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This article describes ccCluster, a software providing an intuitive graphical user

interface (GUI) and multiple functions to perform hierarchical cluster analysis

on multiple crystallographic datasets. The program makes it easier for users to

choose, in the case of multi-crystal data collection, those datasets that will be

merged together to give good final statistics. It provides a simple GUI to analyse

the dendrogram and various options for automated clustering and data merging.

1. Introduction

The increasing brightness of beamlines for macromolecular

crystallography (MX) has been a continuing trend in recent

years. This, coupled with the development of single-photon-

counting pixel detectors and so-called ‘shutterless’ data

collection, has translated into faster data collection and, owing

to higher flux densities, the collection of X-ray diffraction data

from very small crystals of biological macromolecules.

However, because of radiation damage effects, the obtainable

resolution of a complete dataset is reduced as the crystal

volume becomes smaller. A valuable strategy for overcoming

this and the limitations imposed by radiation damage consists

of collecting small partial datasets (Garman, 2010; Owen et al.,

2011) from a series of crystals and merging these to construct a

complete dataset. This strategy, known as multi-crystal or

serial crystallography, is now commonly practised at X-ray

free-electron lasers and synchrotron sources. Two main cate-

gories of multi-crystal data collection have been developed:

those that rely on the collection of a series of ‘still’ diffraction

images from crystals introduced into the X-ray beam using

liquid/grease injectors (Chapman et al., 2011; Nogly et al., 2015;

Botha et al., 2015) or raster scanning (Coquelle et al., 2015;

Owen et al., 2017; Roedig et al., 2016; Oghbaey et al., 2016);

and those where raster scanning is coupled with a rotation of

the sample holder, as in some synchrotron serial crystal-

lography (SSX) methods (Zander et al., 2015; Gati et al., 2014).

Multiple-crystal data collections have also been successfully

applied to single-wavelength anomalous diffraction (SAD)

phasing (Liu & Hendrickson, 2015; Olieric et al., 2016; Weinert

et al., 2014), in particular for native S-SAD, where the

anomalous signal level is weak and redundancy of the data

becomes fundamental for precise measurement of anomalous

differences. Here, since the anomalous differences that are to

be measured are rather small, a high level of isomorphism

between merged datasets is also essential.
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When a few degrees – or more – of oscillation data per

crystal are available, diffraction images can be processed by

standard crystallographic software such as XDS (Kabsch,

2010) or DIALS (Waterman et al., 2013), and the resulting

partial datasets merged to produce the final complete dataset.

Here, to achieve the best results, hierarchical cluster analysis

(HCA) can be applied to select a suitable subset of the partial

datasets for merging. This method, aimed at determining the

most isomorphous datasets out of a large number, has already

been successfully used (Giordano et al., 2012; Foadi et al.,

2013). A complementary approach uses global optimization

algorithms, such as genetic algorithms (Zander et al., 2016), to

indicate the best grouping of partial datasets in order to

achieve the best final statistics possible. Genetic algorithms,

however, rely on hundreds of scaling and merging runs, rather

than just the few required for HCA, and are thus more time

consuming than HCA, often requiring several hours to

converge to a result. More recently, a new algorithm has also

been published to distinguish between random and systematic

errors and account for the case when datasets are highly

partial or weak and thus below the limits of application of

HCA (Diederichs, 2017).

In HCA one can use either unit-cell variations (Foadi et al.,

2013) or the correlation coefficients (cc(a,b)) between common

intensities in different datasets a and b (Giordano et al., 2012)

as a metric of non-isomorphism. However, for very small

partial datasets unit-cell parameters usually cannot be deter-

mined with sufficient accuracy and thus, provided enough

partial datasets are available, the use of intensity-based

correlation coefficients would seem to be more reliable

(Giordano et al., 2012). Here, we present the software

ccCluster, the main goals of which are to provide HCA based

on cc(i,j) and to provide a graphical user interface (GUI)

making the interpretation of, and interaction with, the

resulting dendrogram more accessible to users. A major

improvement from the previous implementation is that by

using ccCluster merging of partial datasets can be directly

performed, without manual editing of input files for XSCALE

(Kabsch, 2010) or POINTLESS (Evans & Murshudov, 2013),

and multiple thresholds can be rapidly tested and compared

via the software interface to achieve the best final statistics.

