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Multi-time correlation functions are especially well suited to study non-

equilibrium processes. In particular, two-time correlation functions are widely

used in X-ray photon correlation experiments on systems out of equilibrium.

One-time correlations are often extracted from two-time correlation functions

at different sample ages. However, this way of analysing two-time correlation

functions is not unique. Here, two methods to analyse two-time correlation

functions are scrutinized, and three illustrative examples are used to discuss the

implications for the evaluation of the correlation times and functional shape of

the correlations.

1. Introduction

X-ray photon correlation spectroscopy (XPCS), the equiva-

lent of dynamic light scattering using X-rays instead of visible

light, is a powerful technique to study the dynamics of soft and

hard condensed matter (Grübel et al., 2008; Sutton, 2008; Gutt

& Sprung, 2015; Madsen et al., 2015; Bikondoa, 2016). XPCS

allows one to probe the dynamics of fluctuations on short

length scales (�100 nm) and long time scales (�10�4 s) (Malik

et al., 1998; Madsen et al., 2010). Information about the

dynamics is obtained by studying the time correlation of the

intensity scattered by a system in a dynamic regime when

illuminated with coherent light. Under coherent illumination,

the far-field pattern of light scattered by a sample shows a

grainy intensity distribution called speckle (Sutton et al.,

1991). The intermediate scattering function of the sample,

SðQ; �Þ, is obtained from the normalized intensity auto-

correlation of the speckles, gð2ÞðQ; �Þ, through the Siegert

relation:1

gð2ÞðQ; �Þ ¼

ItItþ�

� �
It

� �2
or

ItItþ�

� �
It

� �2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ 1þ �ðQÞ
S Q; �ð Þ

S Qð Þ

� �2

; ð1Þ

where It and Itþ� are the intensities at times t and t þ � and at

momentum transfer Q. � is a delay time. The superscript (2)

marks that the intensity autocorrelation is a second-order
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1 The Siegert relation is valid if the coherence volume contains a large number
of independent scatterers. In that case the central limit theorem conditions are
met (Goodman, 1985). The total scattered field, which is the sum of many
independent scatterers, is a random variable with a Gaussian probability
distribution and the time correlation function of the intensity can be factorized
to obtain the Siegert relation (Pusey, 2002).
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correlation on the electric field. The bar indicates an

ensemble average over wavevectors with equivalent Q

momentum transfer value and for which it is expected that the

correlations are statistically equivalent. The brackets hi denote

a time average.2 SðQÞ is the static structure factor. The optical

contrast �ðQÞ ¼ �2=hIi is a factor that is used to account for

the degree of spatial coherence of the incident radiation and is

given by the variance of the intensity (�2) divided by its mean

value (Madsen et al., 2010). The calculation of gð2ÞðQ; �Þ in

equation (1) assumes that a time average can be performed

over the entire measurement (Goodman, 1985). This

assumption is valid for systems in equilibrium because for such

systems the autocorrelation gð2Þ depends only on Q and the

time difference or delay time � between measurements. That

is, gð2Þ is time-shift invariant and does not depend on the

specific time when the measurement was made (observation

time). gð2ÞðQ; �Þ is a one-time correlation function (1-TCF).

For non-equilibrium systems (i.e. for systems with average

properties changing with time) the time average in

equation (1) is not suitable because the dynamics are evolving

and may strongly depend on the observation time. For those

systems the evolution of the correlations can still be captured

by using a more general expression than equation (1), namely

a two-time correlation function (2-TCF) (Brown et al., 1997):

CorrðQ; t1; t2Þ ¼
It1

I
t2
� It1

It2

I2
t1
� I

2

t1

� �1=2

I2
t2
� I

2

t2

� �1=2
: ð2Þ

Corr is the autocovariance of the intensity normalized by its

standard deviation. Different correlation functions are also

used (Sutton et al., 2003):

GðQ; t1; t2Þ ¼
It1

I
t2

It1
It2

ð3Þ

or

C Q; t1; t2ð Þ ¼ D Q; t1ð ÞD Q; t2ð Þ; ð4Þ

where

DðQ; tÞ ¼
It � It

It

: ð5Þ

For random Gaussian fluctuations the standard deviation

equals the average intensity (Brown et al., 1997; Loudon,

1983). Therefore, CðQ; t1; t2Þ ¼ CorrðQ; t1; t2Þ � 1 and the

different correlation functions [equations (2), (3) and (4)] are

equivalent.

The use of 2-TCFs for XPCS was introduced, to our

knowledge, by Brown et al. (1997), who studied the time

correlations in the intensity scattered by a phase ordering

system using numerical simulations. The 2-TCF is generally

represented as a two-dimensional graph of the value of

CorrðQ; t1; t2Þ, GðQ; t1; t2Þ or CðQ; t1; t2Þ for a fixed Q, with

axes t1 and t2 (see x2.2). Brown et al. (1997) introduced an

alternative coordinate system, which has subsequently been

widely used in the XPCS literature (Malik et al., 1998; Brown

et al., 1999; Livet et al., 2001; Sutton et al., 2003; Fluerasu et al.,

2005; Ludwig et al., 2005; Fluerasu et al., 2007; Müller et al.,

2011; Orsi et al., 2010, 2012; Chushkin et al., 2012; Livet &

Sutton, 2012; Bikondoa et al., 2012; Ruta et al., 2012). Using

this alternative coordinate system, approximated 1-TCFs are

often extracted from the 2-TCF at different sample ages or

observation times. We show below that in some cases

employing such a coordinate system to extract approximate

1-TCFs may pose interpretation problems. For such cases, we

put forward another coordinate system to extract the 1-TCFs

and propose a clearer graphical representation of the 2-TCFs.

This article is organized as follows: in x2 we describe the

calculation of the autocorrelation (x2.1) and the two-time

correlation function (x2.2) in discrete form. The extraction of

1-TCFs from the 2-TCF using different coordinate systems is

examined in x3. Some properties of the 2-TCF for stationary

and non-stationary systems, such as the time reversal

symmetry, the functional shape and decay times, are analysed

in x4. Model examples of 2-TCFs that reflect the differences

between the analysis done using one coordinate system or

another are presented in x5. A discussion about the coordinate

system that should be used for different cases follows in x6. In

x7 we propose, in our view, a clearer graphical representation

of the 2-TCFs. A summary (x8) and an appendix that intro-

duces a geometric interpretation of the multi-time correlation

functions in terms of metric spaces (Appendix A) close the

article.

