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On the basis of the continuum theory of micromagnetics, the correlation

function of the spin-misalignment small-angle neutron scattering cross section of

bulk ferromagnets (e.g. elemental polycrystalline ferromagnets, soft and hard

magnetic nanocomposites, nanoporous ferromagnets, or magnetic steels) is

computed. For such materials, the spin disorder which is related to spatial

variations in the saturation magnetization and magnetic anisotropy field results

in strong spin-misalignment scattering d�M/d� along the forward direction.

When the applied magnetic field is perpendicular to the incoming neutron beam,

the characteristics of d�M/d� (e.g. the angular anisotropy on a two-dimensional

detector or the asymptotic power-law exponent) are determined by the ratio of

magnetic anisotropy field strength Hp to the jump �M in the saturation

magnetization at internal interfaces. Here, the corresponding one- and two-

dimensional real-space correlations are analyzed as a function of applied

magnetic field, the ratio Hp/�M, the single-particle form factor and the particle

volume fraction. Finally, the theoretical results for the correlation function are

compared with experimental data on nanocrystalline cobalt and nickel.

1. Introduction

Small-angle neutron scattering (SANS) is a very popular

method for investigating nanoscale structural and magnetic

inhomogeneities in the bulk of materials. In most situations,

SANS data are analyzed in reciprocal space, by fitting a

particular model to the experimental SANS cross section. An

alternative real-space approach to analyzing SANS data is the

computation of the (auto)correlation function of the system,

for instance by means of the indirect Fourier transformation

technique (Glatter, 1977; Hansen, 2000; Fritz & Glatter, 2006;

Hansen, 2012), which has recently been extended to allow for

the analysis of two-dimensional small-angle scattering

patterns of oriented samples (Fritz-Popovski, 2013; Fritz-

Popovski, 2015). For dilute, monodisperse and uniform

particle–matrix systems, several analytical expressions for the

density–density autocorrelation function �ðrÞ or, likewise, for

the distance distribution function pðrÞ ¼ r2�ðrÞ have been

derived (see e.g. Svergun & Koch, 2003); this is a well estab-

lished procedure in small-angle X-ray scattering and in

nuclear SANS, e.g. in the analysis of polymers (Mortensen &

Pedersen, 1993) or in the study of the formation of magnetic

nanocrystals in glass ceramics (Lembke et al., 1999).

In the context of real-space analysis of scattering data, it is

also worth mentioning the recent progress made in the

computation of the magnetic pair distribution function

(Frandsen et al., 2014), which is obtained via Fourier trans-

formation of the magnetic neutron scattering cross section.

This approach permits the analysis of long- and short-range

magnetic correlations of a wide range of magnetic structures
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such as spin-density waves, spin-ice compounds or molecular

magnets.

We have recently provided a theory of magnetic SANS of

polycrystalline bulk ferromagnets (Honecker & Michels,

2013), which was successfully employed in order to analyze the

magnetic microstructure of iron-based two-phase nano-

composites (Honecker et al., 2013). In addition to nano-

composites, the theory is also applicable to the study of

elemental ferromagnets, nanoporous magnets or ferromag-

netic steels; it provides information on the exchange-stiffness

constant, as well as on the strength and spatial structure of the

magnetic anisotropy and magnetostatic field.

Magnetic SANS of statistically isotropic bulk ferromagnets

is, in contrast to nuclear SANS on such structures, highly

anisotropic, i.e. the magnetic SANS cross section depends not

only on the magnitude but also on the orientation of the

momentum-transfer vector. The results for the Fourier coef-

ficients of the magnetization (Honecker & Michels, 2013)

demonstrate the unmistakable impact of the magnetodipolar

interaction on magnetic SANS. Magnetostatics is essential for

understanding the complex magnetic field-dependent angular

anisotropies which may be observed on a two-dimensional

position-sensitive detector; these anisotropies go beyond the

well known ‘sin2 �’ anisotropy of magnetic SANS. Further-

more, the classical particle–matrix concept of small-angle

scattering is not adapted to the complex magnetic textures

that may form inside the bulk of magnetic media [see

discussion in the introduction of Michels (2014)]; for such

materials, the continuum theory of micromagnetics (Brown,

1963) provides the proper theoretical framework for

computing the magnetic SANS cross section. It is the purpose

of this paper to provide a discussion of the predictions of our

micromagnetic SANS theory in real space by calculating the

correlation function of the spin-misalignment SANS cross

section.

The paper is organized as follows: x2 introduces the model

for the magnetic microstructure of bulk ferromagnets, which

underlies our magnetic SANS theory; in x3, we summarize the

main expressions for the unpolarized magnetic SANS cross

section; in x4, we define the correlation function of the spin-

misalignment SANS cross section, and we compare its defi-

nition with the corresponding result from nuclear SANS

theory; x5 details the models for the anisotropy field and

longitudinal magnetization Fourier coefficient; in x6, we

discuss the results for the correlation functions and correlation

lengths, and we provide a comparison with experimental data;

x7 summarizes the main findings of this study.

2. Model for the magnetic microstructure of bulk
ferromagnets

We consider polycrystalline statistically isotropic bulk ferro-

magnets. Examples of such materials are inert-gas condensed

single-phase elemental ferromagnets (Weissmüller et al., 2004;

Löffler et al., 2005; Michels et al., 2008, 2009; Döbrich et al.,

2012), soft magnetic two-phase nanocomposites from the

FINEMET (VITROPERM) or NANOPERM family of alloys

(Ohnuma et al., 2000; Heinemann et al., 2000; Michels et al.,

2006), NdFeB-based permanent magnets (Bick et al., 2013;

Périgo et al., 2015), and magnetic steels (Coppola et al., 1998;

Bischof et al., 2007; Michaud et al., 2007; Alinger et al., 2009;

Bergner et al., 2013). Fig. 1(a) shows a sketch of the nuclear

(grain) microstructure of such a material, and Fig. 1(b)

displays qualitatively the magnetic (spin) distribution at a

nearly saturating applied magnetic field.

On the basis of the continuum theory of micromagnetics

(Brown, 1963), we have provided (Honecker & Michels, 2013)

a first-order theory for the magnetic spin-misalignment SANS

cross section of weakly inhomogeneous bulk ferromagnets,

which accounts for spatial variations in the magnetic aniso-

tropy and saturation magnetization. The theory, valid close to

magnetic saturation, is based on the solution of the well

known balance-of-torques equation,

MðrÞ �HeffðrÞ ¼ 0; ð1Þ

which expresses the fact that at static equilibrium the torque

on the magnetization vector field MðrÞ due to an effective

magnetic field HeffðrÞ vanishes everywhere inside the material.

