
computer programs

680 http://dx.doi.org/10.1107/S1600576716004751 J. Appl. Cryst. (2016). 49, 680–689

Received 20 November 2015

Accepted 21 March 2016

Edited by N. D. Loh, National University of

Singapore

This article will form part of a virtual special

issue of the journal on free-electron laser

software.

‡ Present address: Linac Coherent Light Source,

SLAC National Accelerator Laboratory, 2575

Sand Hill Road, Menlo Park, CA 94025, USA.

Keywords: data processing; serial crystal-

lography; X-ray free-electron lasers; XFELs;

computer programs.

Recent developments in CrystFEL

Thomas A. White,a* Valerio Mariani,a Wolfgang Brehm,b Oleksandr Yefanov,a

Anton Barty,a Kenneth R. Beyerlein,a Fedor Chervinskii,c Lorenzo Galli,a Cornelius

Gati,a Takanori Nakane,d Alexandra Tolstikova,a,e Keitaro Yamashita,f Chun Hong

Yoon,a‡ Kay Diederichsb and Henry N. Chapmana,e,g

aCentre for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg,

Germany, bDepartment of Biology, Universität Konstanz, Box 647, 78457 Konstanz, Germany, cMoscow Institute of

Physics and Technology, 141700 Moscow, Russian Federation, dDepartment of Biological Sciences, Graduate School of

Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, eDepartment of Physics, University

of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany, fRIKEN SPring-8 Center, Sayo, 679-5148, Japan, and
gCentre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany. *Correspondence e-mail:

taw@physics.org

CrystFEL is a suite of programs for processing data from ‘serial crystallography’

experiments, which are usually performed using X-ray free-electron lasers

(FELs) but also increasingly with other X-ray sources. The CrystFEL software

suite has been under development since 2009, just before the first hard FEL

experiments were performed, and has been significantly updated and improved

since then. This article describes the most important improvements which have

been made to CrystFEL since the first release version. These changes include

the addition of new programs to the suite, the ability to resolve ‘indexing

ambiguities’ and several ways to improve the quality of the integrated data by

more accurately modelling the underlying diffraction physics.

1. Introduction

CrystFEL is a software suite created to address the processing

needs of serial femtosecond crystallography (SFX). It has

been under development since 2009 and was first made

publicly available in 2012 (White et al., 2012). It has become

the most widely used software for this purpose, with over 40

journal articles describing significant use. Many of these were

performed with no involvement whatsoever from the devel-

opers or ‘core’ advanced users. Alongside free-electron laser

(FEL) experiments, CrystFEL is equally applicable to serial

crystallography (SX) experiments performed using synchro-

tron light sources (Stellato et al., 2014; Nogly et al., 2015).

The first release version of CrystFEL was 0.3.0, which was

preceded by several internal test versions. The current version

is 0.6.1, which was released in August 2015. Between these

versions, many changes and improvements have been made to

CrystFEL, not only as a result of developments in SFX data

processing techniques, but also to improve the user interface,

stability and consistency. CrystFEL is a free and open-source

software project, meaning that contributions in the form of

changes to the source code can easily be made from outside

the core group of developers. This has already taken place

several times since CrystFEL was first published, and such

contributions are actively encouraged.

The purpose of this article is to describe some of the most

important changes between versions 0.3.0 and 0.6.1 of

CrystFEL. x2 of this article describes the changes made to the

range of programs included in the suite, and x3 concerns a

technical improvement to CrystFEL’s way of handling input

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576716004751&domain=pdf&date_stamp=2016-03-29


data. The remaining sections are directly related to the issues

of data quality in serial crystallography, an area that has seen

very rapid development in the past few years. One aspect of

this is the ability to resolve ‘indexing ambiguities’, which have

been a problem since the very first SFX experiments

(Chapman et al., 2011). The algorithm available in CrystFEL

for this purpose is slightly different from those previously

described in the literature, and therefore it is described in

detail in x4. xx5 and 6 describe progress in modelling the

underlying diffraction process more accurately, which results

in an improvement to the final merged data quality.

2. Changes to the available programs

Six new programs have been added to the CrystFEL suite, and

two have been removed. The following programs are new:

ambigator, a program for resolving indexing ambiguities,

described in x4.

cell_explorer, a graphical tool for unit-cell determination. A

run of indexamajig without the unit-cell matching procedure

(White et al., 2012) produces a list of unit-cell parameters

independently determined from each one of the diffraction

patterns. The program cell_explorer displays histograms for a,

b, c, �, � and � which the user can zoom and drag as well as

allowing the size of the histogram bins to be altered. Different

centring types are represented by colour. The user can select a

range for any of the parameters, in which case the other

histograms will change to highlight only the crystals having the

parameter within the specified range. A Gaussian function can

be fitted to the distribution of parameters within the selected

range (as shown in Fig. 1). In this way, quantitative values

including error estimates can be calculated for the cell para-

meters even in the presence of large amounts of contamina-

tion from incorrectly indexed patterns, contamination with

other crystal forms and alternative indexing options for the

same lattice.

geoptimiser, a tool for automatically refining multi-panel

detector geometry by comparing observed peak locations with

the positions calculated for reflections after indexing. The

algorithm is broadly similar to that described by Hattne et al.

(2014), but additionally allows the possibility of refining in-

plane rotations and out-of-plane shifts. This tool is described

in detail elsewhere (Yefanov et al., 2015).

list_events, a tool for manipulating lists of diffraction

patterns as input for indexamajig, described in x3.

partial_sim, a simulation tool which complements

pattern_sim by calculating partial reflection intensities using a

geometrical model of Bragg diffraction. This program was

described earlier (White et al., 2013; White, 2014).

whirligig, which analyses CrystFEL output ‘streams’ and

searches for runs of crystals in similar orientations. This tool is

intended for use in experiments similar to that described by

Gati et al. (2014), in which diffraction patterns were acquired

while performing helical scans of a grid containing micro-

crystals. A helical scan, as its name suggests, couples rotation

of the grid with its linear translation in a particular direction.