The tools developed can also be used in automated pipelines

for protein structure solution using many partial datasets.

ccCluster provides both an easy-to-use graphical interface for

HCA and a large choice of options for command-line opera-

tion. The software is already available for users at the ESRF

and can be obtained at http://github.com/gsantoni/ccCluster

(http://doi.org/10.5281/zenodo.580254) under the FreeBSD

license.

2. Software description and theory

2.1. Program and dependencies

ccCluster is written in Python 2.7, using cctbx (Grosse-

Kunstleve et al., 2002) for crystallographic data manipulation

and NUMPY for cluster analysis. The ccCluster GUI has been

written in PyQt5, using matplotlib (Hunter, 2007). A flowchart

of how HCA is implemented within ccCluster is presented in

Fig. 1. In the last step of the procedure ccCluster calls well

established software, in particular XSCALE (Kabsch, 2010)

for the merging of partial datasets, and in each output folder

produces a simple script allowing users to run the program

POINTLESS (Evans & Murshudov, 2013) in order to produce

directly an unmerged mtz file. This can then be used by the

program AIMLESS (Evans & Murshudov, 2013) to produce

reflection data files suitable for downstream processes in

CCP4 (Winn et al., 2011) and other crystallographic software

packages.

2.2. Distance matrix calculation and clustering method

HCA requires a definition of distance between all possible

pairs of datasets. The calculation of these distances is

performed by the ccCalc class in ccCluster. This class has two

functions: one for loading all partial datasets to be analysed

and the other to calculate the distance between them. The

distance, chosen using a command-line option, is defined on

the basis of either unit-cell variation or an intensity-based

correlation coefficient. For the latter a distance defined by

dða; bÞ ¼ 1� cc2
ða;bÞ

� �1=2
ð1Þ
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Figure 1
Flowchart of HCA using ccCluster. Input files can come from either XDS
or DIALS processing. Merging is performed automatically with
XSCALE, but a POINTLESS–AIMLESS run is also possible.



has proven to be suitable for the selection of partial datsets to

merge (Giordano et al., 2012). ccCluster uses the same metric,

but instead of relying on cc2
ða;bÞ as calculated by XSCALE

(Kabsch, 2010), which are calculated after applying

corrections to the individual datasets, this is directly obtained

using the cctbx method miller_array.correlation.

coefficient. Here, the consistency of unit-cell parameters

between datasets a and b is verified with the cctbx function

assess_symmetry() and cc2
ða;bÞ is then calculated from the

common reflections in each pair of unmerged datasets. When

unit-cell parameters for two datasets are not compatible, i.e.

when they differ by more than 1%, their distance is assigned a

value of 1, corresponding to a null correlation. This procedure

helps in the determination of outliers.

As noted above, variation in unit-cell parameters can also

be used for HCA of partial datasets in ccCluster. Here,

inspired by BLEND (Foadi et al., 2013) which uses the

variation of the unit-cell diagonal, we calculate the distance

between datasets from the maximal variation of one of the

unit-cell lengths A, B or C:

dða; bÞ ¼ max
Aa � Ab

min Aa;Abð Þ

����
����; Ba � Bb

min Ba;Bbð Þ

����
����; Ca � Cb

min Ca;Cbð Þ

����
����

� �
:

ð2Þ

It is, however, important to note that the unit-cell parameters

are highly sensitive to detector distance refinement and that

not all three parameters are precisely determined when the

diffraction wedges have less than 10� rotation. Thus, in

ccCluster a distance based on cc2
ða;bÞ is set as the default option.

The clustering deployed in ccCluster uses the average

linkage method, which defines the distance between two

clusters X and Y as the average of the distances between all

pairs of datasets from the two clusters:

DðX;YÞ ¼
1

NX þ NY

X
d a; bð Þ; a 2 X; b 2 Y; ð3Þ

NX and NY being the number of datasets in clusters X and Y.