The effective field

HeffðrÞ ¼ H0 þHdðrÞ þHpðrÞ þHexðrÞ ð2Þ
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Figure 1
Model for the magnetic microstructure of bulk ferromagnets. (a) Sketch
of an idealized two-dimensional (nuclear) grain microstructure. The two
main sources that cause a perturbation of the magnetic microstructure are
identified in our magnetic SANS theory (Honecker & Michels, 2013) as
(i) spatial (random) variations in the direction and/or magnitude of the
magnetic anisotropy field and (ii) spatial variations in the magnitude of
the saturation magnetization. The characteristic length scales (correlation
lengths) over which such variations occur may be related, for example, to
the average particle or crystallite size D, which for bulk nanomagnets is
typically of the order of 10–20 nm. In (a), the crystallographic set of easy
axes for the magnetization changes randomly at each internal interface
(e.g. a grain boundary); for simplicity, we have here assumed a uniaxial
magnetic anisotropy (l). In addition, the magnetic material’s parameters
(exchange constant A, anisotropy constant K and saturation magnetiza-
tion Ms) may depend on the position inside the material [which is
symbolized by grains (cells) with different color]. (b) Superposed
(magnetic) spin microstructure in the presence of a strong applied
magnetic field H0. The shown coarse-grained distribution of spins is only
qualitative, but suggests the existence of continuously varying nanoscale
magnetization profiles, which give rise to a strongly field-dependent
magnetic SANS cross section. Note also the absence of sharp interfaces in
the magnetic microstructure (b), in contrast to the grain microstructure
(a).



is composed of a uniform applied magnetic field H0, the

magnetostatic field HdðrÞ, the magnetic anisotropy field HpðrÞ

and the exchange field HexðrÞ. The general solution of equa-

tion (1) for the transverse magnetization Fourier coefficients

(in the high-field limit) is given in Appendix A. Metlov &

Michels (2015) extended the first-order theory to second order

in the amplitudes of the inhomogeneities (including fluctua-

tions in the exchange interaction), and the corresponding

magnetic SANS cross section was computed up to the third

order. For the sake of a self-contained presentation, we

summarize in x3 the main results for the magnetic SANS cross

section of bulk magnetic materials.

3. Magnetic SANS theory of bulk ferromagnets –
unpolarized neutrons

Since the spin-misalignment scattering of bulk ferromagnets is

independent of the polarization of the incident neutron beam,

it is sufficient to restrict the considerations for the correlation

function to the unpolarized cross section. As discussed by

Michels (2014), half-polarized (SANSPOL) experiments on

bulk magnetic materials do not provide significantly more

information regarding the spin-misalignment SANS than can

already be learned from the analysis of unpolarized data; this

is because the SANSPOL ‘spin-up’ and ‘spin-down’ cross

sections differ essentially only by a nuclear-magnetic inter-

ference term �eNNeMMz, which is usually small and weakly field

dependent as compared to the spin-misalignment SANS. In

order to demonstrate the main effects, we concentrate in the

following on the unpolarized magnetic SANS of bulk ferro-

magnets in the two scattering geometries that have the applied

magnetic field H0 either perpendicular or parallel to the

incident neutron-beam direction (see Fig. 2). The corre-

sponding equations for polarized SANS and, in particular, the

spin-flip (POLARIS) equations are given by Honecker et al.

(2010) and Michels (2014).

3.1. k0 ? H0

For the scattering geometry where the applied magnetic

field H0 k ez is perpendicular to the wavevector k0 of the

incoming neutron beam (compare Fig. 2a), the elastic unpo-

larized SANS cross section d�=d� at scattering vector q can

be written as (Michels, 2014)

d�

d�
ðqÞ ¼

8�3

V
jeNNj2 þ b2

Hj
eMMxj

2
þ b2

Hj
eMMyj

2 cos2 �
h

þ b2
Hj
eMMzj

2 sin2 � � b2
Hð
eMMy
eMM�z þ eMM�yeMMzÞ sin � cos �

i
: ð3Þ

jqj ¼ q ¼ ð4�=�Þ sin , where  is half the scattering angle

and � is the wavelength of the incident radiation, V is the

scattering volume, bH ¼ 2:91� 108 A�1m�1 relates the atomic

magnetic moment to the Bohr magneton, eNNðqÞ andeMMðqÞ ¼ ½eMMxðqÞ; eMMyðqÞ; eMMzðqÞ� denote, respectively, the

Fourier coefficients of the nuclear scattering length density

and of the magnetization MðrÞ ¼ ½MxðrÞ;MyðrÞ;MzðrÞ�, and �
represents the angle between H0 and q ffi q ð0; sin �; cos �Þ; the

asterisks (�) mark the complex conjugate quantity, and the

atomic magnetic form factor (in the expression for bH) is

approximated to unity (forward scattering).

As shown by Honecker & Michels (2013), near magnetic

saturation and for a weakly inhomogeneous bulk ferromagnet,

d�=d� can be evaluated by means of micromagnetic theory.

In particular,

d�

d�
ðqÞ ¼

d�res

d�
ðqÞ þ

d�M

d�
ðqÞ; ð4Þ

where

d�res

d�
ðqÞ ¼

8�3

V
jeNNj2 þ b2

Hj
eMMzj

2 sin2 �
� �

ð5Þ

represents the nuclear and magnetic residual SANS cross

section, which is measured at complete magnetic saturation

(infinite field), and

d�M

d�
ðqÞ ¼ SHðqÞRHðq; �;HiÞ þ SMðqÞRMðq; �;HiÞ ð6Þ

is the spin-misalignment SANS cross section. The magnetic

scattering due to transverse spin components, with related

Fourier amplitudes eMMxðqÞ and eMMyðqÞ, is contained in

d�M=d�, which decomposes into a contribution SHRH due to

perturbing magnetic anisotropy fields and a part SMRM related

to magnetostatic fields. The micromagnetic SANS theory

considers a uniform exchange interaction and a random

distribution of magnetic easy axes, but takes explicitly into

account variations in the magnitude of the magnetization [via

the function SM, see equation (8) below].

The anisotropy-field scattering function (in units of

cm�1 sr�1)

SHðqÞ ¼
8�3

V
b2

Hjhj
2

ð7Þ

depends on the Fourier coefficient hðqÞ of the magnetic

anisotropy field, whereas the scattering function of the long-

itudinal magnetization (in units of cm�1 sr�1)

SMðqÞ ¼
8�3

V
b2

Hj
eMMzj

2
ð8Þ
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Figure 2
Sketch of the two most often employed scattering geometries in magnetic
SANS experiments. (a) k0 ? H0; (b) k0 k H0. We emphasize that in both
geometries the applied-field direction H0 defines the ez direction of a
Cartesian laboratory coordinate system. The angle � specifies the
orientation of the scattering vector on the two-dimensional detector; �
is measured between H0 k ez and q ffi ð0; qy; qzÞ (a) and between ex and
q ffi ðqx; qy; 0Þ (b).



provides information on the magnitude �M / eMMz of the

magnetization jump at internal (e.g. particle–matrix) inter-

faces. The corresponding (dimensionless) micromagnetic

response functions can be expressed as

RHðq; �;HiÞ ¼
p2

2
1þ

cos2 �

1þ p sin2 �
� �2

" #
ð9Þ

and

RMðq; �;HiÞ ¼
p2 sin2 � cos4 �

1þ p sin2 �
� �2

þ
2p sin2 � cos2 �

1þ p sin2 �
; ð10Þ

where

pðq;HiÞ ¼
Ms

Heffðq;HiÞ
ð11Þ

is a (dimensionless) function. The effective magnetic field

Heffðq;HiÞ ¼ Hi 1þ l2
Hq2

� �
ð12Þ

depends on the internal magnetic field

Hi ¼ H0 � NdMs; ð13Þ

on q ¼ jqj and on the exchange length

lHðHiÞ ¼
2A

�0MsHi

� �1=2

ð14Þ

(Ms: saturation magnetization; A: exchange-stiffness para-

meter; 0<Nd < 1: demagnetizing factor; �0 ¼ 4��
10�7 T m A�1). The � dependence of RH and RM is essentially a

consequence of the magnetodipolar interaction. Depending

on the values of q and Hi, and on the ratio Hp=�M, a variety

of angular anisotropies may be seen on a two-dimensional

detector (see e.g. Fig. 11 in x6.2 below) (Michels et al., 2014;

Michels, 2014).

By assuming that the functions eNN, eMMz and h depend only on

the magnitude q ¼ jqj of the scattering vector, one can

perform an azimuthal average of equation (4), i.e.