Wedges of data were identified as coming from single crystals

if the orientations of adjacent crystals, as determined by

CrystFEL, were similar. These wedges were then used for

further processing using conventional rotation-data integra-

tion software, thereby taking advantage of both the ‘serial’

and ‘rotation’ aspects of data collection.

The following programs also existed in previous versions:

check_hkl, which calculates figures of merit based on a

single set of reflection data, such as mean I=�ðIÞ values and

completeness.

compare_hkl, which calculates figures of merit based on two

sets of reflection data, such as R factors and correlation

coefficients.

get_hkl, which is a tool for performing a variety of less

common manipulations on reflection data such as expanding

symmetry equivalents or adding noise for test purposes.

hdfsee, an image viewer that works with CrystFEL’s

understanding of image data and detector geometry (see x3).

indexamajig, the main indexing and integration tool.

partialator, a program for merging reflection data with

scaling and post-refinement. This

program is described further in x6.

pattern_sim, a program for simu-

lating image data.

process_hkl, a program for merging

reflection data using less sophisticated

methods than partialator (also

described in x6).

render_hkl, which renders the

intensities of reflections in sections

through reciprocal space.

The programs sum_stack and

powder_plot, which were available in

previous versions, were removed from

CrystFEL. These programs, respec-

tively, added detector frames to form a

‘virtual powder pattern’ and calculated

one-dimensional line profiles from

them. We found that their functionality

computer programs

J. Appl. Cryst. (2016). 49, 680–689 Thomas A. White et al. � Recent developments in CrystFEL 681

Figure 1
Screenshot of cell_explorer in use, showing a first indexing run on a sample (runs 130–139) of the
previously published data for the 5-HT2B receptor (Liu et al., 2013). Two alternative sets of lattice
parameters, in this case with different centring types, have been found, which in this example
represent the same lattice. A Gaussian function has been fitted to the distribution of a parameters,
yielding a mean and standard deviation.



fits more logically in the ‘hit-finding’ software, as described in

the next section.

3. ‘Multi-event’ input files

Recent advances in crystallography, including but not limited

to the development of serial crystallography, have brought

with them the challenges of managing large datasets. In many

types of serial crystallography experiment including the

‘injector-based’ approach (Chapman et al., 2011), the detector

is read out repeatedly as crystals are moved into the path of

the X-ray beam. As a result, not every image read out from the

detector contains a crystal diffraction pattern. To reduce the

data volume, and also to convert the image data from any

facility-specific data format to a common format, a ‘hit-

finding’ stage is first performed in which the crystal diffraction

patterns are identified and written to new files. Software able

to perform this task includes Cheetah (Barty et al., 2014) and

CASS (Foucar et al., 2012). CrystFEL has been designed to

read data after this type of processing, which has the added

benefit of freeing CrystFEL from dependence on facility-

specific frameworks necessary to access the original data

streams (Damiani et al., 2016).

Much of the FEL data analysis ‘ecosystem’ (which includes

applications aside from crystallography, such as spectroscopy

and coherent diffractive imaging) has been standardized on

the Hierarchical Data Format version 5 (HDF5; http://

www.hdfgroup.org/HDF5/) as a facility-independent data

interchange format. CrystFEL, like both Cheetah and CASS,

follows this convention. This format allows chunks of data,

which can be scalar values or arrays of any dimensionality and

size, to be organized in a tree-like structure. A single file can

therefore contain the image data alongside metadata such as

the X-ray wavelength and detector distance. CrystFEL has

been designed from the start to avoid imposing restrictions on

the exact layout of the HDF5 files. Instead, it allows the

upstream processing steps performed by the facility analysis

framework or hit-finding software to set the file layout, and

reads a description of the data layout, as well as how the data

in the file relate to pixels in physical space, from a ‘geometry

file’. In this way, CrystFEL is not bound to any particular

‘flavour’ of HDF5.

Since version 0.6.0, CrystFEL can accommodate HDF5 files

that contain more than one detector readout event per file.

Previously, each individual input file had to contain only one

detector frame, resulting in a need for a very large number of

small files and therefore inefficient handling by computer

filing systems. With a ‘multi-event’ HDF5 file, the detector

frames can be grouped together into one large file, which is

more efficient and easier to manipulate, transfer across

networks and back up. Several possibilities for laying out a

multi-event HDF5 file can be accommodated: a three-

dimensional array where one dimension represents frame

number and the other two the detector readout coordinates, a

network of HDF5 ‘groups’ (analogous to familiar filesystem

directories), or a combination of the two. These two basic

possibilities are illustrated alongside a more complicated one

in Figs. 2(a)–2(c). In addition, there is no longer a requirement

that the data for all panels of a segmented detector are stored

in the same data block (Fig. 2d), allowing for more flexibility in

the layout of the HDF5 file.

Our aim was to accommodate any ‘reasonable’ layout,

without adding too much complexity. Many formats are well

accommodated by this change, including the native HDF5

layouts used by the Linac Coherent Light Source (LCLS) and

SPring-8 Angstrom Compact Laser (SACLA) data acquisition

systems, files output by the newest generation of fast counting

detectors such as EIGER (Bernstein et al., 2014), and the

native format of the Coherent X-ray Imaging Data Bank

(CXIDB; Maia, 2012). The hit-finding program Cheetah

(Barty et al., 2014) can output files directly in a multi-event

format based on the format used by the CXIDB. To help

enable CrystFEL to be easily used on data from an even wider

range of sites, we have made some tools available via the

CrystFEL web site for converting CBF, MarCCD and raw

image data to HDF5 format.