2. Calculation of the correlation functions

2.1. Autocorrelation function

We start by constructing the one-time correlation function

(autocorrelation) for a generic set of data. The time auto-

correlation function of a process uðtÞ is defined by (Goodman,

1985)

�ðQ; �Þ :¼ uðt þ �ÞuðtÞ
� �

¼ lim
T!1

1

T

ZT=2

�T=2

uðt þ �ÞuðtÞ dt: ð6Þ

Let us consider that in a experiment we measure intensity

fluctuations in time and at points Q in reciprocal space.3 We
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2 The order in which the time and ensemble averages are performed can be
very important. For example, information about the ergodicity of the system
may be lost if the time average is done before the ensemble average (Pusey &
Van Megen, 1989), but when using area detectors the time average should be
done first to preserve the speckle visibility and to be able to extract
measurement errors directly from azimuthal variations of gð2ÞðQ; �Þ (Lumma et
al., 2000). However, multi-speckle dynamic light scattering (DLS)/PCS
analysis is often done by performing the ensemble average first (Cipelletti
& Weitz, 1999; Chushkin et al., 2012). Thus, the choice of the top or bottom
formula between the braces in equation (1) depends on the case under study.
This aspect is beyond the scope of this manuscript. For more details, see the
aforementioned references.

3 For the purposes of this paper, we will ignore the dependence of the intensity
fluctuations on the scattering vector Q and, to simplify the notation, we will
not consider the normalization terms. See for example Chushkin et al. (2012),
Madsen et al. (2015), Möller et al. (2016) and references therein for technical
details about the measurement of intensity fluctuations and data processing.



can express a set of measured intensity fluctuations at

different times as an n-tuple:

ÎIðQ; tÞ ¼ I0; I1; . . . ; Ii�1; Ii; Iiþ1; . . . ; IN

� 	
; ð7Þ

where the terms Ij are the intensity fluctuations measured at

times j ¼ 0; 1; . . . ;N and are real numbers. A generic sample

function is displayed in Fig. 1. The autocorrelation function is

defined, in discrete form, by

gð2Þð�Þ ¼
1

ðN þ 1Þ � �

XN��
i¼0

Iiþ�
i ; ð8Þ

where Iiþ�
i ¼ IiIiþ�. The terms of equation (8) corresponding

to the different delay times (�) are shown in Table 1. There are

ðN þ 1Þ � � terms for a given delay time. For � ¼ 0, (N + 1)

terms are averaged, for � ¼ 1, N terms and so on.

2.2. Two-time correlation function

If the process is not stationary, the statistical properties of

the fluctuations will evolve over time. Thus, the summation

and averaging that is done over the measurement time in

equation (8) is not appropriate. A more general expression,

namely a two-time correlation function (2-TCF), is obtained if

the average in equation (8) is not performed. The 2-TCF is

very useful to analyse the dynamics of non-equilibrium

systems (Sutton et al., 2003). The temporal fluctuations and the

variance of the 2-TCF are also used to investigate dynamical

heterogeneities in glassy systems through the analysis of

higher-order correlations and multi-point dynamic suscept-

ibilities [see Orsi et al. (2012) and Conrad et al. (2015) for

recent XPCS work and references therein for details on the

use of higher-order correlations to study dynamical hetero-

geneities].

The 2-TCF CðQ; t1; t2Þ is obtained by calculating the Car-

tesian product of ÎIðtÞ [equation (7)] with itself (see also

Appendix A for the calculation of the 2-TCF using the

terminology of metric spaces) and ensemble averaging over

equivalent Q momentum transfer vectors or pixels, when using

a two-dimensional detector (Lumma et al., 2000):

CðQ; t1; t2Þ ¼ ÎI � ÎI ¼

I0
N � � � � � � � � � IN

N

..

.
. . . ..

.

I0
i Ii

i IN
i

..

.
. . . ..

.

I0
0 � � � � � � � � � IN

0

0
BBBBBB@

1
CCCCCCA
: ð9Þ

The 2-TCF is a symmetric matrix by construction.4 That is, the

2-TCF is symmetric upon index swapping, i.e. 8 i; j: I
j
i ¼ Ii

j , or,

equivalently, Cðt1; t2Þ ¼ Cðt2; t1Þ ¼ Cðt1; t2Þ
T, where T denotes

the transpose operation. The time difference between two

elements of the 2-TCF matrix is obtained using an L1-metric

(also known as Manhattan, city-block or taxicab metric; Deza

& Deza, 2014); the temporal distance (in units of scaled time)

between two points I
j1
i1

and I
j2
i2

is obtained from the sum of the

absolute value of the differences between their row and

column indexes:

�T ¼ ji2 � i1j þ jj2 � j1j: ð10Þ

The elements with equal row and column indexes (terms of the

form Ii
i ) are ‘equal-time’ terms. For a generic equal-time term

Ii
i , if the start of the experiment is taken as t ¼ 0 for i ¼ 0, the

time elapsed from the start of the experiment is tobs ¼ i. We

shall call this elapsed time the observation time tobs. The

temporal distances �T [equation (10)] can be converted into

absolute time differences by multiplying them by the time step

�t. The autocorrelation function equation (8) is obtained by

averaging the terms along lines parallel to the t1 ¼ t2 diagonal.

3. Analysis of two-time correlation functions using
different time coordinate systems

The evolution of the correlation functions is often quantified

by selecting slices of the 2-TCFs at different observation times.

These slices can be taken in different ways, using different

coordinate systems. We discuss here the two most common

procedures in the literature. Before proceeding, we should

note, however, that other time variables such as t1, t2 could also

be used to define an ‘observation time’.
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Figure 1
Generic sample function of a random process ÎIðtÞ fluctuating in time
around its average value hÎIi. The time axis is divided into discrete time
intervals.

Table 1
Terms at different delay times � that are averaged when calculating the
autocorrelation function [equation (8)].