ð2�Þ�1
R 2�

0 ð. . .Þ d�. The resulting expressions for the response

functions then read (see Fig. 3)

RHðq;HiÞ ¼
p2

4
2þ

1

ð1þ pÞ1=2

� 	
ð15Þ

and

RMðq;HiÞ ¼
ð1þ pÞ

1=2
� 1

2
; ð16Þ

so that the azimuthally averaged total nuclear and magnetic

unpolarized SANS cross section of a bulk ferromagnet can be

written as

d�

d�
ðqÞ ¼

d�res

d�
ðqÞ þ

d�M

d�
ðqÞ; ð17Þ

where

d�res

d�
ðqÞ ¼

8�3

V
jeNNðqÞj2 þ 1

2
b2

Hj
eMMzðqÞj

2

� 	
ð18Þ

and

d�M

d�
ðqÞ ¼ SHðqÞRHðq;HiÞ þ SMðqÞRMðq;HiÞ: ð19Þ

3.2. k0 ? H0

For the scattering geometry where the external magnetic

field H0 k ez is parallel to the incident-beam direction k0

(compare Fig. 2b), the total unpolarized SANS cross section

d�=d� can be written as (Michels, 2014)

d�

d�
ðqÞ ¼

8�3

V
jeNNj2 þ b2

Hj
eMMxj

2 sin2 �
h

þ b2
Hj
eMMyj

2 cos2 � þ b2
Hj
eMMzj

2

� b2
Hð
eMMx
eMM�y þ eMM�xeMMyÞ sin � cos �

i
; ð20Þ

where � ¼ ffðq; exÞ. Using linearized micromagnetic theory,

the azimuthally averaged version of equation (20) can be

expressed as

d�

d�
ðqÞ ¼

d�res

d�
ðqÞ þ

d�M

d�
ðqÞ; ð21Þ

where the residual SANS cross section explicitly reads

d�res

d�
ðqÞ ¼

8�3

V
jeNNðqÞj2 þ b2

Hj
eMMzðqÞj

2
h i

ð22Þ

and the spin-misalignment SANS equals

d�M

d�
ðqÞ ¼ SHðqÞRHðq;HiÞ; ð23Þ

with

RHðq;HiÞ ¼
p2ðq;HiÞ

2
: ð24Þ

SHðqÞ is given by equation (7), and we note that in this

geometry d�M=d� does not depend on eMMz fluctuations and

equals the expression for the single-phase material case

(Weissmüller et al., 1999), in other words, inhomogeneities in

the saturation magnetization are (for k0 k H0) only contained

in d�res=d� and not in d�M=d�.
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Figure 3
The dimensionless micromagnetic response functions RHðqÞ and RMðqÞ
[equations (15) and (16)] at �0Hi ¼ 0:5 T (log–log scale).



4. Correlation function of the spin-misalignment SANS
cross section

Before addressing the magnetic correlation functions, we will

briefly recall the corresponding well known results from

nuclear SANS theory (Guinier & Fournet, 1955; Porod, 1982;

Feigin & Svergun, 1987). The nuclear SANS cross section,

d�N

d�
ðqÞ ¼

8�3

V
jeNNðqÞj2; ð25Þ

can be expressed in terms of the autocorrelation function

CNðrÞ of the (excess) nuclear scattering length density NðrÞ (in

units of m�2) as

d�N

d�
ðqÞ ¼

Z
CNðrÞ expð�iq 
 rÞ d3r; ð26Þ

where

CNðrÞ ¼
1

V

Z
�NðxÞ�Nðxþ rÞ d3x; ð27Þ

and

eNNðqÞ ¼ 1

ð2�Þ3=2

Z
NðrÞ expð�iq 
 rÞ d3r: ð28Þ

The function �NðrÞ ¼ NðrÞ � hNi denotes the so-called

excess scattering length density, where hNi is the (constant)

average scattering length density, which only gives a contri-

bution to d�N=d� at q ¼ 0. The back-transform of equation

(26) is

CNðrÞ ¼
1

8�3

Z
d�N

d�
ðqÞ expðiq 
 rÞ d3q; ð29Þ

which for isotropic systems reduces to

CNðrÞ ¼
1

2�2

Z1
0

d�N

d�
ðqÞ

sinðqrÞ

qr
q2 dq: ð30Þ

In analogy to the above formalism, one may define the auto-

correlation function of the spin misalignment as (Michels et al.,

2003; Weissmüller et al., 2004; Michels, 2010)

CSMðrÞ ¼
1

V

Z
�MðxÞ�Mðxþ rÞ d3x; ð31Þ

where �MðrÞ ¼ MðrÞ � hMi denotes the deviation of the local

magnetization vector field MðrÞ from the mean magnetization

hMi. Alternatively, CSMðrÞ can be expressed as

CSMðrÞ ¼
1

V

Z g�M�MðqÞ



 


2expðiq 
 rÞ d3q; ð32Þ

where g�M�MðqÞ is the Fourier transform of �MðrÞ. In the high-

field limit, hMi is nearly parallel to the applied magnetic field

with jhMij ffi Ms, so that �MðrÞ ffi ½MxðrÞ;MyðrÞ; 0� and

CSMðrÞ ¼
1

V

Z
jeMMxðqÞj

2
þ jeMMyðqÞj

2
h i

expðiq 
 rÞ d3q: ð33Þ

Note that in our theory of magnetic SANS (Honecker &

Michels, 2013) the magnetization components Mx;y;zðrÞ are all

considered to be real valued.

Comparison of equations (27) and (31) reveals an important

difference between nuclear and magnetic scattering [besides

the fact that �NðrÞ is a scalar and �MðrÞ a vector quantity]:

while the nuclear SANS cross section d�N=d� is directly

proportional to the Fourier transform jeNNðqÞj2 of CNðrÞ, the

function jg�M�MðqÞj2 [being the Fourier transfrom of CSMðrÞ]

does not represent the experimentally measurable quantity

d�M=d�, which, according to equations (3) and (20), is a

weighted sum of the Cartesian Fourier components eMMx;y;zðqÞ

of the magnetization.

Therefore, we define the correlation function CðrÞ of the

spin-misalignment SANS cross section as the Fourier trans-

form of d�M=d�, for which we have a theory, according to

CðrÞ ¼
1

8�3

Z
d�M

d�
ðqÞ expðiq 
 rÞ d3q: ð34Þ

The normalized version of equation (34),

cðrÞ ¼
CðrÞ

Cðr ¼ 0Þ
¼

Z
d�M

d�
ðqÞ expðiq 
 rÞ d3q

,Z
d�M

d�
ðqÞ d3q;

ð35Þ

forms the basis for the calculations of the present work. We

emphasize that the CðrÞ that is defined in this way is not an

autocorrelation function, as are CNðrÞ and CSMðrÞ. Likewise,

the well known result that the evaluation of CNðrÞ and CSMðrÞ

at the origin r ¼ 0 yields, respectively, the mean-squared

density fluctuation (Porod invariant) and the mean-squared

magnetization fluctuation does not pertain to CðrÞ; the integral

of d�M=d� over reciprocal space does not provide an obvious

invariant of the spin-misalignment SANS.

We remind the reader that d�M=d� at a particular applied

magnetic field Hi can be (approximately) obtained by

subtracting the total nuclear and magnetic scattering at a

saturating field from the measurement of the total d�=d� at

the particular Hi.

