanning methods, remains challenging. Here, a model-free

classification method to separate SAXS/WAXS signals on the basis of their

inflection points is introduced and demonstrated. This article focuses on the

segmentation of scanning SAXS/WAXS maps for which each pixel corresponds

to an azimuthally integrated scattering curve. In such a way, the sample

composition distribution can be segmented through signal classification without

applying a model or previous sample knowledge. Dimensionality reduction and

clustering algorithms are employed to classify SAXS/WAXS signals according to

their similarity. The number of clusters, i.e. the main sample regions detected by

SAXS/WAXS signal similarity, is automatically estimated. From each cluster, a

main representative SAXS/WAXS signal is extracted to uncover the spatial

distribution of the mixtures of phases that form the sample. As examples of

applications, a mudrock sample and two breast tissue lesions are segmented.

1. Introduction

The high flux of modern light sources allows small-angle X-ray

scattering (SAXS) and wide-angle X-ray scattering (WAXS)

measurements to proceed rapidly and to produce significant

data sets, often with a continuous sampling rate in excess of

10 Hz. From each such measurement, parameters character-

istic of the sample, such as composition, homogeneity, and

particle size and shape, can be extracted. The interpretation of

such high data volumes generated by scanning and time-

resolved SAXS/WAXS methods is facilitated by statistical

approaches. There are multiple data analysis routines for

extracting information from scattering curves, defined as the

scattered photon intensity IðqÞ as a function of the magnitude

of the scattering vector q, based on models from scattering

theory and statistical mechanics [q = |q| = (4�/�)sin�, where �
is half the scattering angle and � is the wavelength of the

incident radiation]. The decoupling approach is one example

that considers geometrical models of form factor PðqÞ and

structure factor SðqÞ to perform a least-squares fit to IðqÞ.
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However, this method is essentially only applicable to dilute,

monodisperse and homogeneous samples. As a consequence,

the scattering curves IðqÞ of multiphase, heterogeneous, bulk

or solid samples cannot be easily modeled using standard data

analysis routines even though they are common samples for

SAXS/WAXS. The modeling of multiphase samples is extre-

mely complex when each independent phase of a sample is

unknown and inseparable from the bulk. Common approaches

for assessing mixtures require prior knowledge of the inde-

pendent components, simple models or some symmetry rela-

tionship (Kozielski et al., 2001; Konarev et al., 2003; Petoukhov

et al., 2012; Breßler et al., 2015).

Life and materials science samples are usually composed of

numerous phases, which can have different structural confor-

mations and chemical compositions. When an X-ray beam

passes through such a sample, all phases along the beam path

will cumulatively contribute to the overall scattering pattern.

Advances in the analysis of structural conformation and

chemical composition of SAXS/WAXS signals of hetero-

geneous samples are fundamental to simplify the interpreta-

tion of large SAXS/WAXS data sets. Molecular anisotropy is a

common qualitative structural feature extracted from scan-

ning SAXS/WAXS that can be recovered over extended

sample regions and described without recourse to other

sample properties. This approach provides information about

the sample’s structure and is valid even for mixed phases if

anisotropic scattering features of independent phases are

present in different q ranges (Bunk et al., 2009). Large data

sets are frequently reduced by singular value decomposition

(SVD) (Hansen, 1987), which has been applied to SAXS to

determine the number of distinct scattering species and their

relative abundance (Henry & Hofrichter, 1992; Segel et al.,

1998). However, SVD does not easily lend itself to

constructing the scattering profile of these components. An

alternative approach is canonical correlation analysis, which is

a statistical method to quantify the degree of linear depen-

dence between two variables. Applying it to scattering curves

IðqÞ of measured mixed phases and the recovered indepen-

dent signals from a SAXS/WAXS data set (Guagliardi et al.,

2007), one can obtain information on the composition of the

sample.