� Terms Number of terms

0 I0
0 ; I1

1 . . . Ii
i . . . IN

N (N + 1)

1 I1
0 ; I2

1 . . . Iiþ1
i . . . IN

N�1 ðN þ 1Þ � 1

2 I2
0 ; I3

1 . . . Iiþ2
i . . . IN

N�2 ðN þ 1Þ � 2

3 I2
0 ; I3

1 . . . Iiþ3
i . . . IN

N�3 ðN þ 1Þ � 3

� I�0 ; I1þ�
1 . . . Iiþ�

i . . . IN
N�� ðN þ 1Þ � �

N IN
0 1

4 In the usual matrix representation, the lowest row and column term is at the
top left corner. Here, we represent the matrix setting the term with the lowest
row and column index at the bottom left corner as the 2-TCF in XPCS is
generally represented graphically in this manner.



3.1. Conventional coordinate system

Starting from an equal-time term Ii
i in the 2-TCF matrix

[equation (9)], 1-TCFs at different observation times can be

extracted by taking the delay time along rows or columns in

equation (9), i.e. lines with t1 ¼ constant or t2 ¼ constant. The

terms in these 1-TCFs have the form Iiþ�
i and the delay time �

is given by � :¼ jt2 � t1j. This way of extracting 1-TCFs arises

directly from equation (8), removing the summation over i and

the normalization factor that takes into account the number of

terms summed for each delay time. We shall call this coordi-

nate system the ‘conventional coordinate system’ (CCS),

although we note that this coordinate system is rarely used in

the XPCS literature to analyse 2-TCFs. The terms at different

delay times are shown in Table 2. The autocorrelation

[equation (8)] is obtained from the 2-TCF by averaging the

terms at equal delay times � of all the CCS-1-TCFs extracted

at different observation times.

3.2. Alternative coordinate system

An ‘alternative coordinate system’ (ACS) was introduced

by Brown et al. (1997) and has become the customary coor-

dinate system in XPCS to analyse the 2-TCFs to extract

1-TCFs from them at different sample ages. In this ACS, the

sample age is taken along the t1 ¼ t2 diagonal and defined as

tage :¼ ðt2 þ t1Þ=2. The delay time magnitude is the same as in

the CCS system (i.e. � :¼ jt2 � t1j), but starting from an equal

term Ii
i , the delay time direction is taken along lines perpen-

dicular to the t1 ¼ t2 diagonal (see Fig. 2b). Cuts of the 2-TCF

along these perpendicular lines are 1-TCFs and are defined as

‘constant sample age’ cuts. These 1-TCFs are symmetric by

construction around the � ¼ 0 value. The terms at different

delay times that are obtained for a given observation time

tobs ¼ i, following the definition of Brown et al. (1997), are

schematically shown in equation (11) (bold elements) and

displayed in Table 2. Using the ACS, the autocorrelation

function [equation (8)] is also obtained by averaging the terms

at different delay times.

..

. ..
.

� � � Ii�2
iþ2 Ii�1

iþ2 Ii
iþ2 Iiþ1

iþ2 Iiþ2
iþ2 � � �

� � � Ii�2
iþ1 Ii�1

iþ1 Ii
iþ1 Iiþ1

iþ1 Iiþ2
iþ1 � � �

� � � Ii�2
i Ii�1

i Ii
i ! Iiþ1

i Iiþ2
i � � �

#

� � � Ii�2
i�1 Ii�1

i�1 Ii
i�1 Iiþ1

i�1 ! Iiþ2
i�1 � � �

#

� � � Ii�2
i�2 Ii�1

i�2 Ii
i�2 Iiþ1

i�2 Iiþ2
i�2 ! � � �

..

. ..
.

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

: ð11Þ
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Table 2
Terms at different delay times extracted from the 2-TCF, following the
conventions introduced in xx3.1 (CCS) and 3.2 (ACS).

For a delay time � to be accessible, the row and column numbers have to fulfil
the inequalities specified above.

Terms

� CCS ACS

0 Ii
i Ii

i

1 Iiþ1
i Iiþ1

i

2 Iiþ2
i Iiþ1

i�1

3 Iiþ3
i Iiþ2

i�1

�ðevenÞ Iiþ�
i I

iþ�=2�N
i��=2�0

�ðoddÞ Iiþ�
i I

iþð�þ1Þ=2�N
i�ð��1Þ=2�0

Figure 2
(a) Profile of the intensity. (b) Corresponding 2-TCF. The arrow running
from the bottom left to the top right corner denotes the observation time.
The delay time directions according to the CCS and ACS for an
observation time tobs ¼ 100 are indicated by the small arrows close to the
bottom left corner. The small squares along the observation time
correspond to observation times 284 (red), 610 (green) and 895 (cyan).
The colour bar scale shows the degree of correlation.



3.3. Differences between the CCS and ACS one-time
correlation functions

There are essential differences between the 1-TCFs that are

extracted using the conventional or the alternative coordinate

systems. The CCS-1-TCF that passes through an equal-time

term Ii
i has terms of the form Iiþ�

i , while the ACS-1-TCF

comprises terms of the form I
iþ�=2
i��=2�0 (� even) or I

iþð�þ1Þ=2
i�ð��1Þ=2�0 (�

odd) (see Table 2). Thus, for a 1-TCF extracted for an obser-

vation time5 tobs ¼ A we can note two differences:

(1) The terms of the CCS-1-TCF are of the form IAþ�
A and

thus are directly related to the intensity measured at time

tobs ¼ A. On the other hand, in a ‘constant sample age’ cut of

the 2-TCF using the ACS, the terms have the form IAþ�
A�� : terms

obtained from the multiplication of intensities measured at

times before and after tobs ¼ A are mixed (see terms in

Table 2). The ACS-1-TCF correlates terms that are equidistant

(in time) from the observation time tobs ¼ A, but these terms

are not directly related to the intensity at the observation time

tobs ¼ A, except for the terms � ¼ 0.