The spin-misalignment SANS cross section for the

perpendicular scattering geometry depends on both the

magnitude q and the direction � of the scattering vector q on

the detector (see e.g. Fig. 11 in x6.2 below). The � dependence

of d�M=d� is a consequence of the magnetodipolar interac-

tion – via the Fourier coefficients eMMx;y;zðq; �Þ (Erokhin et al.,

2012; Honecker & Michels, 2013; Michels et al., 2014) – and of

the trigonometric functions which are explicitly contained in

the cross section [equation (3)] and are due to the dipolar

nature of the neutron–magnetic interaction. The final

expression for the (azimuthally) �-averaged d�M=d� ¼
ðd�M=d�ÞðqÞ [equation (19)] contains the averages over these

degrees of freedom. Since from a practical point of view it is

easier to work with one-dimensional data, i.e. with

d�M=d� ¼ ðd�M=d�ÞðqÞ, equation (35) may be simplified to

cðrÞ ¼

Z1
0

d�M

d�
ðqÞ j0ðqrÞ q2 dq

,Z1
0

d�M

d�
ðqÞ q2 dq; ð36Þ

where j0ðxÞ ¼ sinðxÞ=x denotes the zeroth-order spherical

Bessel function. Note that spherical Bessel functions are
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denoted with a lower-case ‘j’, whereas Bessel functions are

represented with an upper-case ‘J’. Equation (36), which from

now on is called the ‘one-dimensional’ correlation function of

the spin-misalignment SANS cross section, has the same

mathematical structure as the corresponding equation (30) for

nuclear SANS.

Since for statistically isotropic bulk ferromagnets d�M=d�
in the parallel scattering geometry is isotropic (independent of

the angle �) (Michels et al., 2014), equation (36) also applies to

k0 k H0.

In a SANS experiment, only the components of the

momentum-transfer vector q perpendicular to the incident-

beam direction (k0) are effectively probed, which from a

mathematical point of view means that the measured cross

section already represents an average over the incident-beam

direction. For k0 ? H0 ðqx ffi 0Þ, this implies that d�M=d� ffi
ðd�M=d�Þðqy; qzÞ, whereas d�M=d� ffi ðd�M=d�Þðqx; qyÞ for

k0 k H0 ðqz ffi 0Þ (compare Fig. 2). In x6.2 below, we will also

study (for k0 ? H0) the case of anisotropic two-dimensional

correlations by considering the following expression for cðy; zÞ

(Šaroun, 2000):

cðy; zÞ ¼

Zþ1
�1

Zþ1
�1

d�M

d�
ðqy; qzÞ cosðqyyþ qzzÞ dqy dqz

, Zþ1
�1

Zþ1
�1

d�M

d�
ðqy; qzÞ dqy dqz: ð37Þ

Because d�M=d� ¼ ðd�M=d�Þðqy; qzÞ, the cðy; zÞ that is

computed according to equation (37) represents a projection

(average) of the three-dimensional correlation function

cðx; y; zÞ along the direction of the incident neutron beam

(Fritz-Popovski, 2013, 2015).

Equation (37) can be transformed into polar coordinates,

which results in

cðr; ’Þ ¼

Z1
0

Z2�
0

d�M

d�
ðq; �Þ cos½qr cosð� � ’Þ� q d� dq

,Z1
0

Z2�
0

d�M

d�
ðq; �Þ q d� dq; ð38Þ

where the angle ’ specifies the orientation of r ¼ ðr; ’Þ in the

yz plane. By introducing the nth-order Bessel function

(Watson, 1966),

JnðzÞ ¼
1

2�

Z2�
0

cosðn�� z sin �Þ d�

¼
1

2�

Z2�þ�
�

cosðn�� z sin �Þ d�; ð39Þ

where n is an integer and the last equation is valid for any

angle �, we can obtain an average of cðr; ’Þ over all angles ’ in

the detector plane:

cðrÞ ¼
1

2�

Z2�
0

cðr; ’Þ d’ ¼

Z1
0

Z2�
0

d�M

d�
ðq; �Þ J0ðqrÞ q d� dq

,Z1
0

Z2�
0

d�M

d�
ðq; �Þ q d� dq: ð40Þ

Since the integration with respect to the angle � can be taken

analytically [compare arguments leading to equations (15) and

(16)], it follows that

cðrÞ ¼

Z1
0

d�M

d�
ðqÞ J0ðqrÞ q dq

,Z1
0

d�M

d�
ðqÞ q dq: ð41Þ

Equation (41) is called the averaged ‘two-dimensional’

correlation function of the spin-misalignment SANS cross

section. Note that this expression differs from equation (36)

which is obtained after three-dimensional integration of the �-

averaged d�M=d�.

In Appendix A, we provide a comparison between the

autocorrelation function of the spin misalignment, cSMðrÞ, and

the correlation functions of the spin-misalignment SANS cross

sections, equations (36) and (41).

5. Models for SH and SM

In order to solve equation (36) [or equation (41)], we have to

specify certain models for the anisotropy-field scattering

function SH / h2ðqÞ [equation (7)] and for the scattering

function of the longitudinal magnetization SM /
eMM2

zðqÞ

[equation (8)] in the expression for d�M=d�. As outlined in

x2, we consider a statistically isotropic nearly saturated bulk

ferromagnet which exhibits (weak) spatial fluctuations of the

saturation magnetization and the magnetic anisotropy field.

For such a system, the functions h2 and eMM2
z depend only on the

magnitude q of the momentum-transfer vector q. Further-

more, we assume a monodisperse scattering system and that

both functions h2ðqÞ and eMM2
zðqÞ can be written as the product

of the same single-particle form factor PðqÞ and structure

factor SðqÞ (Pedersen, 1997), i.e.

h2ðqÞ ¼
H2

p

ð8�Þ3
V2

pPðqÞSðqÞ ð42Þ

and

eMM2
zðqÞ ¼

ð�MÞ2

ð8�Þ3
V2

pPðqÞSðqÞ; ð43Þ

where Vp is the particle volume. Later on in the calculations,

we will use (for illustration purposes) the Percus–Yevick hard-

sphere structure factor for SðqÞ (Kinning & Thomas, 1984) and

(unless stated otherwise) the sphere form factor for PðqÞ,

PðqÞ ¼ 9
j2
1ðqRÞ

ðqRÞ
2 ; ð44Þ

where j1ðxÞ denotes the spherical Bessel function of first order.

Any other particle form factor or structure factor may be
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straightforwardly implemented (see below). We also note that

the characteristic structure sizes of h2 and eMM2
z need not be

identical; these are related, respectively, to the spatial extent

of regions with uniform magnetic anisotropy field and

saturation magnetization.

Under these assumptions (same size and shape), h2ðqÞ andeMM2
zðqÞ differ only by constant prefactors, i.e. the magnitude Hp

of the mean magnetic anisotropy field and the jump �M of the

magnitude of the magnetization at internal interfaces. In fact,

it is the ratio of Hp=�M which determines the angular

anisotropy and the asymptotic power-law dependence of

d�M=d� as well as the characteristic decay length of spin-

misalignment fluctuations (Honecker & Michels, 2013).

In agreement with the assumption of a sharp interface in the

nuclear (grain) microstructure (compare Fig. 1) both h2ðqÞ andeMM2
zðqÞ vary asymptotically as q�4. Together with the micro-

magnetic response functions which, respectively, vary as

RH / q�4 and RM / q�2 [compare equations (15) and (16),

and see Fig. 3], this results in d�M=d� / q�n with n ranging

between 6 and 8 (Honecker & Michels, 2013). We emphasize

that other models for the anisotropy-field microstructure may

result in different power-law exponents of d�M=d�; in parti-

cular, the h2ðqÞ that are related to the long-range stress fields

of dislocations are expected to give rise to asymptotic power

laws that are different from the Porod exponent (Seeger, 1959;

Heuser, 1994; Thomson et al., 1999; Maxelon et al., 2001; Long

& Levine, 2005). This is, however, the subject of further

investigations.