2.3. Threshold estimation

As the aim of HCA as implemented in ccCluster is to

produce a complete dataset by merging many partial datasets,

ccCluster contains an automatic threshold height determina-

tion routine, called ‘minimal for completeness’. Once a

dendrogram is generated, this routine concatenates all the

reflection files from a cluster at a fixed threshold level and

calculates the overall completeness of the resulting Miller

array. It then gives an estimation for the minimal value of the

threshold at which the dataset is more than 98% complete.

The completeness level can be tuned by the user if desired.

From its definition [equation (3)], the clustering threshold is

directly correlated with the expected average cc2
ða;bÞ between

the merged datasets in the cluster. For example, a clustering at

0.4 will translate to an average cc2
ða;bÞ of �91% between all the

datasets within the selected cluster. Clearly, choosing the

lowest threshold possible to obtain the desired dataset

completeness should give the highest level of cc2
ða;bÞ and thus

the best merging quality.

When operating from the GUI, the desired threshold height

can be changed directly from the dendrogram representation

by clicking on the dendrogram itself. This allows users to

rapidly perform multiple merging tests, using different

threshold levels, in order to achieve optimal merged dataset

quality. A simplified threshold estimation is in any case

performed when the program is launched, to give the user

some idea of an acceptable clustering strategy. This simpler

routine, faster than the minimal threshold for completeness,

computes the increase in number of datasets in the largest

cluster as a function of the threshold. It estimates an adequate

clustering threshold, corresponding to the maximum value of

this variation.

2.4. Merging of partial datasets

Once a dendrogram has been generated, ccCluster performs

merging of partial datasets by running the program XSCALE

in the background. Two options are possible at this step.

Either the largest cluster or all clusters below a chosen linkage

threshold are merged. Additionally, the user can choose to flag

the data as ‘anomalous on’ (Friedel’s law is false) or ‘anom-

alous off’ (Friedel’s law is true) at this step. The default option

is to merge the largest cluster with Friedel’s law set to false.

During this merging procedure an individual directory

containing XSCALE input and output files is created. This

directory also contains a script for running the program

POINTLESS, to merge selected datasets in mtz format. In

addition, it contains a picture in portable network graphics

(.png) format of the dendrogram as a reminder of the clus-

tering threshold.

HCA can be performed with ccCluster from the command

line, by calling the command with the (-p) option. This way of

using the program allows its integration into pipelines for fully

automated structure solution, which requires the merging of

diffraction data collected from many crystals of the same

target. In order to do so, the linkage threshold that is auto-

matically estimated by ccCluster must, at the very least, lead to

a highly complete dataset. This can be achieved by running

ccCluster with the (-m) option which calls the minimal

threshold for completeness routine.

2.5. GUI description

Rapid user interaction is highly desirable when evaluating

the effects of choosing different HCA linkage thresholds for

partial dataset merging. To this end we have developed a GUI

(Fig. 2) which can be launched after an initial HCA run. The

main panel (Fig. 2a) of the GUI displays the dendrogram itself

as well as mouse-clickable buttons for launching the merging

procedure and setting/unsetting the ‘anomalous’ flag. Another

checkbox allows the choice between merging only the largest

cluster at a certain threshold (default) or all clusters below this

threshold. The results panel (Fig. 2b) of the GUI gives the user
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a quick overview of the quality of merged datasets. Along with

a picture of the dendrogram and an extraction of the

XSCALE.LP statistics, it is possible to plot the values for CC1/2

(Karplus & Diederichs, 2012), sigAno (|F+
� F�|/�) and hI/

�(I)i as a function of resolution. Ordering of the different

processing steps is conveniently kept by a summary, also

shown in the main panel. This gives information about which

merged datasets have the better resolution and which have the

best CC1/2.

3. Example of SSX data clustering

To illustrate the application of ccCluster to serial crystal-

lography data, partial datasets, each comprising 2� of diffrac-

tion data with an oscillation range of 0.1�, were collected at the

ESRF beamline ID29 (De Sanctis et al., 2012) from 200 micro-

crystals (smaller than 20 mm in the largest dimension) of

thaumatin contained in a single sample holder. Of the 200

partial datasets collected, 184 were successfully integrated

using XDS and were then used as input for ccCluster. Each

dataset contained on average 2483 reflections and had an

average overall completeness of 4.9%.