(2) The number of terms of the 1-TCFs extracted for

tobs ¼ A using the CCS or the ACS are different. For the CCS,

the longest 1-TCF that can be extracted is at tobs ¼ 0 (begin-

ning of the experiment). In contrast, using the ACS, the

longest delay times accessible are for observation times

tobs ’ N=2, while the delay times accessible close to the start

or end of the experiment are much shorter (see Fig. 3).

The first difference arises from the difficulty of defining

precisely a ‘constant sample age’ in the case of time correla-

tion functions. Time correlation functions are constructed by

multiplying terms measured at different times. What happens

at a certain time is related to another event at another time.

‘Constant sample age’ is then ambiguous and may be inter-

preted or defined in different ways. On one hand, a ‘constant’

age may be considered what happens to the state of the sample

at time tage ¼ A when it is related to its state at other times.

This interpretation would be in line with the analysis done

using the CCS. Or it may be interpreted as what happens when

events that occur before and after tage ¼ A and at an equidi-

stant time delay �� are compared, which would correspond to

the ACS analysis.

The second difference is just a consequence of the choice of

the coordinate system. However, the direction in which the

delay time is taken it is extremely important when performing

quantitative analysis, because, for non-equilibrium systems,

the relaxation times obtained from CCS- or ACS-1-TCFs will

be different (see x5.3).

4. 2-TCFs for stationary and non-stationary systems

In stationary systems (strictly speaking, for wide-sense

stationary systems; see Goodman, 1985), the 1-TCFs depend

only on the time difference, not on the observation time.

Therefore, the 2-TCF of a wide-sense stationary system is a

Toeplitz matrix, i.e. the following relationship between the

terms of the 2-TCF holds: 8 i; j : I
j
i ¼ I

jþ1
iþ1 . In addition, as the

2-TCF is symmetric around the t1 ¼ t2 diagonal, then

8 i; j : I
j
i ¼ Ii

j ¼ I
jþ1
iþ1 ¼ Iiþ1

jþ1 . The 2-TCF [equation (9)] of a

wide-sense stationary process thus has the form

Cð�Þ ¼

IN
0 � � � Ii

0 � � � I0
0

..

.
. . . ..

.

Ii
0 I0

0 Ii
0

..

.
. . . ..

.

I0
0 � � � Ii

0 � � � IN
0

0
BBBBBB@

1
CCCCCCA
: ð12Þ

For wide-sense stationary systems, the CCS- and ACS-

1-TCFs are therefore equivalent, except for the number of

terms for each 1-TCF. The time symmetry is also maintained

for stationary processes. The autocorrelation function of a real

(i.e. not complex) stationary process has the following prop-

erty (Goodman, 1985):

�ð�Þ ¼ �ð��Þ: ð13Þ

This property is fulfilled for the CCS- and ACS-1-TCFs of

stationary processes because 8 i; � : Iiþ�
i ¼ Ii��

i (CCS) and

Iiþ�
i�� ¼ Ii��

iþ� (ACS). However, in non-stationary processes

equation (13) does not necessarily hold (i.e. the time symmetry

is broken). Besides, the 1-TCFs will generally depend on the

observation time tobs and the delay time �. The breakdown of

the time symmetry is well reflected in the CCS coordinate

system: non-stationary processes yield asymmetric CCS-1-

TCFs. However, even for non-stationary processes,

equation (13) is fulfilled for the ACS-1-TCFs because they are

symmetric by construction.

5. Examples

It is illustrative to compare the CCS-1-TCF and ACS-1-TCF

for some model, extreme cases. Three examples are presented

below: the first two examples are based on simple mathema-

tical functions and the third is based on the integration of a

partial differential equation that has been proposed to

describe the evolution of a semiconductor surface upon ion

beam sputtering (Castro et al., 2005). These examples have

been chosen not for their physical relevance but because they

reflect well some of the issues that arise when using different

coordinate systems to extract 1-TCFs from 2-TCFs. The first

example (x5.1: intensity following a step function) manifests

that the ACS convention breaks the causality by mixing terms

before and after an event has happened. In the second

example (x5.2: sinusoidal intensity variation), the ACS-1-TCFs

give skewed correlation functions and the skewness depends

on the observation time. The third example (x5.3: 2-TCF of

self-organized nanostructure formation dynamics on a surface

due to sputtering) shows that, for an ageing system, the choice

of the delay time direction has a direct effect on the correla-

tion times and can also affect the functional shape of the

correlation function.

In all the examples, we assume that the functions used in the

calculations are representative of the dynamics of the system,
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5 In the following, we consider that using the CCS the 1-TCF is extracted along
the rows. If it were extracted along the columns, the result would be equivalent
owing to the symmetry of the 2-TCF matrix along the Ii

i diagonal.



i.e. that proper corrections, normalization and ensemble

averaging of the raw data have been performed, as would

indeed be required in a real DLS or XPCS experiment (for

details, see e.g. Chu, 2007; Wong & Wiltzius, 1993; Madsen et

al., 2010; Madsen et al., 2015).

5.1. Correlation function of a step intensity function

We consider a dynamical system yielding intensity fluctua-

tions in the scattered signal that can be described by a step

function:

IðtÞ ¼

1 0 � tobs � T1

�1 T1 < tobs � T2

1 T2 < tobs � N

8<
: ð14Þ

The signal profile is plotted in Fig. 2(a): the signal jumps

from 1 to �1 at T1 ¼ 650 and goes back to 1 at T2 ¼ 800. The

corresponding 2-TCF is shown in Fig. 2(b). CCS- and ACS-

1-TCFs extracted at observation times t�;�;� ¼ 284; 610; 895

are displayed in Fig. 3.

We observe that the CCS-1-TCFs are correlated from the

observation time tobs and �t ¼ 0 until the end of the period

(�t ¼ T1;2 � tobs) and that in the following period they are

anticorrelated (i.e. C = �1). However, the ACS-1-TCFs show

correlation from the observation time until delay times that

are twice those of the CCS-1-TCFs. This is due to the different

delay time directions and the Manhattan geometry of the

2-TCF; the CCS-1-TCF follows a line while the ACS-1-TCFs

follow a staircase trajectory [see equation (11)]. For this

reason, the ACS-1-TCFs change sign at different delay times

than the CCS-1-TCFs. The ACS-1-TCFs are correlated for

delay times that are longer than the difference between the

observation time and the switching of the intensity which,

physically, is inconsistent.