By inserting equations (42) and (43) into the �-averaged

spin-misalignment SANS cross sections [equations (19) and

(23)], we can express the one-dimensional correlation func-

tions of the spin-misalignment SANS cross section [equation

(36)] as

cðrÞ ¼

 Z1
0

H2
p

p2

4
2þ

1

ð1þ pÞ1=2

� 	
þ ð�MÞ

2 ð1þ pÞ
1=2
� 1

2

� �

� PðqÞSðqÞj0ðqrÞq2 dq

!
, Z1

0

H2
p

p2

4
2þ

1

ð1þ pÞ
1=2

� 	
þ ð�MÞ

2 ð1þ pÞ
1=2
� 1

2

� �

� PðqÞSðqÞq2 dq

!
ð45Þ

for k0 ? H0 and

cðrÞ ¼
R1
0

p2PðqÞSðqÞj0ðqrÞq2 dq
.R1

0

p2PðqÞSðqÞq2 dq ð46Þ

for k0 k H0. Note that cðrÞ for the parallel geometry is [in

contrast to cðrÞ for the perpendicular case] independent of

both Hp and �M; the dependence of cðrÞ on the applied

magnetic field Hi and on the magnetic interactions (A, Ms) is

contained in the function pðq;HiÞ [compare equation (11)].

We also reemphasize that we have assumed that both Fourier

coefficients h2ðqÞ and eMM2
zðqÞ can be written as the product of

the same form factor PðqÞ and structure factor SðqÞ; this

assumption might be relaxed, e.g. when studying diffusion

zones or core–shell-type nanoparticle structures with reduced

surface magnetization (Heinemann et al., 2000). The averaged

two-dimensional correlation function [equation (41)] is

obtained by making the corresponding replacements in

equations (45) and (46).

6. Results and discussion

The following materials parameters were used in the calcula-

tions: saturation magnetization �0Ms ¼ 1:5T, exchange-stiff-

ness constant A ¼ 2:5� 10�11J m�1 and R ¼ 5nm for the

particle radius in the sphere form factor PðqÞ [equation (44)].

6.1. One-dimensional correlation functions

All results in this section are obtained by numerical inte-

gration of equations (45) and (46), which are based on the

one-dimensional correlation function equation (36). In the

first set of calculations, we concentrate on the dependence of

the correlation functions on the applied magnetic field Hi,

scattering geometry (k0 ? H0 and k0 k H0), ratio Hp=�M,

single-particle form factor PðqÞ and structure factor SðqÞ.

Fig. 4 displays the results for cðrÞ at several values of Hi and

for both scattering geometries, assuming a dilute scattering

system [SðqÞ ¼ 1] and Hp=�M ¼ 1. The dotted horizontal

lines indicate the value of the correlation length lC of the spin

misalignment, which can be taken as a measure of the size of

inhomogeneously magnetized regions around defects. lC is

defined as the expð�1Þ decay length, i.e. cðr ¼ lCÞ ¼ expð�1Þ.

Note, however, that this definition does not imply that the

correlations decay exponentially. In fact, it is readily verified

that the spin-misalignment correlations that are investigated

in this study do not decay exponentially. We would also like to

mention that an alternative route to extracting a spin-misa-

lignment length may be realized by the computation of

moments of the correlation function; for instance, for expo-
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Figure 4
Normalized correlation functions cðrÞ of the spin-misalignment SANS
cross section at several applied-field values Hi for (a) k0 ? H0 and (b)
k0 k H0. Hi increases, respectively, from 0.01 to 100 T on a logarithmic
scale, i.e. �0H

j
i ¼ 104j=jmax�2 T, where jmax ¼ 30 and j ¼ 0; . . . ; 30

[SðqÞ ¼ 1; Hp=�M ¼ 1]; the arrows specify the direction of increasing
Hi. Dotted horizontal lines in (a) and (b): cðrÞ ¼ expð�1Þ.



nentially decaying cðrÞ the above definition and

lC ¼
R1

0 cðrÞ dr are equivalent.

Increasing Hi results in both scattering geometries in the

suppression of transverse spin-misalignment fluctuations and

in a concomitant reduction of the cðrÞ and reduced lC values.

At small fields, lC may take on values of the order of 100 nm,

which decrease to values of the order of the assumed particle

size, here R ¼ 5 nm, for fields larger than a few tesla [see also

dotted horizontal line in Fig. 5(b)]. For the chosen limiting

case of Hp=�M!1, the difference between the cðrÞ and the

lCðHiÞ in the two scattering geometries is only minor (see

Fig. 5). However, noting that cðrÞ in the parallel geometry is

independent of Hp=�M and with reference to Figs. 6 and 7, we

note that this difference increases with decreasing value of

Hp=�M.

Within the framework of our micromagnetic SANS theory

of bulk ferromagnets (Honecker et al., 2013; Metlov &

Michels, 2015), the magnetic microstructure in real space,

MðrÞ, corresponds to a complicated convolution product

between the magnetic anisotropy-field microstructure and

micromagnetic functions. As a result, smoothly varying

magnetization profiles are at the origin of the related spin-

misalignment scattering. In agreement with the absence of a

sharp interface in the magnetic microstructure (compare

Fig. 1b), we note that the correlation functions of bulk

ferromagnets enter the origin r ¼ 0 with zero slope (Bick et

al., 2013), so that

cðrÞ ¼ 1þ kr2
þ 
 
 
 ð47Þ

for r� 1 (where k is a constant). This observation may be

compared to the well known result for nuclear particle scat-

tering, where (for isolated uniform particles) the first deriva-

tive of cðrÞ evaluated at r ¼ 0 is related to the particle surface.

In particular, for small r, the correlation function can be

expanded as (Porod, 1982)

cðrÞ ¼ 1þ arþ br2 þ cr3 þ 
 
 
 ; ð48Þ

where the ‘differential’ parameters a, b, c are related to the

size and shape of the particle; for example, for a uniform

sphere one finds a ¼ �3=ð4RÞ, b ¼ 0 and c ¼ 1=ð16R3Þ.

The effect of the ratio Hp=�M on the correlation functions

and on the lC values is shown in Figs. 6 and 7 [for k0 ? H0 and

SðqÞ ¼ 1]. Perturbations in the spin microstructure that are

dominated by fluctuations of the magnetic anisotropy field

(Hp=�M � 1) decay on a larger length scale than magneto-

statically dominated (Hp=�M � 1) perturbations.

For soft magnets (with low crystalline anisotropy), the

following relation for lCðHiÞ has previously been suggested

(Michels, 2014):

lCðHiÞ ¼ Rþ lHðHiÞ ¼ Rþ
2A

�0MsHi

� �1=2

: ð49Þ

Equation (49) provides an excellent description of the field-

dependent correlations [solid lines in Figs. 5(b) and 7 with

R ¼ 5 nm, A ¼ 2:5� 10�11 J m�1 and �0Ms ¼ 1:5 T]. At

large fields, when the spin-misalignment SANS cross section is

small and the exchange length lH takes on values of a few

nanometres, lC reflects, irrespective of Hp=�M, the size of the

(in this case spherical) defect.

For the perpendicular scattering geometry, Fig. 8 displays

(for �0Hi ¼ 0:5 T) the correlation function for different

single-particle form factors PðqÞ, ignoring interparticle inter-
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Figure 6
cðrÞ for several values of the ratio Hp=�M at (a) �0Hi ¼ 0:1 T and (b)
�0Hi ¼ 2:0 T [k0 ? H0; SðqÞ ¼ 1]. Hp=�M values: 0.004, 0.4, 0.8, 4; the
arrows specify the direction of increasing Hp=�M; for larger values of
Hp=�M, cðrÞ remains effectively unchanged. Dotted horizontal lines in
(a) and (b): cðrÞ ¼ expð�1Þ.