There are two main acquisition modes that produce large

SAXS/WAXS data sets: (i) time resolved, when monitoring

particle size, abundance and shape variations as a function of

time, as in the case of crystal nucleation and nanoparticle

formation; and (ii) spatially resolved, when mapping varia-

tions in composition of a solid sample, e.g. body tissues and

composites. Our motivation is to identify, monitor and classify

the temporal and spatial variations of SAXS/WAXS signals

independently of geometrical models and assumptions.

The versatile statistical method presented here can be

applied to different samples and experimental data sets. We

apply it to the segmentation of spatially resolved scanning

SAXS/WAXS measurements to segment automatically

distinct sample regions on the basis of the similarity of the

SAXS/WAXS signal. A focused X-ray beam offers high spatial

resolution, which is of particular interest for heterogeneous

samples. The segmentation of two different sample types is

demonstrated: (i) an inorganic mudrock slice and (ii) breast

tissue lesions in the presence of microcalcifications.

High-resolution imaging, such as transmission and scanning

microscopy, often focuses on small areas of thin samples to

reach nanoscale resolution. For large heterogeneous samples

scanning SAXS/WAXS has the advantage that it probes the

sample’s nanostructure over relatively large areas of mm2 with

minimum sample preparation, as no dehydration, staining or

embedding of the sample is required (von Gundlach et al.,

2016; Sibillano et al., 2016). Scanning a sample with an X-ray

beam leads to rich structural and compositional information.

To facilitate interpretation of scanning SAXS measurements,

parameter maps can be derived from the integrated scattering

curves. These parameter maps will represent the spatial

distribution of a structural or compositional quantity of a

heterogeneous sample and can be represented as pixels of an

image.

Multiphase signals combined with the large data sets of

scanning and time-resolved SAXS/WAXS complicate the

extraction of quantitative composition-dependent information

(Altamura et al., 2016). If independent signals from pure

phases can be measured, the linear combination can be

calculated to represent the SAXS/WAXS signal (Ladisa et al.,

2007). However, our focus lies in the scenario where signals of

pure phases are difficult to find, which is a common problem in

biology and materials science applications. The identification

of how many phases and in what ratio they form a sample

requires the decoupling of the measured SAXS/WAXS

intensity into independent signals.

2. Experiments and methods

2.1. Sample preparation

2.1.1. Mudrock sample. A section of approximately 25 mm

thickness was prepared from an outcrop mudrock sample from

the Eagle Ford formation by Microstructure and Pores GmbH

in Aachen, Germany. The rock slice was mounted with its

layering perpendicular to the surface of a silicon wafer. The

sample surface was polished using a standard thin-section

preparation protocol under dry atmospheric conditions,

followed by argon broad ion beam polishing with a Leica EM

TIC 3X triple ion beam cutter. Polishing was undertaken at

low energy and in short intervals of 30 min, alternating with

breaks of minimum 60 min to prevent intense heating of the

sample.

2.1.2. Breast tissue sample. Two human breast tissue

samples from the same patient were provided by the Institute

of Pathology and Molecular Pathology of the University

Hospital Zurich, Switzerland. Informed consent was obtained

from the donor. The samples were fixed in 4% buffered

formalin and examined through radiographic measurements

on an X-ray tube. Slices of 1–2 mm were cut in the regions

where microcalcifications were observed. The slices were fixed

on a sample holder using Kapton foil and tape.
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2.2. Scanning SAXS/WAXS

Scanning SAXS/WAXS measurements of both samples

were carried out at the cSAXS beamline of the Swiss Light

Source (SLS) at the Paul Scherrer Institut in Villigen, Swit-

zerland. To accelerate the acquisition, a continuous scan mode

was employed, in which the sample moves at constant speed

along the y direction while the detector records data

continuously (see Fig. 1). After the line is finished, the sample

moves by a step in x and the continuous scan restarts along y.