5.2. Correlation function of a periodically oscillating
intensity

Let us consider a system where, because of its dynamics, the

scattered intensity fluctuates around a constant mean value in

a sinusoidal way with angular frequency !. The intensity

fluctuation can be represented as IðtÞ ¼ cos ð!t þ ’0Þ, where

’0 is the phase at time t ¼ 0. For simplicity, we take ’0 ¼ 0 in

the following. For such a signal, comparing the signal at time t

with itself for different delay times �, it is expected that the

correlation of the signal should vary periodically from positive

to negative. The autocorrelation, as calculated using

equation (6), is

CIðtÞIðtþ�Þðt; �Þ ¼ IðtÞIðt þ �Þ
� �

¼ ðcos!�Þ=2: ð15Þ

The 2-TCF is shown in Fig. 4. The terms of the 2-TCF have the

form Ci;j ¼ cos!i cos!j. The 1-TCFs that are extracted from

the 2-TCF following the CCS or the ACS convention have the

following form:

CCS : Ctobs
ð�Þ ¼ IðtobsÞIðtobs þ �Þ

¼ cos!tobs cos !ðtobs þ �Þ

 �

;

ACS : Ctobs
ð�Þ ¼ Iðtobs þ �ÞIðtobs � �Þ

¼ cos !ðtobs þ �Þ

 �

cos !ðtobs � �Þ

 �

:

ð16Þ

The 1-TCFs extracted at tobs ¼ 284, 610, 895 with ! ¼ 0:045

are shown in Fig. 5. Using the CCS, the (a priori) expected

behaviour is reflected in the 1-TCFs, namely, the correlation

oscillates periodically from positive values to negative ones

and vice versa. The amplitude of the oscillations of a 1-TCF at
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Figure 3
1-TCFs of the step function plotted in Fig. 2(a), extracted from its
corresponding 2-TCF (Fig. 2b) at observation times tobs ¼ 284, 610, 895,
using the CCS (solid blue line) or ACS (dashed red line).

Figure 4
2-TCF of a sinusoidally oscillating intensity (! ¼ 0:045). The arrow
running from the bottom left to the top right corner denotes the
observation time. The delay time directions according to the CCS and
ACS for an observation time tobs ¼ 100 are indicated by the small arrows
close to the bottom left corner. The small squares along the observation
time correspond to observation times 284 (red), 610 (green) and 895
(cyan). The colour bar scale shows the degree of correlation.



time tobs is determined by the value of Itobs
ð� ¼ 0Þ ¼ cos!tobs.

The amplitudes of the CCS-1-TCFs are symmetric around

zero.

However, the 1-TCFs obtained with the ACS have a

different behaviour: they may sometimes be always positive or

negative. The behaviour of the 1-TCF extracted at tobs

following the ACS convention can be determined more easily

by rewriting equation (16) as

ACS : Ctobs
ð�Þ ¼ cos!tobs cos!�ð Þ

2
� sin!tobs sin!�ð Þ

2;

ð17Þ

where we have used trigonometric identities to rewrite the

expression. The two terms in equation (17) are positive and

the amplitude of the ACS-1-TCFs will oscillate between

½� sin2 !tobs; cos2 !tobs	. Thus, if sin!tobs ¼ 0 (cos!tobs ¼ 0),

Ctobs
ð�Þ will always be positive (negative). This can be observed

in the top panel of Fig. 5 (tobs ¼ 284): the correlation is always

positive. For other tobs values, the amplitude variation of the

correlations is not symmetrical and will be skewed to positive

or negative values unless sin!tobs ¼ cos!tobs.

5.3. Surface evolution under ion beam sputtering

Ion beam sputtered surfaces are non-equilibrium systems

that show ageing (Bikondoa et al., 2013). One theoretical

approach to describe the temporal evolution and dynamics of

such systems is the continuum theory, which uses partial

differential equations to describe the evolution of the surface

height (Muñoz-Garcı́a et al., 2009). Fig. 6 displays the 2-TCF

obtained from numerical simulations integrating an equation

that describes the evolution of semiconductor surfaces under

ion bombardment [for more details on such systems and the

calculation of the 2-TCF, see Bikondoa et al. (2012), and

references therein]. In Fig. 7, we have extracted CCS and ACS

1-TCFs from Fig. 6, for tobs ¼ 100. In the case of the ACS-1-

TCF (open circles), only delay values up to � ¼ 200 are

accessible. For the CCS-1-TCF (crosses), a delay time up to

� ¼ 900 can be extracted. The two 1-TCFs have been fitted

using a stretched exponential y ¼ exp½�ðx=�corrÞ
�
	, where �corr

is the correlation time and � is the Kohlrausch–Williams–

Watts exponent (Pecora, 2008). The value of the exponent �
depends on the microscopic nature of the dynamics (Madsen

et al., 2010). Only the values in the � ¼ 1! 100 range have

been used for the fit. This example shows (see values in Fig. 7)

that, for a non-equilibrium system, there may be important

differences in both the correlation times and the � exponents

that are obtained using one convention or the other. Such

differences may be extremely important when interpreting
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Figure 6
Contour plot of a 2-TCF for a model system that describes the evolution
of a semiconductor surface under ion bombardment (Bikondoa et al.,
2012). The directions of the delay time (�) for the CCS and ACS are
indicated. The colour bar scale shows the degree of correlation.

Figure 5
1-TCFs extracted from the 2-TCF of Fig. 4 at observation times tobs ¼ 284,
610, 895, using the CCS (solid blue line) or ACS (dashed red line).

Figure 7
Example of one-time correlation functions at tage ¼ 100 extracted from
the 2-TCF of Fig. 6 using the convention of Brown et al. (1997) (open red
circles) and the new convention proposed here (blue crosses). The dashed
(black) and solid (green) lines have been obtained by fitting the one-time
correlation data with the function y ¼ exp½�ðx=�corrÞ

�
	, where � is the

correlation time and � the Kolhrausch–Williams–Watts exponent
(Madsen et al., 2010). For the fits, only the data up to � ¼ 100 have
been considered.



results from 2-TCFs and modelling the underlying dynamics

(see the Discussion).