Figure 7
Field dependence of the spin-misalignment correlation length lC for
different values of Hp=�M [k0 ? H0; SðqÞ ¼ 1] (log–linear scale). Solid
line: equation (49).

Figure 5
(a) Comparison of the cðrÞ for the two scattering geometries
[�0Hi ¼ 0:1 T; SðqÞ ¼ 1; Hp=�M!1]. Dotted horizontal line:
cðrÞ ¼ expð�1Þ. (b) Comparison of the field dependence of the spin-
misalignment correlation length lC for the two scattering geometries
[SðqÞ ¼ 1; Hp=�M!1] (log–linear scale). Solid line: equation (49).
Dotted horizontal line: lC ¼ R ¼ 5 nm.



actions [SðqÞ ¼ 1]. In addition to the sphere form factor

[equation (44)], we have used in the expressions for h2ðqÞ andeMM2
zðqÞ the cylinder form factor (radius: R; length: L)

(Pedersen, 1997),

PðqÞ ¼

Z�=2

0

2 J1ðqR sin�Þ

qR sin �

sinð12 qL cos �Þ
1
2 qL cos�

� 	2

sin � d�; ð50Þ

and the form factor of an ellipsoid of revolution (semi-axes: R,

R, "R),

PðqÞ ¼

Z�=2

0

9
j1½qrðR; "; �Þ�

qrðR; "; �Þ

� �2

sin � d�: ð51Þ

J1ðxÞ denotes the first-order Bessel function, j1ðxÞ is the first-

order spherical Bessel function and rðR; "; �Þ ¼
Rðsin2 �þ "2 cos2 �Þ1=2. Note that equation (51) reduces to the

sphere form factor for " ¼ 1. Besides the cylinder and ellip-

soid of revolution form factor we have also used other form

factors (data not shown); the above form factors were chosen

because they allow one to investigate different limiting cases

(from thin circular discs to elongated spheroids and elongated

thin rods). Examples for bulk magnetic materials with elon-

gated cylindrically or elliptically shaped precipitates are alnico

magnets (Zhou et al., 2014), which are nanostructured alloys

composed of Fe, Al, Ni and Co.

It is seen in Fig. 8 that for a given form factor the shape of

the correlation function and the value of the correlation length

depend (as expected) on the particle dimensions. Isotropically

distributed cylinders (dashed lines) with a radius equal to the

radius of the ellipsoid of revolution and a length L ¼ 2"R
result in nearly the same (slightly larger) correlation functions

as the ellipsoid of revolution. lC at large fields appears to be

related to the smallest dimension of the particle, although the

precise dependency of lCðHi !1Þ on the particle dimensions

is not clear to us. Note also that for the case of very thin discs

and oblate spheroids ("� 1) the correlation function still

approaches the origin with zero slope (which becomes visible

only for small r).

Finally, Fig. 9 illustrates the effect of interparticle interac-

tions on the correlation function (Fig. 9a) and correlation

length (Fig. 9b). In order to model the effect of dense packing,

we have used the Percus–Yevick hard-sphere structure factor

for SðqÞ (Kinning & Thomas, 1984) in equations (45) and (46)

and, as before, the sphere form factor for PðqÞ. Note also that

the hard-sphere interaction radius RHS in SðqÞ was set equal to

the sphere radius R.

It is clearly seen that with increasing particle volume frac-

tion 	 the range of the correlations decreases. However, the

characteristic features of the structure factor only become

visible at relatively large values of 	 (above about 20%), while

at the lower end of 	 values both cðrÞ and lCðHiÞ are smoothly

decaying functions. Furthermore, we note that with increasing

	, i.e. with increasing interparticle interactions, we progres-

sively introduce, in addition to the original (diffuse) spin-

misalignment length lC, a second structural correlation length

into the system (compare e.g. the hump in lC at around 50 mT

for 	 ¼ 0:4).
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Figure 9
Effect of hard-sphere volume fraction 	 on the correlation function and
correlation length. (a) cðrÞ at �0Hi ¼ 0:1 T and for several values of 	
increasing from top to bottom (k0 ? H0; Hp=�M ¼ 1). Dotted horizontal
line: cðrÞ ¼ expð�1Þ. (b) Corresponding lCðHiÞ (log–linear scale).

Figure 8
Effect of particle form factor on the correlation function and correlation
length. (a) cðrÞ at �0Hi ¼ 0:5 T and for several particle form factors. Solid
lines: form factor of ellipsoid of revolution (R ¼ 5 nm) with " decreasing
from top to bottom (" ¼ 1 corresponds to the sphere form factor).
Dashed lines: cylinder form factor with R ¼ 5 nm and L ¼ 2"R [k0 ? H0;
Hp=�M ¼ 1; SðqÞ ¼ 1]. Dotted horizontal line: cðrÞ ¼ expð�1Þ. (b)
Corresponding lCðHiÞ (log–linear scale). Dotted horizontal line:
lC ¼ R ¼ 5 nm.

Figure 10
cðrÞ for 	 ¼ 0:4 and for several values of the applied magnetic field Hi

increasing from top to bottom (k0 ? H0; Hp=�M ¼ 1). Dotted horizontal
line: cðrÞ ¼ expð�1Þ.



The field dependence of this feature is depicted in Fig. 10,

where we show cðrÞ for several Hi and for 	 ¼ 0:4; here, we see

that slight changes in Hi result in relatively large jumps in lC

[lC(0.08 T) ¼ 7.7 nm and lC(0.05 T) ¼ 13.8 nm]. This is an

artifact which is clearly related to the strong structural

correlations, and the determined correlation length now

represents a field-dependent (unknown) average over the

structural and the magnetic spin-misalignment correlation

lengths. We note that by using other definitions for lC, for

instance in terms of some integral weight over cðrÞ, the posi-

tion of the artifact on the Hi axis may be different but the

effect of SðqÞ will still become visible.

6.2. Two-dimensional correlation functions

Since the spin-misalignment SANS cross section is highly

anisotropic for k0 ? H0, the corresponding correlation func-

tion may also be anisotropic. We reemphasize that the angular

� dependence of d�M=d� is a consequence of the trigono-

metric functions in the cross section (which are due to the

dipolar neutron–magnetic interaction) and of the � depen-

dence of the magnetization Fourier coefficients eMMx;y;zðq; �Þ
(which is due to the internal magnetostatic interaction)

(Michels, 2014). Figs. 11(a)–11(d) show d�M=d� [equation

(6)] at selected applied magnetic fields [and for SðqÞ ¼ 1]. The

change in the angular anisotropy that becomes visible in

Figs. 11(a)–11(d), from a spike-type anisotropy at low fields

(a) to a clover-leaf-shaped anisotropy at large fields (d), is

related to the field dependence of the Fourier coefficients and

demonstrates that different terms in the response functions

[equations (9) and (10)] dominate in different field regimes.

For instance, the spike anisotropy (Fig. 11a) was recently

observed in an isotropic sintered Nd–Fe–B magnet (Périgo et

al., 2014); it is related to magnetostatic terms p sin2 � in the

denominator of the response functions.

The corresponding two-dimensional correlation functions,

computed according to equation (37), are displayed in

Figs. 11(e)–11(h), where we plot the cðy; zÞ at the same fields

as the d�M=d�. While the spin-misalignment SANS cross

section at small fields (Figs. 11a and 11b) is enhanced parallel

to the applied-field direction, the correlation function exhibits

maxima in the direction perpendicular to the field; the range

of the correlations extends to several hundreds of nanometres

(Figs. 11e and 11f). Increasing the field results in the

suppression of the correlations. At the largest field d�M=d�
possesses a nearly fourfold anisotropy with maxima along the

detector diagonals and minima along the horizontal and

vertical axes (Fig. 11d), which translate into the corresponding

extrema in cðy; zÞ (Fig. 11h).