The mudrock sample was scanned at an energy of 11.48 keV,

using a beam of x = 5 mm and y = 2 mm focused by elliptical

Fresnel zone plates (Lebugle et al., 2017) with an approximate

flux in the sample position of 6.22� 109 photons s�1. The scan

step or image pixel size was 5 � 5 mm. The sample-to-detector

distance was 0.32 m. We refer to the covered q range of q = 5–

32 nm�1 as WAXS, which allows us to measure the Bragg

peaks of the minerals. A Pilatus 2M detector (Henrich et al.,

2009) was used to acquire scattering patterns at a rate of

3.4 Hz, with an exposure time of 290 ms and detector readout

of 5 ms per frame. The two-dimensional scattering patterns

were azimuthally integrated and their intensity normalized by

the sample transmission relative to air. The scattering of the

silicon wafer used as sample holder was subtracted as

background. The breast tissue samples were scanned at an

energy of 11.20 keV with an approximate flux of 1.27 �

1011 photons s�1 in the sample position, using a beam of x =

30 mm and y = 20 mm, which was focused by bending the

second monochromator crystal and the high-order-rejection

vertical mirror of the beamline. The scan step and pixel size

were set to 30 � 30 mm. The sample-to-detector distance was

2.16 m. We refer to the covered q range of q = 0.07–4 nm�1 as

SAXS. The scattering patterns were acquired at a rate of

25 Hz, with an exposure time of 35 ms and a detector readout

time of 5 ms per frame.

2.3. Energy-dispersive X-ray spectroscopy

For the mudrock sample, energy-dispersive X-ray spectro-

scopy (EDX) was performed with an Xmax150 EDX detector

from Oxford Instruments at an acceleration voltage of 15 kV.

2.4. X-ray diffraction

Powder X-ray diffraction (XRD) was carried out on the

same mudrock sample by the Clay and Interface Mineralogy

group at Aachen University, Germany, following the experi-

mental protocol reported by Seemann et al. (2017).

3. Results and discussion

3.1. Mudrock sample: data analysis procedure

To demonstrate our algorithm, we employ scanning WAXS

measurements of a mudrock slice (Fig. 2). As a reference for

the spatial distribution of intensities, the transmission map of

the scanned region is shown in Fig. 2(a). The IðqÞ curves are

sensitive to the sample’s structural and crystalline composi-

tion, and the resulting WAXS mapping provides the two-

dimensional spatial phase distribution of the sample. Here we

aim to automatically classify the large data sets of mixed-phase

signals IðqÞ obtained from SAXS/WAXS measurements. One

possible approach is based on the similarity of the scattering

curves. Fig. 3 represents the main steps of the data analysis

procedure presented here. All analysis steps described herein

were developed and tested using in-house-developed routines

of cSAXS in MathWorks MATLAB v2016b. The codes can be

found on the cSAXS web page at https://www.psi.ch/sls/csaxs/

software. The input data were prepared from measured

SAXS/WAXS signals (Fig. 3a) as an r � q matrix M1, where r

is the number of IiðqÞ curves and q is the range of scattering

vector moduli in IiðqÞ. To avoid weighting and misclassifying

IiðqÞ signals on the basis of magnitude, indicative of variations

of sample thickness for instance, each scattering curve was

normalized by its intensity averaged over the measured q

range. The goal of such a normalization is to bring all scat-

tering curves to the same order of magnitude, as our method

focuses mostly on the scattering curve’s shapes. For other

scanning SAXS/WAXS analysis the common normalization

employing the measured transmission map may be recom-

mended. To decrease the high-frequency noise, IiðqÞ was

resampled by logarithmically reducing the total number of q

values by a factor of ten, leading to a total of c values.