Whereas previously the input for indexamajig consisted of a

list of individual filenames to process, the input can now

consist of a much smaller list of files, since each file can now

contain very large numbers of frames. The new program

computer programs

682 Thomas A. White et al. � Recent developments in CrystFEL J. Appl. Cryst. (2016). 49, 680–689

Figure 2
Possible layouts for image data in a ‘multi-event’ HDF5 file. (a) A three-dimensional array where one direction corresponds to image data. The
correspondence between the dimensions of the array and the image data/frame number axes is arbitrary and can be defined by the user. (b) A tree of
HDF5 groups, where each frame contains a simple two-dimensional array. (c) A combination of the two, where the file contains multiple three-
dimensional blocks, each containing many frames of data. (d) A tree of HDF5 groups where the data for each of the two detector panels are stored in
separate two-dimensional arrays.



list_events can expand the short list of multi-event files into a

much longer list of ‘event descriptors’. This list can then be

filtered, sorted or otherwise modified to provide the input for

indexamajig, which can then process only the events of interest

instead of the entire dataset. The list of events could also be

used as a basis for a splitting list for partialator (x6).

4. Resolution of indexing ambiguities

Indexing ambiguities were a significant problem in serial

femtosecond crystallography for the first few years. Certain

crystal symmetries permit multiple ways of indexing the lattice

which are not equivalent with respect to the true symmetry of

the intensities. The situations that permit this include the cases

where twinning is possible by merohedry with a rotational

twin law, as well as several other cases that occur if the metric

symmetry happens to be higher than the true symmetry

(White et al., 2013). In principle, it should be possible to make

the correct indexing assignment for each crystal by comparing

intensities, but early attempts at simple algorithms based on

this idea were not successful. Recently, Brehm & Diederichs

(2014) described a working algorithm for resolving the

ambiguity. The algorithm was first demonstrated on the very

first SFX dataset, from photosystem I (Chapman et al., 2011)

as processed using a very early version of CrystFEL, and

worked well despite the low resolution of the data and

primitive processing.

In CrystFEL, a simpler algorithm related to this one has

been implemented. It also uses a clustering approach, but in

only one dimension rather than two as described previously

(Brehm & Diederichs, 2014). It is related to k-means clus-

tering (MacQueen, 1967) and is similar to the selective

breeding method of Kabsch (2014). The algorithm is as

follows:

(1) A random indexing assignment is made for each crystal.

(2) The correlation coefficient between the intensities for

each pair of crystals is calculated.

(3) For each crystal in turn

(a) the mean of correlation coefficients between this crys-

tal’s intensities and the intensities of all other crystals with the

same indexing assignment, f, is calculated,

(b) the mean of correlation coefficients between this crys-

tal’s intensities and the intensities of all other crystals with the

opposite indexing assignment, g, is calculated, and

(c) the indexing assignment of the current pattern is

swapped if g > f.

(4) Step 3 is repeated, looping back to the first crystal once

the last one has been processed, until the indexing assignments

no longer change.

Two sets of reflection intensities from crystals will always

exhibit a positive correlation coefficient, provided they cover a

large enough resolution range. This is because low-resolution

reflections are always the strongest and high-resolution

reflections always the weakest, even if the two sets of inten-

sities come from otherwise completely unrelated orientations.

To account for this, the correlation coefficients are calculated

for a restricted resolution range such as 40 Å up to 4 Å. This

resolution range must be set by the user, since the optimum

range varies for each dataset.

As with the previous algorithm, a priori knowledge of the

actual reindexing operation is not required. The algorithm

sorts the individual partial datasets from each crystal into two

groups with strong intra-group correlation but low inter-group

correlation. However, if the reindexing transformation is

known (or can be guessed, as is usually the case), the effec-

tiveness can be improved by including in f all of the correla-

tion coefficients between the current crystal and the other

crystals with the opposite indexing assignment, after rein-

dexing the reflections of the other crystals according to the

ambiguity operation.

This algorithm is implemented in the new program ambi-

gator, which was added to CrystFEL in version 0.5.3. The

ambigator program starts from the data ‘stream’ as produced

by indexamajig and outputs a new stream in which the

reflections have been reindexed correctly. The calculation of

correlation coefficients is the most computationally intensive

part of the procedure and is performed by a user-specified

number of threads in parallel to accelerate it. If the number of

crystals is large, it is not usually necessary to compute all

correlation coefficients to resolve the indexing ambiguity: the

user can specify a maximum number of correlation coefficients

per crystal. Doing so essentially reduces the complexity of the

algorithm from OðN2Þ to OðNÞ, where N is the number of

crystals. The program usually executes in a small number of

minutes for a typical SFX dataset of around 10 000 crystals on

a current desktop computer. The program also offers the

option of saving the matrix of correlation coefficients in HDF5

format, for use in analysis methods such as hierarchical clus-

tering (Zeldin et al., 2015).

Some systems, notably those in space groups P3, P31 and

P32, exhibit two indexing ambiguities instead of just one. The

two indexing ambiguities lead to a total of four possible

indexing assignments. Whereas the previous algorithms

handled this situation by clustering the data in three dimen-

sions instead of two, the new algorithm can only be applied to

one ambiguity at a time. Nevertheless, the situation can still be

handled by running the algorithm twice, first to resolve one of

the two ambiguities, then again on the reindexed results from

the first run, this time resolving the second ambiguity and

hence distinguishing between the four possible indexing

assignments.