In Fig. 12(a), we depict the correlation function along

different directions: while the correlation length at 1.2 T varies

only relatively little with direction (from 8.8 to 10.9 nm), the

functional dependencies of the cðy; zÞ are significantly

different, with the correlation function along the horizontal z

direction becoming negative at r ffi 18 nm; the curves in

Fig. 12(a) were obtained by solving equation (38) for ’ ¼ 0,

�=4, �=2. In nuclear SANS, negative values of the distance

distribution function pðrÞ are attributed to distances that

connect regions with opposite sign of the scattering length

density more frequently than regions with the same sign

(Glatter & Kratky, 1982). However, for magnetic SANS, such

an easily accessible interpretation of the correlation function

cðrÞ of the spin-misalignment SANS cross section in terms of a

specific magnetization distribution is not straightforward; this
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Figure 11
(a)–(d) Contour plots of normalized d�M=d� [equation (6)] at applied magnetic fields as indicated (k0 ? H0; Hp=�M ¼ 1; H0 is horizontal). For
h2ðqRÞ and eMM2

zðqRÞ, we used the form factor of a sphere with a radius of R ¼ 5 nm [equation (44); SðqÞ ¼ 1]. (e)–(h) Corresponding two-dimensional
correlation functions cðy; zÞ, which were computed according to equation (37) (Hp=�M ¼ 1).



is mainly related to the (above mentioned) fact that cðrÞ does

not directly represent the correlations in the magnetic

microstructure (as does CSM), but also includes the magneto-

dipolar interaction of the neutrons with the sample (via the

trigonometric functions and the cross term in the cross

section). The anisotropy of the correlations is further depicted

in Fig. 12(b), where we show a contour plot for several values

of Hi. This graph reveals a relatively weak anisotropy of lC. At

small fields, the correlations along the vertical (y) direction

decay on a larger length scale than along the horizontal (z)

direction; with increasing field, the anisotropy becomes less

pronounced.

Fig. 13 compares (for k0 ? H0) the results for the one-

dimensional [equation (36)] and the averaged two-dimen-

sional [equation (41)] correlation functions of the spin-misa-

lignment SANS. We recall that the former is obtained by

three-dimensional integration of the azimuthally averaged

d�M=d� ¼ ðd�M=d�ÞðqÞ, and the latter by two-dimensional

integration of d�M=d� ¼ ðd�M=d�Þðq; �Þ (compare x4). At

small fields, the results for cðrÞ and lCðHiÞ differ considerably,

whereas for �0Hi > 1 T both equations yield almost the same

correlation lengths.

The question may arise as to which one of these correlation

functions should be used in order to analyze experimental

data. From an experimental point of view, the averaged two-

dimensional equation (41) reflects the data-analysis proce-

dure, namely that the measured d�M=d� is a function of only

two independent components of the scattering vector; in fact,

elastic scattering in the small-angle approximation only probes

correlations in the directions perpendicular to the incident

beam. Reconstruction (from experimental d�M=d�) of the

one-dimensional cðrÞ (which is an orientation average of the

three-dimensional correlation function) is always an extra-

polation.

6.3. Comparison with experimental data

In order to test our magnetic SANS theory, we depict in

Fig. 14 a comparison between experiment and theory; in

particular, we have fitted equations (36) and (41) [using, in

each case, equation (19) for d�M=d�] to experimental data

for the correlation function of the spin-misalignment SANS

cross section of nanocrystalline Co and Ni (Michels et al.,

2003). These CðrÞ data have previously been analyzed by

Michels & Bick (2013) using a simple approach based on the

autocorrelation function of the spin misalignment, neglecting

terms due to spatial fluctuations of the saturation magnetiza-

tion. Such contributions are included in the present theory via

the term SMRM in equation (19). The nanocrystalline Co and

Ni samples constitute fully dense polycrystalline metals with

average crystallite sizes of D ¼ 10 nm (Co) and D ¼ 49 nm

(Ni) (Weissmüller et al., 2001). The experimental SANS data

of both samples were recorded between qmin ffi 0:01 nm�1 and

qmax ffi 1:0 nm�1. The correlation functions were then

obtained by direct Fourier transformation according to

equation (36), so that this expression should actually also be

used for the data analysis. Nevertheless, we have also

employed the two-dimensional equation (41) for fitting the

experimental CðrÞ data, which is motivated by the fact that for
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Figure 12
(a) cðrÞ along different real-space directions [same parameters as in
Fig. 11(g)]. Dotted horizontal line: cðrÞ ¼ expð�1Þ. (b) Contour plot
revealing the in-plane (’) variation of lC for several values of the applied
magnetic field Hi. Logarithmic color scale for the field is used.

Figure 13
(a) Comparison between the one-dimensional [equation (36); solid lines]
and the averaged two-dimensional [equation (41); dashed lines]
correlation functions of the spin-misalignment SANS cross section and
the autocorrelation function of the spin misalignment (dotted lines, see
Appendix A) [k0 ? H0; Hp=�M ¼ 1; SðqÞ ¼ 1]. cðrÞ at selected Hi; values
of Hi (in T) increasing from top to bottom: 0.02, 0.15, 1.2, 11. Dotted
horizontal line: cðrÞ ¼ expð�1Þ. (b) Corresponding lCðHiÞ (log–linear
scale) (solid lines are guides to the eyes). Dotted horizontal line:
lC ¼ R ¼ 5 nm.



larger applied fields the difference between the two correla-

tion functions is only minor (compare Fig. 13). In the following

discussion, one should therefore keep in mind that for the

analysis of this particular CðrÞ data set equation (36) repre-

sents the proper theoretical model.

In the fitting procedure, the integrals in equations (36) and

(41) were approximated by discrete sums, where the upper

integration limit of ‘1’ was taken as qmax ffi 5–10 nm�1 and

the typical q resolution was set to �q ffi 0:01–0.02 nm�1. The

resulting expressions were fitted by means of a nonlinear

(Levenberg–Marquardt) fitting routine to the experimental

CðrÞ data. We have treated the exchange-stiffness constant A,

the ratio Hp=�M and R as global fit parameters. Since we

work with unnormalized CðrÞ data, we have introduced field-

dependent local scaling constants K1, K2, K3 and K4 (one for

each data set); Ms ¼ 1434 kA m�1 for Co and

Ms ¼ 522 kA m�1 for Ni were held constant. Since the

experimental SANS data [e.g. Fig. 1 of Michels et al. (2003)] do

not give a visible indication of a strong impact of dense

packing, we have for simplicity decided to set S ¼ 1. The

results for the global fit parameters are summarized in Table 1.

The data analysis was restricted to r values below about 50 nm

and to fields larger than 50 mT, where the magnetization of

both samples approaches saturation (Weissmüller et al., 2001).

As is seen in Fig. 14 (solid and dashed lines), both equations

provide a reasonable global description of the field-dependent

correlations. The obtained values for the anisotropy-field radii

R of both materials are in the range 8–13 nm, slightly smaller

than the ones estimated previously (Michels & Bick, 2013).