Fig. 3(b) shows a scheme of the feature extraction step. We

focus only on the scattering intensities at the inflection points,

where the first or second derivatives are zero, i.e. I0i ðqÞ = 0 or

I 00i ðqÞ = 0. We select those intensities as the interesting struc-

tural information in scattering curves is often characterized by

Bragg peaks and slope variations. Extracting only such

inflection points, represented by qd in Fig. 3(b), provides

succinct structural information about the geometric shape of

the scattering signals (Zamani & Demosthenous, 2014). This

simplifies the classification of scattering curves, as the data set

is reduced to the important features IiðqdÞ, instead of using all

available IiðqÞ values. Feature extraction reduces the input

matrix to M2 with dimensions of r � d, where d is the number

of features with I0i ðqÞ = 0 or I 00i ðqÞ = 0 and d < c (Fig. 3b). Some

intensity curves will have no inflection or peaks in the selected

qd ranges. The columns of d related to such signals will be

completed with zeros.
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Figure 1
Experimental setup: The sample is scanned across an X-ray beam along x
and y. Scattering patterns are measured by a two-dimensional detector at
each scanning point. The beamstop protects the detector from the direct
X-ray beam.



Principal component analysis (PCA) is applied to further

reduce the number of variables d (Hansen, 1987). PCA

extracts the linearly uncorrelated signals in M2, reducing the

data set to m variables that contain the most significant signals

in order of decreasing representativeness. These are known as

the principal component coefficients PCj, for j ¼ 1; :::;m,

where m is the number of considered principal components.

The first principal component, PC1, accounts for the function

that generates the maximum variance of the data set when the

component is removed. The second principal component, PC2,

accounts for as much of the remaining variance as possible,

with the constraint that the correlation between PC1 and PC2

is zero. Any further component will maximize the variance of

the residual data while being uncorrelated from all the lower-

order components. The number of principal component

coefficients, m, is obtained from an L-curve by plotting the

proportion of total variance accounted for by PCj as a function

of the number of principal components. Fig. 2(b) plots the

L-curve of the first ten principal components resulting from

PCA analysis of the mudrock sample. Here, the number of

components to represent the data set, m, is defined by the

knee position on the horizontal axis. Using the L-curve

method, m = 5 components account for more than 95% of the

variance of the data set.

The selected principal component coefficients are then

classified in clusters by k-means (Lloyd, 1982). To evaluate the

optimal number of clusters, n, we apply the silhouette criterion

(Rousseeuw, 1987). Using a Euclidean distance metric, each

signal is assigned a silhouette value within the range between

�1 and 1. A high value indicates a good match of the signal to

its own cluster compared to the distance to other clusters. We

calculate the average over all points’ silhouette values for a

range of numbers of clusters (Fig. 2c). In our experience, it has

been sufficient to select the number of clusters n which

maximizes this value without the need of intervention or prior

knowledge or assumptions. For our test sample, we tested the

range of 2–8 clusters and concluded that the WAXS signals are

best classified in four clusters, representing four main

components of the sample, as schematically shown in Fig. 3(c).

Each cluster resulting from k-means represents a main type

of signal that is present in the data set. If clusters are

completely isolated, they represent independent phases of a

sample. In the simplified two-dimensional representation of

k-means clustering in Fig. 3(c), only the principal components
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Figure 2
(a) X-ray transmission map of a thin mudrock slice. The scale bar represents 1 mm. (b) L-curve resulting from principal component analysis. It displays
the proportion of variance explained as a function of principal component PCj, for j ¼ 1; :::;m, where m is the number of considered principal
components. (c) Evaluation of the optimal number of clusters. From the silhouette criterion, the data set is best classified into four clusters. (d)
Classification of WAXS signals into four clusters. The clusters are not isolated. Thus, transition regions prone to misclassification are observed. (e)
Segmentation of scanning WAXS data according to clustering results. ( f ) Representative signals extracted as the nearest point to the cluster’s centroid.
For readability, the signals are shifted along the y axis. (g) Representative signals extracted as an average of the furthest points from the centroids in each
cluster. These regions are represented by the dashed circles in (d). For readability, the signals are shifted along the y axis.