The algorithm as implemented in ambigator has been tested

on the original data stream from the very first SFX dataset

(Chapman et al., 2011), i.e. directly using the results of the

original indexing and integration which was performed for this

experiment. After a simple text reformatting operation, the

data stream from the very early version of CrystFEL could be

used directly by CrystFEL version 0.6.1. Fig. 3 shows the

resulting correlation coefficients. In this graph, orange and

blue points, respectively, represent the values of f and g for the

crystal being considered in step 3 of the algorithm. At the start

of the process (the left-hand edge of the graph), the orange

and blue points overlap with one another. As the algorithm

progresses, it visits each crystal in the dataset before starting

computer programs

J. Appl. Cryst. (2016). 49, 680–689 Thomas A. White et al. � Recent developments in CrystFEL 683



again from the first crystal, passing over each crystal three

times in this case. As would be expected for correct indexing

assignments, the values of f become systematically higher than

those of g, both for each individual crystal and in their overall

values. The orange and blue points therefore separate into two

clusters, which can be seen as the almost complete separation

of the orange points from the blue points at the right-hand end

of the graph.

The success of this approach probably lies in the fact that it

considers the mean of the correlation coefficients between

each set of intensities and many other sets, rather than

considering only one such correlation coefficient against a

reference set of intensities. We have not found it to be

necessary to interleave this algorithm with rounds of other

data quality enhancements such as scaling or post-refinement

as described below — a single run of the algorithm on the

integrated intensities, prior to merging with scaling, is suffi-

cient. The restriction of the resolution range over which the

correlation coefficients are calculated also appears to be an

important contribution to a successful resolution of an

indexing ambiguity.

5. Prediction refinement

The final two sections of this article concern modelling the

diffraction processes that relate the crystal structure factors to

the intensities of the spots observed in the diffraction pattern.

Factors that affect this relationship include the intensity of the

incident X-ray beam, the size and quality of the crystal, the

polarization of the incident and

diffracted X-ray beams, the partiality of

each reflection (Rossmann et al., 1979),

effects from fast ionization dynamics

(Son & Santra, 2011), the energy spec-

trum of the incident X-ray beam, and

the response of the detector. Correctly

modelling these factors and then

compensating for them, for example by

using a linear scaling factor to account

for variations in the incident beam

intensity, should reduce the variance of

the intensity measurements for a parti-

cular reflection and hence result in

more precise merged intensities.

Equivalently, this should allow a

smaller number of crystals to be used to

achieve an acceptable level of precision.

This has been a very active field in the

few years that have passed since the

first SX experiments. The enhance-

ments described include refinement of

the crystal parameters prior to integra-

tion (Sauter et al., 2014; Ginn, Messer-

schmidt et al., 2015), an accurate

refinement of the detector geometry

(Ginn, Brewster et al., 2015; Yefanov

et al., 2015), outlier rejection (Ginn,

Brewster et al., 2015), scaling of the reflection data including

both linear and Debye–Waller terms (Sauter, 2015; Uervir-

ojnangkoorn et al., 2015), and the inclusion of reflection

partiality. All these improvements are implemented within

CrystFEL.

The first method proposed for SFX data analysis involved

the selection of pixels to integrate based on the proximity of

the corresponding location in reciprocal space, under the

assumption of a monochromatic X-ray beam, to a reciprocal

lattice point (Kirian et al., 2010). This was referred to as the

‘Monte Carlo’ integration method. Since the very first released

version of CrystFEL (version 0.3.0), integration has been

performed using a more conventional method in which a shoe

box summation with a fixed radius in pixels is performed

around the ‘predicted’ reflection location (White et al., 2013).

More recent versions of CrystFEL include two-dimensional

profile fitting (Rossmann, 1979) as an optional alternative

method for spot integration. No version of CrystFEL has, by

default, used the Monte Carlo integration method exactly as it

was initially described, although it was available as an option

in versions prior to the first generally released version.

Nevertheless, we use the term ‘Monte Carlo’ to refer to the

process of merging reflection intensities without accounting

for the complicated relationship between the crystal structure

factors and the intensities observed in the diffraction patterns.

Before version 0.6.1, CrystFEL’s indexing and integration

program indexamajig accepted the indexing solution from the

indexing programs [initially DirAx (Duisenberg, 1992) and

MOSFLM (Powell et al., 2013), but now also including XDS

computer programs

684 Thomas A. White et al. � Recent developments in CrystFEL J. Appl. Cryst. (2016). 49, 680–689

Figure 3
Separation of snapshots into clusters when resolving an indexing ambiguity on the original data
stream from Chapman et al. (2011). Orange and blue dots, respectively, show the values f and g for
each crystal. The red and blue lines show the smoothed average values of f and g, respectively. The
upper and lower black lines show the smoothed average values of whichever of f or g is greater or
lower, respectively, for a particular crystal. The algorithm operates by considering each crystal in
turn and passing over the entire dataset multiple times. Accordingly, the horizontal axis is labelled
twice, once at the bottom of the graph and once at the top, to show both the number of crystals used
and the number of passes over the dataset. In this run, the entire dataset (15 445 crystals) was passed
over three times, as shown in the top right.