3.1. GUI processing and distance definition comparison

Wedges containing only 2� of diffraction data present a

rather difficult case for cluster analysis. The unit-cell para-

meters cannot be determined with sufficient precision and the

calculation of intensity-based correlation coefficients is

adversely affected by the low number of common reflections

between each wedge. To test the performance of both

approaches, two HCA runs were carried out: one using

intensity-based correlation coefficients, the other based on

variation of unit-cell dimensions. For HCA using cc(a,b),

automatic analysis in ccCluster suggested the merging of 123

datasets clustering at a linkage distance of 0.25, with subse-

quent visual analysis of the dendrogram via the ccCluster GUI

suggesting the merging of partial datasets from a smaller

cluster (98 datasets) with a linkage distance of 0.21 (Fig. 3).

The partial datasets in the smaller cluster were thus merged

and scaled (Table 1). Subsequently structure solution was

carried out using molecular replacement in DIMPLE (http://

ccp4.github.io/dimple/) and model refinement (Table 1)

effected with iterative cycles of REFMAC (Murshudov et al.,

2011) and COOT (Emsley et al., 2010). For comparison, we

also scaled and merged 179 datasets clustering at a much

computer programs
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Figure 2
Main features of the ccCluster GUI. (a) Main panel. The dendrogram is
coloured according to the chosen clustering thresholds. Blue branches
represent nodes above the thresholds chosen, meaning that they will not
be used during the merging step. On the left, buttons allow the user to
launch the merging procedure. (b) Results panel. A tab is produced for
each merged group of datasets, allowing the plotting of statistics
calculated using XSCALE. Each tab code corresponds to the name of
the folder containing the output of merging.

Table 1
Statistics of serial crystallography experiments.

Data in parentheses are for the highest-resolution shell.

Clustering by cc
Clustering by
unit cell

Data collection
and processing Threshold 0.21 Threshold 0.8 Threshold 0.27

Wavelength (Å) 2.8 2.8 2.8
Space group P42212 P41212 P41212
Unit cell (a, b, c) (Å) 58.07, 58.07,

150.56
58.09, 58.09,

150.58
58.04, 58.04,

150.51
Resolution range (Å) 19.81–1.8

(1.85–1.8)
19.67–1.8

(1.83-1.8)
19.80–1.80

(1.85–1.80)
Total No. of reflections 246 000 452 818 250 041
No. of unique reflections 24 532 24 856 24 508
Completeness (%) 98.7 (84.3) 98.6 (78.2) 97.8 (71.0)
Multiplicity 10.0 (2.4) 18.2 (3.8) 10.2 (2.6)
Half-set correlation CC1/2 0.997 (0.843) 0.775 (0.528) 0.951 (0.442)
hI/�(I)i 16.9 (3.8) 17.3 (3.0) 16.5 (3.3)
Rpim 0.029 (0.195) 0.104 (0.329) 0.044 (0.286)
Rmeas 0.097 (0.351) 0.357 (0.708) 0.144 (0.508)
B factor, Wilson plot (Å2) 12.3 25.1 15.1
Final Rcryst 0.144 0.279 0.195
Final R 0.175 0.293 0.227



higher linkage distance of 0.8 (Table 1) and used the resulting

dataset for structure solution and refinement (Table 1). HCA

using variation of unit-cell dimensions presented a clear

distinction between partial dataset subgroups (Fig. 3b). In this

case, the automatic threshold (0.27) suggested by ccCluster led

to the merging and scaling of 90 partial datasets (Table 1), with

the final dataset also used for structure determination and

refinement as outlined above.

As can be seen from Table 1, all the final datasets allowed

successful structure solution and refinement. As might be

expected, choosing which partial datasets to merge using HCA

based on either cc(a,b) or variation of unit-cell dimensions

produced both better quality datasets and better final refined

models than merging partial datasets indiscriminately.