6. Discussion

Which coordinate system should be used when analysing

2-TCFs and extracting 1-TCFs? A priori, either of the two

coordinate systems can be used, provided, obviously, the

comparison with theoretical models is done accordingly. This

is the procedure followed in the pioneering work of Brown et

al. (1997), in which computer simulations are used to study the

statistical properties of speckles arising from the scattering of

coherent radiation by a phase-ordering system. Theoretical

models for such systems predict two-point, two-time correla-

tion functions of the order parameter  ðr; tÞ (i.e. the scalar

field that describes the inhomogeneity of the system). The

structure factor, which is obtained by averaging the scattered

intensity over an ensemble of initial conditions, is related to

the modulus square of the Fourier transform of the order

parameter. Brown et al. (1997) analysed the intensity 2-TCFs

using the ACS-1-TCF reference system, and the comparison

with theoretical models and the scaling functions that they

predict was done taking into account the ACS modified

coordinates. The same procedure has been used in subsequent

theoretical and experimental work on related or similar

systems (Brown et al., 1997; Livet et al., 2001; Fluerasu et al.,

2005). However, for most cases the interpretation of the CCS-

1-TCFs is more straightforward because its calculation is in

line with the usual way of calculating time correlation func-

tions in statistical mechanics: a function of the state of the

system at an initial time is multiplied by the value of the

function at another, later time t; the autocorrelation function is

defined as the ensemble average of that product (Zwanzig,

1965). CCS-1-TCFs are also in accordance with the use of

dynamic correlations and response functions to analyse how a

function of the system responds to a perturbation applied at a

certain time tp [for an account of the relationships between

response and correlation functions, see Chaikin & Lubensky

(1995) or Cugliandolo et al. (1994)]. The time symmetry is

broken by applying an external field or force at time tp. The

response function will be nonzero only for t> tp. To account

for this, a step function dependence on the time is often

included in the definition of the response function. As shown

in the example of x5.1, causality between terms of the corre-

lation function is not retained for the ACS-1-TCFs and events

that happen before and after the perturbation has occurred

(i.e. tp) are then mixed. Thus, for the analysis of such systems,

the use of CCS-1-TCFs seems to be better suited. The same

applies for quenched systems: ACS-1-TCFs would mix events

prior and subsequent to the quenching. This could be avoided

if the ACS analysis is restricted to areas in the TCF that are

not crossed by any of the ‘events’. That would entail remaining

inside a single square area (either red or blue, in Fig. 2)

without crossing the boundary to another area.

Extracting CCS-1-TCFs from the 2-TCFs is an equivalent

procedure to that employed to analyse the contact dynamics

on granular piles subjected to weak vibrations using multi-

speckle diffusive wave spectroscopy (MDWS) (Kabla &

Debrégeas, 2004). A waiting time is used to account for the

number of vibrations the system has suffered before the

measurement starts and a delay time for the number of

vibrations after the waiting time. The waiting time is equiva-

lent to the ‘observation time’ (tobs) that has been defined

above. The slow dynamics in glasses studied with dynamic light

scattering have also been analysed in a similar manner, using a

waiting time or sample age (Cipelletti et al., 2000). In these two

studies, the 2-TCF is not explicitly employed. We note here

that theories of non-equilibrium phenomena are generally

expressed in terms of correlations that follow the CCS

formulation (see e.g. Van Vliet, 2008; Berthier et al., 2011).

Ageing phenomena in glasses and other out-of-equilibrium

systems have been extensively studied with XPCS using

2-TCFs and ACS-1-TCFs (Madsen et al., 2015; Bikondoa,

2016). Thus, to compare quantitative values extracted from

ACS-1-TCFs with values obtained using other experimental

techniques (e.g. MDWS or DLS) or theoretical predictions, it

may be necessary to perform a coordinate change to analyse

the results appropriately. Unfortunately, this point is not

always clear in the literature. Instances can be found in which

the width of the diagonal contour is taken as being propor-

tional to the relaxation time (Ruta et al., 2013; Bikondoa et al.,

2013) – i.e. the ACS-1-TCF convention is used – and where

quantitative values of the relaxation time and the stretching

parameter at different sample ages are reported. However, it

would have been more natural to report quantitative values

obtained following the CCS-1-TCF convention, as this is the

one habitually used in glassy systems theory (Wolynes &

Lubchenko, 2012). But because the ageing is so slow in the

systems studied by Ruta et al. (2013) and Bikondoa et al.

(2013), the ACS- and CCS-1-TCFs are essentially equivalent.

In other work (Müller et al., 2011), it is unclear if the 1-TCFs

extracted from a 2-TCF that has sharp-cut division due to

avalanche dynamics follow the CCS or the ACS convention.

The example of the step function presented here in x5.1,

suggests that the CCS-1-TCFs would be more suitable to

analyse avalanche-type dynamics, and this may have been the

procedure followed by Müller et al. (2011). But the reference

provided by Müller et al. (2011) to explain how the 1-TCF has

been calculated corresponds to work where the ACS-1-TCF

was used (Malik et al., 1998). Which reference system has been

used by Shinohara et al. (2015) to extract 1-TCFs from 2-TCFs

is not clear either. As there are different possible ways to

extract 1-TCFs from 2-TCFs, it is important to explain

precisely how the analysis has been carried out.

Non-equilibrium systems are arguably the most interesting

cases to use the 2-TCF. Equilibrium systems are time trans-

lation invariant (Forster, 1995) but time symmetry is not

retained in non-equilibrium systems. This symmetry break is

reflected in the CCS-1-TCFs, but ACS-1-TCFs keep the

symmetry for both equilibrium and non-equilibrium processes.

On this basis, the CCS convention seems more convenient for

the analysis of dynamic processes on non-equilibrium systems.

But this does not preclude using the ACS convention if the

theoretical analysis justifies it, as was done by Brown et al.
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(1997) and in subsequent work on the non-equilibrium

dynamics of ordering systems and first-order transitions (see

the references in the Introduction). Notwithstanding, we

remark that for equilibrium systems both coordinate systems

lead to the same result and that for systems in quasi-equili-

brium the quantitative differences may be minor. The 2-TCFs

could certainly be analysed using other slicing methods if the

dynamics under study and their physical interpretation require

it. A generic procedure to extract one-time correlation func-

tions from multi-time correlation functions is presented in

Appendix A.