PCj with m � 2 are represented. If clusters are not isolated

and have an interface, a gradual transition occurs between the

representative signals from one to another, indicating that the

signals are mixed at the interface and cannot be separated. For

visualization purposes, the k-means clustering is shown in

three dimensions for our test sample in Fig. 2(d) with only the

first three of five principal components plotted. This graphical

representation shows non-isolated clusters, and in this case,

only the main mixtures of phases, which follow different

trends, can be classified.

The classification of each scattering curve within a certain

cluster is used to divide the scanning SAXS/WAXS

measurements into n segments, as sketched in Fig. 3(c). Each

pixel of the scanned region will correspond to a cluster.

Following this, the scanned map can be segmented according

to regions with similar scattering signals. For the test sample,

the segmentation according to the classification of signals in

four clusters is shown in Fig. 2(e). The colors correspond to the

clusters previously defined in Fig. 2(d).

We follow two main automated approaches to find a

representative signal SlðqÞ for each cluster. The first considers

the cluster’s centroid, which is defined as the cluster’s ‘core’,

representing the average between all the signals classified

within it. The centroids are schematically represented in

Fig. 3(d) by asterisks. Fig. 2( f) shows the four scattering curves

from the test sample related to SlðqÞ, identified as the closest

point to the cluster’s centroids (Fig. 2d). If a cluster encloses

signals from mixed phases, its most uncorrelated signals will

have the highest probability of representing signals from pure

phases. This leads to the second approach, in which we identify

SlðqÞ as a set of points located the furthest from the centroids

of all clusters, as represented in Fig. 3(d). Considering the

largest distances between points in a certain cluster and the

centroids of all clusters, we select the most uncorrelated

signals, thereby avoiding the overlapping interfaces between

clusters, which are prone to misclassification. We select 10% of

all the points within a cluster which have the largest Euclidean

distances from the centroids. As a visual aid, we indicate the

points around the cluster’s outer limits within the dashed

circles in Fig. 2(d), which were selected as the representative

signals of the mudrock sample, shown in Fig. 2(g). If a cluster

is related to a homogeneous region of the sample, i.e. formed

by a pure phase, and if this pure-phase region is large enough

to generate sufficient statistics to be classified into an inde-

pendent and isolated cluster, its representative signal SlðqÞ will

represent a pure phase. However, often the illuminated

volume of a sample is composed by mixed phases, and thus

SlðqÞ will only represent scattering signals of mixtures that

form such a heterogeneous sample.

As expected from a geological sample measured by scan-

ning WAXS, no pure phases were obtained from the

segmentation of our test sample (Leu et al., 2016). The Bragg

peaks in Fig. 2(g) can only be explained by mixtures of mineral

phases. However, characteristic mixtures in the sample as well

as their spatial distribution can be determined. All repre-

sentative signals exhibit a set of common peaks, resulting from

a mixture of quartz and calcite phases. They are indicated by

the vertical dashed lines in Figs. 2( f) and 2(g). The choice of

representative signals, which were selected as the furthest

signals from the cluster centroid’s, is confirmed by XRD which

provides the sample’s composition with higher resolution and

better signal-to-noise ratio compared to scanning WAXS. The

sample composition is estimated from Rietveld refinement on

the basis of the crystalline structure. The main phases deter-

mined by XRD are 58.8% of calcite, 20% of quartz, 5.3% of

kaolinite, 5.3% of pyrite, 3% of illite/smectite, 3.3% of gypsum

and a total organic carbon content of 4.3%. For further

discussion of the representative signals, we focus only on the

peaks that distinguish the mixtures in Fig. 2(g).