(Kabsch, 1988) and a new algorithm known as ‘asdf’ built into

CrystFEL itself] and used it directly to calculate the spot

locations for integration. Even if the Monte Carlo merging

method is used, in which most of the factors affecting the

diffracted intensity are neglected, a model is still required to

choose (or ‘predict’) which reflections appear in the diffrac-

tion pattern. Effectively, reflections that should be excited

according to the model are assigned partialities of 1 and all

others are assigned 0. Calculating more accurate partialities

could therefore be considered as a more advanced way of

making this selection of reflections. One way to do this is by

minimizing a residual based on the intensities themselves,

which is the classic ‘post-refinement’ method (Rossmann et al.,

1979) and has been described several times in relation to SX

data (White, 2014; Kabsch, 2014; Sauter, 2015; Uervir-

ojnangkoorn et al., 2015; Ginn, Brewster et al., 2015; Kroon-

Batenburg et al., 2015). Another method to improve the

selection of reflections is by minimizing a residual involving

the reflection positions relative to observed spots and their

distance from the exact Bragg condition (Kabsch, 2014; Ginn,

Messerschmidt et al., 2015; Sauter et al., 2014). A combination

of the two methods is possible, as was described by Sauter

(2015) and Uervirojnangkoorn et al. (2015), but the two

methods are kept separate in CrystFEL, where the second

method is known as ‘prediction refinement’ because it is

concerned with optimizing the prediction of reflections prior

to integration.

In CrystFEL, prediction refinement is performed by first

selecting the observed spots that correspond to the crystal

lattice, excluding those which arise from other overlapping

diffraction patterns or other sources. This is performed by

calculating the closest integral Miller indices for each spot

using the basis vectors of the lattice (even if the indices are

very far from integral values), then calculating the predicted

location for that reflection in the pattern and including only

those which fall within ten pixels of the observed spot. This is

followed by sorting the reflections into order of increasing

values of the mean of the upper and lower ‘excitation error’

values, r (White, 2014). The list is then passed over, and the

gradient ri=i calculated for each reflection i. Each reflection j

with rj > ri is then examined in turn, in order of increasing rj,

and the list truncated at the first reflection for which

rj > j ri=iþ 0:001 nm�1: ð1Þ

This procedure essentially finds the first abrupt increase of r,

which appears to herald the end of the correct spot–reflection

pairings, and filters out outlying points in a robust manner.

Once the spots have been selected, the following residual is

minimized in a nonlinear least-squares procedure which varies

the lattice basis vectors and the centre of the diffraction

pattern on the detector:
P

wIobsr
2
refl þ ðxrefl � xobsÞ

2
þ ðyrefl � yobsÞ

2: ð2Þ

Here, xobs and yobs are the positions of an observed spot on the

detector in the laboratory coordinate system, xrefl and yrefl are

the positions of the spot as predicted by the diffraction model,

rrefl is the mean of the upper and lower ‘excitation error’

values for the reflection, Iobs is the intensity of the spot divided

by the maximum spot intensity found in the pattern, and

w ¼ 4� 10�20. The weighting factor is needed to bring the

contributions from excitation error (which is measured in

reciprocal metres and has order of magnitude 107) and spot

position (which is measured in metres and has order of

magnitude 10�4) onto approximately the same scale.

This minimization takes very little additional time and has

been found to improve the self-consistency figure of merit

CC1=2 on its own (see x6). The updated beam centre positions

generated for each crystal are stored in the data stream and

can be used to update the detector geometry in addition to the

main geometry refinement tool geoptimiser (Yefanov et al.,

2015). Fig. 4 shows the required offsets for a previously

published dataset for the 5-HT2B receptor (Liu et al., 2013),

which in this case shows a clear offset corresponding to 2.6

pixels. This plot was calculated using the results of indexing

with a target unit cell, but the updated beam centre positions

have useful values even on an initial indexing run without

reference lattice parameters.

The diffraction model in current versions of CrystFEL has

been described previously (White et al., 2013; White, 2014). It

makes use of several parameters for selecting reflections: the

beam convergence angle, the bandwidth of the X-ray beam

and a notional ‘size’ of the scattering density that surrounds

each reciprocal lattice point (‘reciprocal space profile radius’).

These parameters can be set manually if accurate values are

known; otherwise the convergence angle and bandwidth are

set to small values and the profile radius is determined auto-

matically as follows. First, reflections arising from the crystal

are selected as described above. Then, the reciprocal space

profile radius is set such that 98% of the spots that were

assigned indices are predicted. Despite having no component

that varies significantly with increasing resolution, we have

found that this method gives good matches with the observed

spots in most cases. The method could easily be extended to

computer programs

J. Appl. Cryst. (2016). 49, 680–689 Thomas A. White et al. � Recent developments in CrystFEL 685

Figure 4
Scatter plot of in-plane shifts to be applied to the entire detector, as
determined by the prediction refinement procedure. A clear shift of
0.29 mm, corresponding to 2.6 pixels for this detector, is apparent.



optimize other parameters such as the bandwidth, beam

convergence angle or crystal mosaicity.

Another method was recently described for a similar

refinement in which the reciprocal space profile radius was

minimized directly by adjusting the orientation (Ginn,

Messerschmidt et al., 2015). It can easily be demonstrated that

the prediction refinement step has a similar effect by

comparing the profile radii before and after the refinement,

both of which are stored in the data stream. For the 5-HT2B

data mentioned above, the radius was reduced for the majority

(68%) of crystals, and for nearly half (48%) of them the radius

was reduced by more than 10%.

Finally, since version 0.5.3, CrystFEL automatically

attempts to estimate the resolution to which each crystal

diffracts. For this purpose CrystFEL considers a spot to be

accounted for by a lattice if the Miller indices calculated for

the spot using the basis vectors are within 0.25 of integral

values. The 98th percentile of the scattering angles of these

spots is then taken as a conservative estimate of the resolution

limit. CrystFEL offers the option of restricting integration to

reflections lower than the limit, or extending to a resolution

limit higher by a user-specified value (which can even be

negative to restrict the resolution further, if required). This

cutoff can be performed equally well at the integration or

merging stages. Performing the cutoff at the integration stage

results in a much smaller output data stream and therefore

increases the speed of later processing, whereas performing it

at the merging stage allows different scenarios to be explored

without repeating the whole integration stage. We have found

this method of estimating the resolution to be very robust, and

it has increased the quality of the resulting density maps in

some cases (Zhang et al., 2015). The default behaviour is for

no resolution cutoff to be applied. Regardless of whether or

not the user opts to actually perform the resolution cutoff, the

conservative estimated resolution is written into the output

data stream, allowing datasets to be quickly and meaningfully

compared.