7. Alternative representation of the two-time
correlation function

We propose an alternative way to display graphically the

2-TCF in a way that the CCS coordinate system is more

apparent. The 2-TCF elements are plotted according to the

following matrix:

I0
N � � � � � � � � � IN

N

. .
.

. . . ..
. . .

.

I0
i Ii

i IN
i

. .
. ..

.
. . . . .

.

I0
0 � � � � � � � � � IN

0

0
BBBBBB@

1
CCCCCCA
: ð18Þ

For a generic matrix term I
j
i in equation (18), the observation

time is tobs ¼ i and the delay time � ¼ i� j. Graphically

representing equation (18), the observation and delay times

are along the vertical and horizontal axes, respectively (see

Fig. 8). Negative/positive delay times correspond to going

backward/forward in time. One advantage of this repre-

sentation is that the 1-TCFs at different observation times are

visualized more easily as horizontal lines. The autocorrelation

function is obtained by averaging the rows instead of having to

average diagonals. It also shows that with increasing sample

age there are fewer terms for each of the 1-TCFs. In this

graphical representation, the skewness and kurtosis of the

peak at � ¼ 0 could be used to quantify the degree of depar-

ture from equilibrium and the correlation times. This assertion

should still be cautioned: further theoretical developments are

needed to verify if indeed the skewness and kurtoisis can

meaningfully be related to the deviation from equilibrium, but

the idea looks attractive.

8. Summary

We have compared two coordinate systems that are used to

analyse two-time correlation functions and extract one-time

correlation functions from them. We have shown that taking

one-time correlation functions along rows or columns (CCS-1-

TCFs) is more compatible with the way autocorrelation

functions are generally calculated and theoretical results

reported. In certain cases, these CCS-1-TCFs are more

consistent physically and do not present causality problems.

Importantly, the CCS-1-TCFs are not necessarily symmetric

by construction and thus a lack of time symmetry indicates

that the system is not stationary. For non-equilibrium systems,

the correlation and delay times that are obtained with this

coordinate system differ from the ones that are obtained using

the convention introduced by Brown et al. (1997) (ACS-1-

TCFs). A new graphical representation of the 2-TCFs has

been introduced, where the observation time is represented

along the vertical axis and the delay time along the horizontal.

APPENDIX A
Geometric description of multi-time correlation
functions

We show here that multi-time (equivalently, multi-point)

correlation functions can be conveniently expressed in terms

of the formalism of metric spaces. Correlation functions of

lower order are obtained using an adequate metric and

defining a geometric trajectory in the multidimensional space.

We describe how to construct generic �-time correlation

functions from operations between N-tuples and how one-

time correlation functions can be extracted from them. We pay

special attention to the � ¼ 2 case and

the physical interpretation of the

possible trajectories. We restrict

ourselves to the correlation between

only one variable. The generalization

to correlations between different vari-

ables (cross correlations) is straight-

forward. A comprehensive discussion

of arbitrary-order correlation functions

using a tensor formalism, with special

emphasis on coherence properties, is

given by Mandel & Wolf (1995).

Let the tuple XðtÞ ¼ ðx0; x1; . . . ; xNÞ

be a set of measurements of the vari-

able XðtÞ made at times t0; t1; . . . ; tN.

Thus, the tuple indexes 0; 1; 2; . . . ;N

are related to the time the measure-

ment was done. The time difference (or
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Figure 8
Alternative representation of the 2-TCF of Fig. 6. The observation time is denoted by the cyan arrow.
The colour scale indicates the correlation.



temporal distance) between measurements is �t ¼ jtj � tij.

Using the Cartesian product, we build an �-dimensional array

X
�ð Þ
¼ X � X � � � � � X ¼ Xi;j;...

¼ xi; xj; . . .
� 


j xi; xj; . . . 2 X
� 	

; ð19Þ

where � is the order of the correlation function we want to

obtain. Each element of the array Xð�Þ is a tuple with �
elements.

For each term in the array Xð�Þ ¼ Xi;j;..., we define the

function Cð�Þ ¼ f ðXð�ÞÞ ¼ f ðXi;j;...Þ ¼ xixj; . . ., where

i; j; . . . 2 ½0;N	. Cð�Þ is the product of the elements of each

�-tuple and yields the correlation function of order �. From

C
ð�Þ, to extract an ð�� 1Þth-order correlation function we need

to select a Cð��1Þ-dimensional subset of Cð�Þ. Here, we sketch a

method to obtain one-time correlation functions from an �th-

order correlation function.

First, we need to use a metric that defines the distance

between the elements in the Xð�Þ set. The set and the metric

define a ‘metric space’ (Reed & Barry, 1980). To extract a one-

time correlation function from Cð�Þ we define a trajectory T on

C
ð�Þ, T 
 Cð�Þ. Starting from a point P 2 Cð�Þ, the trajectory is

chosen such that it joins points that are at consecutively larger

distances in the Cð�Þ grid. The distance depends on the metric

used.

The trajectories starting from a point P ¼ ðp0; . . . ; p�Þ 2

X
ð�Þ can be generically described as a set of points at succes-

sive r distances from P:

T ðP; rÞ ¼ y 2 X j dðy;PÞ ¼ r
� 	

; ð20Þ

where dðy; xÞ is the metric. As explained above, for a generic

element Xi;j;... ¼ ðxi; xj; . . .Þ 2 Xð�Þ, the indexes indicate which

element of the tuple of measurements XðtÞ are being multi-

plied when the function Cð�Þ ¼ f ðXi;j;...Þ ¼ xixj; . . . is calcu-

lated, and are related to the time when the elements were

measured. The Manhattan metric gives the distance between

two elements in Xð�Þ as the sum of the absolute differences

between their indexes:

dManðXi1;j1;...
;Xi2;j2;...