In Figs. 4(a)–4(d), we compare the results of WAXS

segmentation, in green, with the element-sensitive EDX

mapping of the same region, in red. Yellow regions indicate

where the segmentation and EDX mappings overlap. The

Bragg peaks in the representative signal S1 in Fig. 2(g)

correspond well to the diffraction pattern of calcite, which

makes up 58.8% of the mudrock sample. This exemplifies that

a signal could be independently segmented if its phase

generates enough statistics. The overlapping region between

the S1 segment and the EDX mapping of calcium in Fig. 4(a)

confirms that the segmented region correlates to the spatial

distribution of calcite. Differences between EDX and

segmentation mappings stem from the distinct volumes

probed by the two techniques. EDX probes the surface of the

mudrock sample, whereas WAXS signals are an average of the

composition over the whole depth of the illuminated sample

volume.

The representative signal S2 leads to the segmented image

in Fig. 4(b), which correlates to the EDX surface mapping of
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Figure 3
Scheme of the data analysis procedure. (a) Collection of azimuthally
integrated SAXS/WAXS intensity curves IiðqÞ, for i ¼ 1; :::; r, where r is
the number of IðqÞ points. (b) M2 is formed by selecting only the d
intensities IiðqÞ where inflection points occur. (c) Dimensionality
reduction: principal component analysis is applied to M2 and the number
of main variables is reduced to m principal components PCj, for
j ¼ 1; :::;m. The optimal number of clusters n is evaluated and the signals
are classified into n clusters. We assume n = 4 in this example. The
scanned map is segmented according to the clustering results. (d)
Estimation of a representative signal SlðqÞ by selecting points that are
located furthest from all centroids, for l ¼ 1; :::; n. Further details about
each step can be found in the text.



sulfur. According to powder XRD, 3.3% of the sample

composition is gypsum, although the WAXS peaks indicate a

phase transition to bassanite, probably caused by ion-beam

polishing during sample preparation or radiation damage

during X-ray exposure. Even though the representative signal

S3 corresponds to a mixture, it exhibits the main peaks of

pyrite, which makes up 5.3% of the sample. Its segmentation

in Fig. 4(c) correlates to surface regions rich in iron. The

representative signal S4 includes the remaining mixtures, but

its features have no unique correspondence to any of the

components. The clustering in Fig. 2(d) confirms that the

region S4 shares its interfaces with all other clusters. The

segmentation in Fig. 4(d) correlates to the EDX mapping of

silicon, owing to the presence of quartz and clay minerals. The

comparison between WAXS, EDX and XRD confirms that the

mixture of phases that compose the mudrock sample could be

segmented. The overlap of surface EDX and segmented

WAXS mappings confirms the significance of the segmented

sample regions. We show that finding the main representative

WAXS signals simplifies the qualitative interpretation of large

data sets without the need of a model, unlike Rietveld

refinement, and uncovers the spatially resolved composition

distribution of complex heterogeneous crystalline samples.

Such a WAXS-based segmentation can be used to identify

and label micro-domains in mudrocks, as well as their aniso-

tropy, if specific segments of the detector are chosen. These

domains can be characterized in even more detail by scanning

SAXS to quantify pore orientation, preferential alignment,

porosity and pore size distributions (Leu et al., 2016). The

method introduced here is equally applicable to the spatial

mapping and identification of mineral phases and their

orientation using powder diffraction or wide-angle X-ray

scattering (Wenk et al., 2008; Kanitpanyacharoen et al., 2012;

Leu et al., 2016). Thus, systematic relationships between

mineralogy and pore structure, and their spatial variation, can

be investigated. These are required for accurate numerical

modeling and prediction of fluid flow through a pore network.

Several large-scale industrial applications, such as shale gas

production (Gensterblum et al., 2015), CO2 sequestration

(Rutter et al., 2017) and nuclear water storage (Marschall et

al., 2005), are limited by fluid flow in mudrocks. The

segmentation will provide insight also into other hetero-

geneous rocks containing nanoscopic pores, such as carbon-

ates, tight sandstones and coal.