However, it is also clear from Table 1 that both dataset and

final refined model quality are better when the choice of

partial dataset merging is directed by HCA based on cc(a,b)

than they are when HCA is based on variation of unit-cell

dimensions.

For the ensemble of partial datasets described above,

running ccCluster with the ‘minimal threshold for complete-

ness’ option results in a linkage threshold estimation of 0.2,

very close to the 0.21 chosen from manual inspection of the

dendrogram. This threshold choice resulted in the merging of

92 datasets, producing a final dataset with almost identical

characteristics to that produced by visual inspection of the

dendrogram (Table 1).

To evaluate the efficiency of the -m option, ccCluster was

used, employing the -t command line option, to merge partial

datasets clustering at various linkage threshold levels, ranging

from 0.05 to 1.0 in steps of 0.05. The results of this exercise are

shown in Fig. 4. As can be seen, �100% completeness of the

resulting dataset is achieved only when the linkage distance

used is 0.2 or above. As might be expected, merging partial

datasets clustering at linkage distances higher than 0.2 results

in compiled datasets with slightly higher hI/�(I)i, probably due

to the increased multiplicity of the final datasets. However,

even here there is no improvement in hI/�(I)i above a linkage
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Figure 3
Dendrograms representing the clustering of 184 2� wedges collected from different thaumatin crystals. (a) Clustering according to correlation coefficient.
The orange rectangle represents the cluster at a threshold of 0.21 and the blue dashed rectangle the cluster at 0.8. (b) Clustering based on variation of
unit-cell parameters. The selected cluster (orange rectangle) comprises 90 datasets at a threshold of 0.27.

Figure 4
Use of ccCluster using the -m option and 184 2� wedges collected from
different thaumatin crystals. Here the minimal threshold for 98%
completeness is estimated to be 0.2. As outlined in the main text,
merging of partial datasets clustering at linkage distances higher than 0.2
results in compiled datasets with slightly higher hI/�(I)i, probably
because of the increased multiplicity of the final datasets. However, there
is no improvement in this metric above a linkage threshold of �0.5 as the
inclusion of non-isomorphous datasets begins to have an adverse effect
on data quality.



threshold of �0.5 as the inclusion of non-isomorphous data-

sets begins to have an adverse effect on data quality.

4. Application to data from a sulfur-SAD experiment

The application of ccCluster described above concerns the use

of HCA to compile a complete dataset from small wedges of

data collected from many different crystals. While this is the

main intended application of ccCluster, the program is also

clearly applicable to the HCA of complete datasets collected

from different crystals of the same target. An example of such

a use of ccCluster is in the compilation of high-multiplicity

datasets such as those required in S-SAD experiments (Olieric

et al., 2016). Fig. 5 shows the HCA [cc(a,b)], using ccCluster, of

nine individual datasets (supporting information, Table S1)

collected from crystals of tetragonal lysozyme using X-rays of

� = 2.0 Å at ESRF beamline ID29. Here, none of the indivi-

dual datasets could be used for successful S-SAD structure

determination using default parameters in hkl2map (Pape &

Schneider, 2004) (Fig. 6a) nor could a dataset compiled by

merging all nine datasets (Fig. 6d). The ccCluster HCA

dendrogram shows that the datasets can be split into two

groups of 5 and 4 datasets, respectively, one at a linkage

threshold of 0.64 (Fig. 6c) and another at a threshold of 0.83

(Fig. 6b). Complete datasets were thus generated by the

merging of the datasets in each of these two clusters (Table 2),

and these were used in the automated SAD pipeline crank2

(Skubák & Pannu, 2013), with successful structure determi-

nation achieved using both datasets. However, they produced

slight differences in the completeness of the final model that

could be built automatically.

As a comparison, we also performed cluster analysis based

on unit-cell parameters, for which the dendrogram is shown in

Fig. 5(b). We can observe how one obtains the same two

clusters containing the same datasets, thus leading to identical

results in the phasing process. Thus, for this case the fact that

the clustering is based on the unit-cell variation or the
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Figure 5
Dendrograms from HCA on nine datasets collected for lysozyme S-SAD. (a) Dendrogam obtained by clustering according to correlation coefficients. (b)
Dendrogam obtained by clustering according to unit-cell variation. In both cases one finds two clusters containing the same datasets.