Þ :¼kXi1;j1;...
� Xi2;j2;...

k1

¼ i1 � i2

�� ��þ j1 � j2

�� ��þ � � � ; ð21Þ

where Xi1;j1;...
and Xi2;j2;...

are two generic points in Xð�Þ. The

Manhattan distance corresponds to the case p ¼ 1 of the Lp

norm (Deza & Deza, 2014):

xk k :¼
P�
i¼1

xi

�� ��p� �1=p

: ð22Þ

The Manhattan distance is the equivalent of the delay time. In

an �> 1 grid, there are many different ways (‘trajectories’) to

join points at monotonically increasing Manhattan distances.

In general, the one-time correlation functions along different

trajectories starting at a point P will not be equivalent. We

analyse in the following the trajectories on � ¼ 2.

A1. Trajectories in a two-time correlation function

A 2-TCF can be represented by a two-dimensional grid or

matrix (see x2.2). The Moore neighbourhood of a point in a

two-dimensional grid is the set of points surrounding it (Deza

& Deza, 2014). If we denote the surrounding points using four

cardinal (N, E, S, W) and four intercardinal points (NE, SE,

SW, NW), the equal-time diagonal (i.e. terms of the form Xi;i)

goes from the SW corner to the NE one (see Fig. 9). The

allowed trajectories following one-unit step sizes of the

Manhattan distance have individual steps going only along any

of the four cardinal directions. With the Manhattan metric,

trajectories along the intercardinal directions are obtained as

staircase paths. X ð2Þ ¼ X � X is symmetric by definition upon

index swapping (i.e. Xi;j ¼ Xj;i), so we restrict ourselves to

trajectories that remain in only one part of X ð2Þ, under the

equal-time diagonal. Under there requisites, the most relevant

trajectories, or at least those with a clear physical interpreta-

tion, are the trajectories starting at an equal-time point

P ¼ ðp; pÞ and which go only eastwards (E), southwards (S) or

south-eastwards (SE):

E. The eastwards trajectory mixes the event (measurement)

at point P with measurements done at later times. This

trajectory is equivalent to the usual autocorrelation function

[equation (8)] except that there is no average between the

trajectories that start at every point of the equal-time diag-

onal. The pair terms in the trajectory are of the form

ðp; pþ �Þ, where � is given by the Manhattan distance. Aver-

aging all the E trajectories for every point P on the equal-time

diagonal, one obtains the usual autocorrelation function.
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Figure 9
Manhattan distances on a two-dimensional grid. The Manhattan distances
from point (0, 0) equal to dMan ¼ 0, 1, 2, 3, 4 are represented by a circle,
squares, diamonds, up triangles and down triangles, respectively. The tick
indexes of axes X and Y indicate the index difference with respect to the
point (0, 0).



S. The southward trajectory relates the event (measure-

ment) at point P with measurements done at earlier times.

Thus, it can be interpreted as a correlation function where the

delay time goes backwards in time. The terms in the trajectory

are of the form ðp� �; pÞ. The S trajectory of any point P is

the same as the W trajectory. Averaging all the S trajectories

for every point P on the equal-time diagonal, one obtains the

usual autocorrelation function.

SE. Using the Manhattan distance, the SE trajectory can

only be obtained following a staircase-like trajectory.

Depending on the choice of the term at a Manhattan distance

equal to 1, the starting point P will be at the bottom or the top

of the stair riser. In the SE trajectory, the event at time P only

appears in the term at Manhattan distances 0 and 1. Terms at

dMan � 2 relate events that happen before and after the event

at P. The terms are of the form ðp� �; pþ �Þ.
E, S or purely SE trajectories can be obtained using a

Chebyshev metric instead of the Manhattan one as the

selecting rule for the terms along a trajectory. The Moore

neighbourhood of a point P is the set of points that are at a

Chebyshev distance equal to 1. The Chebyshev metric corre-

sponds to the p ¼ 1 case of the Lp metric [equation (22)] and

is defined as follows:

dChðp; qÞ :¼ kp� qk1 ¼ max p1 � q1

�� ��; p2 � q2

�� ��� 	
: ð23Þ

Two points in a grid at distance dCh ¼ 1 can be joined by a unit

displacement along any of the cardinal or intercardinal

directions, i.e. by the movement of the king on a chessboard

(see Fig. 10). The Chebyshev distance is also called the

‘chessboard’ or ‘king-move’ metric (Deza & Deza, 2014). A

1-TCF extracted from an SE trajectory starting at a point P of

the equal-time diagonal and joining points at increasing

Chebyshev distances is composed of terms arising from the

multiplication of two events that happen at delay times �dCh

and þdCh, respectively (see Fig. 10).

There is an important difference between the 1-TCFs

obtained using a Manhattan or a Chebyshev metric. The

1-TCFs obtained with a Manhattan metric always relate events

that are at a unit delay time, whatever the direction of the

steps is. However, using the Chebyshev metric, the delay time

between the events that are related depends on the direction

chosen. For 1-TCFs along only E or S (or staircase trajec-

tories), the delay time is always 1. Along diagonals, the delay

time between the related events is 2. That is, for a step with a

Chebyshev distance equal to 1, the time step can in fact be 1

or 2.

It is clear that, depending on the metric used and the

trajectories chosen, many different 1-TCFs can be

constructed, which, in general, will not be equivalent. Other

common metrics (for example, the Euclidean, which corre-

sponds to the Lp with p ¼ 2 case, and coincides with the

Manhattan one if � ¼ 1) can yield completely different

1-TCFs from the Manhattan or Chebyshev metrics. In this

particular case of time-correlation functions, the Manhattan

norm yields a clear physical picture for any dimensions,

because dMan ¼ 1 always relates events that are separated by

the same delay time, independently of the direction chosen in

the �-multidimensional space. For point (position) correlation

functions obtained from measurements on a plane, Euclidean

metrics would be better suited. The physics of the problem

treated will determine which metric should be used.
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Chebyshev distances on a two-dimensional grid. The Chebybshev
distances from point (0, 0) equal to dCh ¼ 0, 1, 2, 3, 4 are represented
by a circle, squares, diamonds, up triangles and down triangles,
respectively. The tick indexes of axes X and Y indicate the index
difference with respect to the point (0, 0).
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