3.2. Breast tissue lesions

In this section, we discuss the segmentation of scanning

SAXS measurements of breast lesions containing micro-

calcifications (Arboleda, 2017). We apply the segmentation

procedure to two samples, to increase the statistics. The clus-

tering evaluation reached a maximum when the measured

SAXS signals were classified into four clusters, labeled again

S1–S4. The results of k-means clustering are shown in Fig. 5(a);

the dashed circles represent the regions where the repre-

sentative signals were selected. The estimated representative

signals are shown in Fig. 5(b) for each cluster. From the known

breast tissue composition (Suortti et al., 2003) and with the

help of the transmission map, we associate the classified

signals as follows: S1 represents the scattering of collagen-rich

tissues; S2 represents the scattering of lipid-rich tissues; S3

represents the scattering of microcalcifications; and S4 repre-

sents the scattering of Kapton, which served as sample

support.

The representative signal S1 in Fig. 5(b) corresponds to

collagen scattering patterns; in this figure, the scattering from

the periodicity of the collagen fibrils as well as the scattering

from their thickness is indicated (Suhonen et al., 2005). This

signal is typical of type I and III of collagen, which are

abundant in breast tissue (Sidhu, 2009). Lipids are composed

of triglyceride molecules packed into a

hexagonal lattice. They assemble into

bilayers which form lamellar structures

with a spacing of about 4.26 nm (Suortti

et al., 2003). This corresponds to the

peak found around q = 1.47 nm�1 in the

representative signal S2 of Fig. 5(b).

Microcalcifications lead to the scat-

tering typical of hydroxyapathites, S3,

which have different chemical compo-

sitions and crystalline properties

(Frappart et al., 1984; Radi, 1989; Haka

et al., 2002). Owing to sample prepara-

tion, there are Kapton regions in the

top corners of Figs. 5( f)–5(h). These

regions are clearly segmented by the

representative signal S4, as it corre-

sponds to a pure phase with enough

statistics.

Figs. 5(c)–5(e) show the images

related to a benign breast lesion and

Figs. 5( f)–5(h) relate to a malignant
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Figure 4
Results of WAXS segmentation for the mudrock sample. WAXS image segmentation is represented
in green, while red corresponds to superficial EDX mappings. Areas where these maps overlap are
represented in yellow. (a) Segmentation of representative signal S1 and EDX mapping of calcium.
(b) S2 and sulfur. (c) S3 and iron. (d) S4 and silicon.



breast lesion. According to a histopathological examination,

the malignant sample corresponds to a ductal carcinoma in

situ, and the microcalcifications present in both samples were

classified as calcium hydroxyapatite or type II since they

showed non-birefringent properties under the microscope

(Frappart et al., 1984; Radi, 1989; Haka et al., 2002). The

transmission maps shown in Figs. 5(c) and 5( f) are visual

references for the image segmentation of the microcalcifica-

tions. The segmented signals represent the main regions shown

in Fig. 5(d) and 5(g).

To quantify the accuracy of the segmentation we use

Pearson’s correlation coefficient � between two given vari-

ables x and y, calculated by �x;y ¼ covðx; yÞ=�x�y, where cov is

the covariance and � is the standard deviation. Here, we

calculate � to quantify the linear dependence between each

representative signal SiðqÞ and the scattering signals IiðqÞ in

the data set. If representative signals are linked to pure phases,

the analysis can be performed by the generalized canonical

correlation analysis (Guagliardi et al., 2010; Giannini et al.,

2014; Sibillano et al., 2016). Each data point IiðqÞ will have n

correlation coefficients, one for each

cluster. In the case of the breast tissue

samples, n = 4. The correlation maps

are a finer representation of the trans-

mission maps in Figs. 5(c) and 5( f),

especially when focusing on the shape

of the microcalcifications.

The calculated correlation maps are

shown in Figs. 5(e) and 5(h) for the

breast tissue lesions. We show the

correlation coefficients � of the three

main phases S1, S2 and S3 with an RGB

color scheme that allows for the

representation of color gradients and

mixtures. For graphical representation,

correlation coefficients with values

smaller than the median calculated for

the whole image are set to zero, to

avoid overlapping regions with low

correlation. The segmentation of the

SAXS signals is confirmed for S3 and S4

signals, comparing Fig. 5(d) and 5(g)

with Fig. 5(e) and 5(h), respectively.