The overall flow of the processing of a single frame of data

by indexamajig is shown in Fig. 5, which can be compared with

the flow diagram for earlier versions (White et al., 2012). The

information from the peak search is used in almost all stages

after indexing, with the notable exception of the final

prediction and integration stage, which is performed from

scratch using the diffraction model constructed and refined in

the earlier stages.

6. Scaling and post-refinement

Since the first release version, CrystFEL has offered two

programs for merging individual reflection intensities into a

final dataset which can be exported and used for the subse-

quent stages of structural analysis. The first is process_hkl,

which implements a relatively simple merging strategy that

takes the average of the individual intensity measurements for

each symmetrically unique reflection, after applying correc-

tions for polarization of the incident and diffracted beams. It

offers an option for scaling of the intensities that is performed

by merging the data twice, the second time multiplying each

intensity by the scale factor which gives the best fit to the

merged intensities determined on the first pass.

The second merging program is partialator, which has much

greater capabilities including a more advanced scaling algo-

rithm based on multiple passes over the data. It also offers the

possibility of carrying out partiality correction and post-

refinement. In versions of CrystFEL prior to 0.6.1, none of the

algorithms in partialator were sufficiently stable to be applied

to real experimental data, although they worked for demon-

stration purposes on simulated data (White, 2014). As of

version 0.6.1, the scaling and merging algorithms in partialator

have been improved and are now recommended for routine

computer programs

686 Thomas A. White et al. � Recent developments in CrystFEL J. Appl. Cryst. (2016). 49, 680–689

Figure 5
Flow diagram of processing for one frame of data within indexamajig. Several indexing methods can be tried in turn, in a user-specified order. For the
purposes of illustration, the MOSFLM, DirAx and XDS methods have been selected here, with DirAx being the first to produce an indexing solution.
The subsequent stages of checking and refining the result can be disabled by the user if required.



use on real data, having been tested on many datasets. The

partiality correction and post-refinement algorithms continue

to be under development.

The scaling of reflection intensities in partialator is achieved

using least-squares minimization on a logarithmic residual, as

for the procedure described by Kabsch (2014). The algorithm

starts by merging the intensities from all crystals to make a

‘reference’ dataset. Then, for each pattern, the residual to be

minimized is

P
wrefl ln Ipartial � ln Gþ ln p� ln L� Bs2 þ ln Ifullð Þ

� �2
: ð3Þ

Here Ipartial is the intensity of the reflection as measured from

the diffraction pattern after polarization correction, G and B

are the linear and Debye–Waller scaling terms, respectively, L

is the Lorentz factor (currently set to 1), p is the estimated

partiality of the reflection, Ifull is the merged intensity of

reflection, wrefl is a weighting factor (also set to 1), and

s ¼ ðsin �Þ=�, where � is half the scattering angle and � is the

X-ray wavelength. The sum is over all reflections from one

crystal in one snapshot, and minimization is performed by

varying G and B. The advantages of a logarithmic residual are

that it improves the numerical stability of the algorithm

because very small values of exp ð�Bs2Þ are avoided, weights

reflections approximately equally across the whole resolution

range despite very large variations in intensity, and guarantees

that the resulting value of G will be positive. A special

consideration when using the logarithmic residual is that

reflections with zero or negative values of Ipartial or Ifull cannot

be included.

The least-squares minimization is linear in both ln G and B

and can therefore be performed in one iteration per crystal.

Crystals with jBj> 100 Å2 are rejected, although this cutoff

can be changed by the user if required. Once the best values

have been determined for all crystals, the intensities from all

crystals are merged once more to produce an updated refer-

ence dataset, and the process is repeated a user-specified

number of times. If the number of parameters to be refined

exceeds the number of reflections included in the refinement

calculation for any crystal, that crystal is excluded from all

further processing.

Fig. 6 shows the value of the self-consistency figure of merit

CC1=2 for four cases of data processing applied to a previously

published dataset (Liu et al., 2013): prediction refinement only,

scaling only, both and neither. Reflections containing any pixel

with a value higher than 14 000 detector units before back-

ground subtraction, the approximate saturation value of the

detector used for this experiment, were excluded. Reflections

were merged up to 0.3 nm�1 above the conservatively esti-

mated resolution limit for each crystal. Where scaling was

used, three iterations of scaling were performed. Partiality

modelling and post-refinement were not performed, i.e.

partialities were fixed as 1 for all reflections. The number of

crystals used in each case varies because of different rejection

criteria: 2081 crystals were included for ‘Neither’, 2007 for

‘Prediction refinement only’, 1617 for ‘Scaling only’ and 1422

for ‘Prediction refinement and scaling’. When prediction

refinement is used, which is the default in CrystFEL since

version 0.6.1 but can be disabled if required, crystals are

rejected if fewer than ten spots could be assigned indices as

described above. When scaling is used, crystals are rejected if

B is too large, as also described above. Despite the decreasing

number of crystals, CC1=2 increases as the more sophisticated

analysis schemes are applied. The improvement occurs across

all resolution shells, and the apparent resolution of the data, as

judged by the point where CC1=2 falls off very rapidly,

increases by about 0.5 Å. The overall CC1=2 increases from

0.878 for processing without prediction refinement and

scaling, through 0.921 for prediction refinement alone, to 0.957

for prediction refinement and scaling combined.