Table 2
Statistics for different clustering levels on lysozyme S-SAD experimental
data.

Data in parentheses are for the highest-resolution shell.

Threshold 0.64 Threshold 0.83 Threshold 1.0

Wavelength (Å) 2.0 2.0 2.0
Space group P43212 P43212 P43212
Unit cell (a, b, c) (Å) 77.38, 77.38,

38.69
78.33, 78.33,

37.80
77.81, 77.81,

38.30
Resolution range (Å) 19.35–2.00

(2.05–2.00)
19.61–2.00

(2.05–2.00)
19.45–1.98

(2.05–2.0)
Total No. of reflections 639 036 480 170 1 254 944
No. of unique reflections 8419 8378 8383
Completeness (%) 99.9 (99.2) 99.8 (98.8) 99.9 (99.9)
Multiplicity 95.2 (26.5) 57.3 (12.6) 149.7 (38.9)
Half-set correlation CC1/2 1.000 (0.999) 0.996 (0.954) 0.998 (0.984)
hI/�(I)i 55.9 (14.0) 32.7 (8.4) 22.2 (6.0)
Rpim 0.009 (0.039) 0.026 (0.066) 0.047 (0.080)
Rmeas 0.093 (0.208) 0.149(0.172) 0.446 (0.493)
B factor, Wilson plot (Å2) 18.0 14.2 25.1
Mid-slope of anomalous

normal probability†
1.59 1.12 0.701

CCano‡ 0.63 0.54 0.53
Correct solutions per

1000 trials
12 9 0

CCweak/CCall of best solution 21.9/39.08 14.6/35.8 10.5/25.02

† As calculated by AIMLESS (Evans & Murshudov, 2013). ‡ Calculated at 2 Å
resolution.



correlation coefficient does not make any significant differ-

ence to the results obtained.

In this example, the best results for SAD structure solution

are obtained with the cluster with the linkage threshold value

0.64 (Fig. 5a). It may seem counterintuitive that merging

datasets with cc(a,b) as low as 77% (equivalent to a linkage

threshold of 0.64) could improve the anomalous signal

required for SAD structure solution. However, the cc(a,b) used

in ccCluster is calculated over the whole common resolution

range of the datasets collected, and the HCA linkage distances

obtained could be dominated by the higher-resolution data

shells. Indeed, if we limit our analysis of these S-SAD datasets

to a common resolution of 2.5 Å (see supporting information,

Fig. S3) the linkage HCA distance for the main cluster drops

to �0.32, corresponding to hcc(a,b)i of �94%. This shows that

at intermediate resolution the datasets in this cluster are more

similar to each other than is suggested by including the whole

common resolution range in cc-based HCA. As it is usually

lower-resolution data that are used to kick-start SAD struc-

ture solution processes, this clearly explains why merging of

the five datasets in this cluster makes structure solution much

more straightforward and suggests that for SAD structure

solution protocols exploiting multi-crystal data collection the

use of HCA to guide the compilation of final datasets should

perhaps best be carried out at resolutions significantly lower

than the maximum resolution obtained.

5. Conclusions

Here we have presented ccCluster, a software aimed at facil-

itating the application of HCA in MX experiments. We are

confident that the user-friendliness of ccCluster, in particular

in its GUI mode of operation, will lead to increased and more

successful use of HCA in multi-crystal MX. While we have

presented two examples as to how ccCluster can be used to

rapidly perform HCA, to present results and to compile

complete datasets, a detailed analysis of the applicability of

HCA in multi-crystal MX is clearly beyond the scope of this

article and we refer readers to earlier discussions in this regard

(Giordano et al., 2012; Foadi et al., 2013; Zander et al., 2016,

2015). This software has already been installed at the ESRF

MX beamlines and used within the context of the SSX BAG

for one year. Successful applications have already been

published (Zander et al., 2015, 2016; Melnikov et al., 2017).
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