However, there were misclassified

points for regions between S1 and S2, as

these transitions occur between

collagen-rich and lipid-rich regions that

have similar features. Lipid-rich tissue

regions were misclassified especially

around the microcalcifications, empha-

sizing the importance of calculating the

correlation of signals. As previously

reported (Fernandez & Keyrilainen,

2004; Fernández et al., 2005), a more

heterogeneous structure is detected for

the malignant sample, owing to the

invasion of cancer into the lipid-rich

tissue.

This segmentation procedure can be

used to further segment the already

classified signals in Fig. 5 to find finer

differences in composition and struc-

ture of benign and malignant lesions.

One example could be to distinguish

between microcalcification types I and

II, as the type, composition and size

obtained from SAXS measurements
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Figure 5
Results of scanning SAXS measurements of breast lesions. (a) The data set is classified into four
clusters. (b) The representative signals for each cluster indicate that the breast tissue is segmented
into regions that are rich in collagen (S1), lipids (S2), microcalcifications (S3) and Kapton (S4). S4 is
recovered as a region of pure Kapton at the sample. Benign breast lesion: (c) Transmission map of
the benign sample. (d) Image segmentation. (e) Correlation maps that indicate misclassification of
signals near the interface of clusters of lipid-rich and collagen-rich regions, showing the regions of
transition between clusters. Malignant breast lesion: ( f ) Transmission map of the malignant sample.
(g) The segmentation shows a clear separation of the sample into four main regions, including the
Kapton corners S4 from sample preparation. (h) Correlation map that emphasizes collagen-rich and
lipid-rich classification of the malignant tumor.



could become an indicator of the severity of breast lesions. As

collagen-rich tissue can be successfully separated from lipid-

rich tissue, another possibility is the determination of breast

tissue density by measuring the full width at half-maximum of

the lipid peak for each pixel (Sidhu et al., 2011). This is an

important indicator of breast cancer risk in patients (Byrne et

al., 1995; Boyd et al., 2007, 2011). However, as discussed by

Arboleda (2017), more samples from more patients are

required for those applications to generate enough statistics

and to avoid misclassification and misdiagnosis.

4. Conclusion

We present a method to automatically classify scattering

curves of SAXS/WAXS measurements according to feature

extraction of their inflection points, such as the presence of

Bragg peaks and slope variations. One of the main advantages

of a statistical approach for SAXS/WAXS data analysis is to

find similarities between signals and to classify them without

the need of models, prior sample knowledge or human inter-

vention. The optimal number of clusters, i.e. main sample

regions, is determined by calculating the highest cluster

evaluation value based on the silhouette criterion. The clas-

sification of SAXS/WAXS signals into few clusters simplifies

the data set to a few representative signals that can be used for

further analysis. The suitability of the method was illustrated

on image segmentation of scanning SAXS/WAXS measure-

ments of a mudrock slice and breast tissue lesion samples. The

main sample regions were automatically segmented on the

basis of SAXS/WAXS similarity and mapped on two-dimen-

sional color-coded maps.

Some limitations of our method are nonlinear contributions

to the scattering patterns and the nanostructural anisotropy of

a sample. For example, the scattering of building blocks

forming an independent phase of the sample will depend on

the level of organization, composition or anisotropy; thus the

same building blocks can scatter differently and even be

classified as different phases. As a prospect for development,

we aim to extend this data analysis procedure to higher

dimensionalities and use it to segment, classify and quantify

the phases present in small-angle scattering tensor tomo-

graphy, applying the segmentation to three-dimensional reci-

procal space (Liebi et al., 2015, 2018; Schaff et al., 2015).
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