In addition to scaling, partialator implements post-refine-

ment as previously described (White, 2014). So far we have

found the improvements from this to be small and counter-

acted by crystals being rejected as a result of the post-refine-

ment calculation diverging. However, the improvements from

the prediction refinement and scaling shown here compare

favourably with the results found by other authors for parti-

ality-based analysis schemes applied to SFX data. Sauter

(2015) found an improvement of CC1=2 from 0.872 to 0.902

with 12 550 crystals when moving from a scheme similar to

CrystFEL’s prediction refinement to one including individual

B factors, partiality correction and post-refinement. Uervir-

ojnangkoorn et al. (2015) found an improvement of CC1=2

from 0.777 to 0.935 with 2000 crystals of thermolysin, again

when moving from a prediction refinement scheme (the one

included in cctbx.xfel; Hattne et al., 2014), without scaling, to a

full scaling and post-refinement scheme. Their post-refinement

scheme includes individual B factors as well as aspects similar

to the prediction refinement scheme presented here, but they

did not report results for these intermediate stages on their

own. The same authors found an improvement from 0.918 to

computer programs

J. Appl. Cryst. (2016). 49, 680–689 Thomas A. White et al. � Recent developments in CrystFEL 687

Figure 6
CC1=2 values for the same SFX dataset as is shown in Figs. 1 and 4, with
and without prediction refinement and scaling.



0.982 with 757 crystals of myoglobin when moving from

cctbx.xfel’s prediction refinement to full scaling and post-

refinement, also reporting CC1=2 = 0.957 for a more rudi-

mentary scaling scheme without individual B factors and

without partiality correction and post-refinement. Ginn,

Messerschmidt et al. (2015) found an improvement of CC1=2

from 0.972 to 0.983 when applying partiality correction to 5787

crystals of a viral polyhedrin, having already refined the

orientations of the crystals and scaled (without individual B

factors). Our result that the additional improvement, over that

from the prediction refinement and scaling stages, from

correcting partialities is small therefore appears to be

compatible with the previous results. Nevertheless, we by no

means exclude that our absence of large improvements with

partiality-based schemes is due to a deficiency in our imple-

mentation, and expect that further improvements in the

partiality correction and post-refinement algorithms in

CrystFEL will lead to it making a more significant improve-

ment. We leave this as the subject for future work, and also

acknowledge that CC1=2 should not be the sole quantifier of

SFX data quality.

The partialator program performs both the scaling and post-

refinement steps including cross-validation similar to that

commonly performed during structural refinement (Brünger,

1997). Five percent of the reflections in the input dataset are

excluded from the least-squares minimization procedures, and

the residual is calculated separately for these reflections to

give a ‘free residual’ which is displayed on screen. The scatter

plots of ‘observed’ and calculated partiality (White, 2014),

which can be used to visually assess the effectiveness of

partiality correction and post-refinement, are also calculated

using the ‘free’ reflections.

Another important feature of partialator is the ability to

split datasets into sections after scaling and post-refinement.

This feature is intended for use when performing a time-

resolved serial crystallography experiment [such as those

recently described by Tenboer et al. (2014) and Barends et al.

(2015)] or an isomorphous replacement experiment (Yama-

shita et al., 2015). Here, an extra input file can be provided to

partialator which gives a ‘dataset identifier’ for each diffrac-

tion pattern. Diffraction patterns are identified using either

the filename of the original image or the event descriptor (see

x3). The dataset identifier can be any sequence of letters or

numbers and might represent a time delay (in a time-resolved

experiment) or have a value such as ‘native’ or ‘derivative’ (in

an isomorphous replacement experiment). All crystals will be

scaled and post-refined as described above, but in addition to

being merged together to form an overall dataset, they will be

merged separately in groups, where each group consists of

crystals from images with identical dataset identifiers. There-

fore, all of the datasets will be on the same scale, and any

potential concerns about the uniqueness of the result of the

post-refinement are greatly reduced. For each merged dataset,

the crystals will also be randomly split into two half-datasets

which will be merged separately. Self-consistency figures of

merit for the datasets can be calculated by comparing these

split–merged datasets using compare_hkl. A pair of split–

merged half-datasets is, of course, also written for the entire

dataset, regardless of whether or not the custom dataset

splitting feature is used. A further advantage of this feature is

that, if an indexing ambiguity exists, it can be resolved using a

single run of ambigator on the entire combined stream and no

further checks need to be performed.

7. Conclusions

This article has described some of the most important recent

changes in CrystFEL, which together constitute a significant

enhancement of the software over the first released version

0.3.0 (White et al., 2012). Improvements have been made in all

areas of the suite, including the user interface and data

handling and analysis algorithms. All changes, including the

developmental changes between versions dating all the way

back to the very first lines of code, can be retrieved from the

public version control repository, for which details can be

found on the CrystFEL web site at http://www.desy.de/

~twhite/crystfel.

Future work will include further improvements across the

suite, in particular to develop the prediction refinement,

scaling, post-refinement and diffraction modelling with the

aim of fully understanding the factors affecting data quality in

an SFX experiment.

Acknowledgements

We thank all of the many users of CrystFEL who sent feed-

back and bug reports, and in particular Parker de Waal, Karol

Nass and Nadia Zatsepin for contributing bug fixes. TAW, VM,

OY, KRB, FC, LG, CG and HNC acknowledge funding from

the Helmholtz Association through project oriented funds.

CG sincerely thanks the PIER Helmholtz Graduate School for

financial support. AT acknowledges funding from the

European Union’s 2020 Research and Innovation Programme

under the Marie Skłodowska-Curie grant agreement 637295

(2015–2018). TN and KY acknowledge support by the X-ray

Free Electron Laser Priority Strategy Programme (MEXT,

Japan) and computing support from SACLA HPC and

Mini-K.

References

Barends, T. R. M. et al. (2015). Science, 350, 445–450.
Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,

White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131.
Bernstein, H. J., Sloan, J. M., Winter, G., Richter, T. S., NeXus

International Advisory Committee & Committee on the Main-
tenance of the CIF Standard (2014). Comput. Crystallogr. Newsl. 5,
12.

Brehm, W. & Diederichs, K. (2014). Acta Cryst. D70, 101–109.
Brünger, A. T. (1997). Methods Enzymol. 277, 366–396.
Chapman, H. N. et al. (2011). Nature, 470, 73–77.
Damiani, D., Dubrovin, M., Gaponenko, I., Kroeger, W., Lane, T. J.,

Mitra, A., O’Grady, C. P., Salnikov, A., Sanchez-Gonzalez, A.,
Schneider, D. & Yoon, C. H. (2016). J Appl. Cryst. 49, 672–679.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.

computer programs

688 Thomas A. White et al. � Recent developments in CrystFEL J. Appl. Cryst. (2016). 49, 680–689

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB7


Foucar, L., Barty, A., Coppola, N., Hartmann, R., Holl, P., Hoppe, U.,
Kassemeyer, S., Kimmel, N., Küpper, J., Scholz, M., Techert, S.,
White, T. A., Strüder, L. & Ullrich, J. (2012). Comput. Phys.
Commun. 183, 2207–2213.

Gati, C., Bourenkov, G., Klinge, M., Rehders, D., Stellato, F.,
Oberthür, D., Yefanov, O., Sommer, B. P., Mogk, S., Duszenko,
M., Betzel, C., Schneider, T. R., Chapman, H. N. & Redecke, L.
(2014). IUCrJ, 1, 87–94.

Ginn, H. M., Brewster, A. S., Hattne, J., Evans, G., Wagner, A.,
Grimes, J. M., Sauter, N. K., Sutton, G. & Stuart, D. I. (2015). Acta
Cryst. D71, 1400–1410.

Ginn, H. M., Messerschmidt, M., Ji, X., Zhang, H., Axford, D., Gildea,
R. J., Winter, G., Brewster, A. S., Hattne, J., Wagner, A., Grimes,
J. M., Evans, G., Sauter, N. K., Sutton, G. & Stuart, D. I. (2015). Nat.
Commun. 6, 6435.

Hattne, J. et al. (2014). Nat. Methods, 11, 545–548.
Kabsch, W. (1988). J. Appl. Cryst. 21, 916–924.
Kabsch, W. (2014). Acta Cryst. D70, 2204–2216.
Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence, J. C. H.,

Hunter, M., Fromme, P., White, T., Chapman, H. N. & Holton, J.
(2010). Opt. Express, 18, 5713–5723.

Kroon-Batenburg, L. M. J., Schreurs, A. M. M., Ravelli, R. B. G. &
Gros, P. (2015). Acta Cryst. D71, 1799–1811.

Liu, W. et al. (2013). Science, 342, 1521–1524.
MacQueen, J. (1967). Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, Vol. 1, pp. 281–297.
Berkeley: University of California Press.

Maia, F. R. N. C. (2012). Nat. Methods, 9, 854–855.

Nogly, P. et al. (2015). IUCrJ, 2, 168–176.
Powell, H. R., Johnson, O. & Leslie, A. G. W. (2013). Acta Cryst. D69,

1195–1203.
Rossmann, M. G. (1979). J. Appl. Cryst. 12, 225–238.
Rossmann, M. G., Leslie, A. G. W., Abdel-Meguid, S. S. & Tsukihara,

T. (1979). J. Appl. Cryst. 12, 570–581.
Sauter, N. K. (2015). J. Synchrotron Rad. 22, 239–248.
Sauter, N. K., Hattne, J., Brewster, A. S., Echols, N., Zwart, P. H. &

Adams, P. D. (2014). Acta Cryst. D70, 3299–3309.
Son, S.-K. & Santra, R. (2011). Phys. Rev. A, 83, 033402.
Stellato, F. et al. (2014). IUCrJ, 1, 204–212.
Tenboer, J. et al. (2014). Science, 346, 1242–1246.
Uervirojnangkoorn, M., Zeldin, O. B., Lyubimov, A. Y., Hattne, J.,

Brewster, A. S., Sauter, N. K., Brunger, A. T. & Weis, W. I. (2015).
eLife, 4, e05421.

White, T. A. (2014). Philos. Trans. R. Soc. London Ser. B, 369,
20130330.

White, T. A., Barty, A., Stellato, F., Holton, J. M., Kirian, R. A., Zat-
sepin, N. A. & Chapman, H. N. (2013). Acta Cryst. D69, 1231–1240.

White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,
A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335–341.

Yamashita, K. et al. (2015). Sci. Rep. 5, 14017.
Yefanov, O., Mariani, V., Gati, C., White, T. A., Chapman, H. N. &

Barty, A. (2015). Opt. Express, 23, 28459.
Zeldin, O. B., Brewster, A. S., Hattne, J., Uervirojnangkoorn, M.,

Lyubimov, A. Y., Zhou, Q., Zhao, M., Weis, W. I., Sauter, N. K. &
Brunger, A. T. (2015). Acta Cryst. D71, 352–356.

Zhang, H. et al. (2015). Cell, 161, 833–844.

computer programs

J. Appl. Cryst. (2016). 49, 680–689 Thomas A. White et al. � Recent developments in CrystFEL 689

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5001&bbid=BB36