The parameter R characterizes the length scale over which the

magnetic anisotropy field HpðrÞ is uniform; for single-crystal

grains, R is sensibly related to the average crystallite size

(compare Fig. 1a). Therefore, the finding R ffi 8–10 nm for Co

suggests that the magnetic anisotropy field is approximately

homogeneous on a length scale of the order of the average

grain size of 10 nm, whereas for Ni nonuniformities in HpðrÞ

exist on a scale smaller than the average crystallite size of

49 nm, presumably related to twin faults or to the defect cores

of grain boundaries (Michels et al., 2003). While the obtained

values for the exchange-stiffness constant of Ni (using both

equations) are larger by a factor of about two than the ones

reported in the literature (Kronmüller & Fähnle, 2003), the A

value for Co using equation (41) agrees excellently with

literature data and with the result of our previous SANS data

analysis (in Fourier space) (Michels et al., 2003). Values for the

ratio of Hp=�M have not been determined previously for

these materials, but our results suggest [except for the case of

Ni using equation (41)] that perturbations in the spin micro-

structure due to spatially fluctuating magnetic anisotropy

fields dominate over magnetostatic fluctuations. This might be

expected, since in single-phase ferromagnets variations in Ms

are relatively small, compared to e.g. nanocomposites

(Michels et al., 2006). Overall, the good agreement between

experiment and theory suggests that equation (36) may be

used for the analysis of real-space correlations of bulk

magnetic materials; equation (41) may also be employed for

the analysis of experimental data, provided that the original

d�M=d� has been Fourier transformed according to equation

(41).

7. Summary and conclusion

On the basis of a recent micromagnetic theory for the

magnetic SANS cross section of inhomogeneous bulk ferro-

magnets, we have studied the corresponding magnetic field-

dependent spin-misalignment correlations in real space. The

correlation function cðrÞ of the spin-misalignment SANS cross

section depends on the applied magnetic field and, for

k0 ? H0, on the ratio of magnetic anisotropy field strength Hp

to magnetization jump �M at internal interfaces. Additional

degrees of freedom in cðrÞ relate to the particle (anisotropy-

field) form factor or to the inclusion of interparticle correla-

tions via a structure factor. The result for cðrÞ (for k0 ? H0)

[equation (45)] demonstrates a strong impact of Hp=�M on

the shape and range of the correlations: magnetostatically

dominated correlations (Hp=�M � 1) decay on a rather short

length scale, whereas anisotropy-field-dominated correlations

(Hp=�M � 1) are characterized by a long-range decay, which

is reasonably described by equation (49). The difference

between the correlation functions in the two scattering

geometries (k0 ? H0 and k0 k H0) increases with decreasing
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Table 1
Results for the global fit parameters A, Hp=�M and R obtained by fitting
equations (36) and (41) to the correlation functions of nanocrystalline Co
and Ni displayed in Fig. 14.

Co
[equation (36)]

Co
[equation (41)]

Ni
[equation (36)]

Ni
[equation (41)]

A (pJ m�1) 54.6 (6) 29.1 (6) 15.1 (1) 13.7 (4)
Hp=�M 13.4 (0) 4.0 (1) 5.6 (0) 0.5 (1)
R (nm) 10.2 (1) 8.2 (6) 9.9 (1) 13.0 (1)

Figure 14
Comparison between experimental and theoretical data. (Open circles)
Correlation functions of the spin-misalignment SANS cross section of (a)
nanocrystalline Co and (b) nanocrystalline Ni with average crystallite
sizes of D ¼ 10 nm (Co) and D ¼ 49 nm (Ni) (Weissmüller et al., 2001).
CðrÞ data are taken from Michels et al. (2003). Solid lines: fit based on
equation (36); dashed lines: fit based on equation (41). Values of the
internal magnetic field Hi (in mT) from top to bottom, respectively: (a)
54, 80, 107, 243; (b) 190, 570, 800, 1240. In both analyses, we have used the
sphere form factor for PðqÞ and SðqÞ ¼ 1.



ratio of Hp=�M. The correlation functions do not decay

exponentially and approach the origin with zero slope; as far

as equation (36) is concerned, this is consistent with the

absence of a sharp interface in the magnetic microstructure.

Experimental data for the correlation function of the spin-

misalignment SANS cross section of nanocrystalline Co and

Ni have been successfully analyzed using the here presented

theoretical expressions. It would also be of interest to employ

the present approach for studying long-range magnetic

correlations, as accessible on a USANS instrument (Jericha et

al., 2013), or the magnetic microstructure of state-of-the-art

nanocrystalline NdFeB-based permanent magnets (Bick et al.,

2013; Yano et al., 2014; Périgo et al., 2015; Saito et al., 2015).

APPENDIX A
Autocorrelation function of the spin misalignment

In the high-field limit and for a general orientation of the

wavevector q ¼ ðqx; qy; qzÞ, the solution, in Fourier space, of

the linearized balance-of-torques equation (1) can be written

as (Honecker & Michels, 2013)

eMMxðqÞ ¼Ms

"
hx �

eMMz

qxqz

q2

� �
Heff þMs

q2
y

q2

� �

�Ms

qxqy

q2
hy �

eMMz

qyqz

q2

� �#
,

Heff Heff þMs

q2
x þ q2

y

q2

� �� 	
; ð52Þ

eMMyðqÞ ¼Ms

"
hy �

eMMz

qyqz

q2

� �
Heff þMs

q2
x

q2
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q2
hx �

eMMz

qxqz

q2

� �	
,
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q2
x þ q2

y

q2

� �� 	
: ð53Þ

For qx ¼ 0 or qz ¼ 0, one obtains the expressions for eMMx andeMMy, respectively, which enter the equations for the perpendi-

cular or the parallel SANS cross sections [equations (3) and

(20)]. Averaging the expression for jeMMxðqÞj
2
þ jeMMyðqÞj

2 over

the orientation (angle 
) of the magnetic anisotropy-field

Fourier coefficient,

hðqÞ ¼ hxðqÞ; hyðqÞ; 0

 �
¼ hðqÞ cos
; hðqÞ sin 
; 0½ �; ð54Þ

results in

f ðq; �0Þ ¼
1

2�

Z2�
0

jeMMxðqÞj
2
þ jeMMyðqÞj

2
h i

d


¼
h2p2 1þ p sin2 �0 þ 1

2 p2 sin4 �0
� �

þ eMM2
zp2 sin2 �0 cos2 �0

1þ p sin2 �0
� �2

; ð55Þ

where q ¼ qðsin �0 cos ’0; sin �0 sin ’0; cos �0Þ and p ¼ pðq;HiÞ

is given by equation (11). Inserting this function into the

normalized version of equation (33) allows us to obtain the

autocorrelation function of the spin misalignment, cSMðrÞ, by

three-dimensional integration. Fig. 13 displays cSMðrÞ and

lCðHiÞ and compares the results with the correlation functions

of the spin-misalignment SANS cross section, equations (36)

and (41).

Acknowledgements

We thank the National Research Fund of Luxembourg for

financial support (CORE/INTER project No. INTER/DFG/

12/07 and ATTRACT project No. FNR/A09/01). Critical

reading of the manuscript by Élio Périgo, Dirk Honecker,
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Wiedenmann, A., Gómez-Polo, C., Suzuki, K. & Michels, A.
(2010). Eur. Phys. J. B, 76, 209–213.

Honecker, D. & Michels, A. (2013). Phys. Rev. B, 87, 224426.
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Löffler, J. F., Braun, H. B., Wagner, W., Kostorz, G. & Wiedenmann,
A. (2005). Phys. Rev. B, 71, 134410.

Long, G. G. & Levine, L. E. (2005). Acta Cryst. A61, 557–567.
Maxelon, M., Pundt, A., Pyckhout-Hintzen, W., Barker, J. &

Kirchheim, R. (2001). Acta Mater. 49, 2625–2634.
Metlov, K. L. & Michels, A. (2015). Phys. Rev. B, 91, 054404.
Michaud, P., Delagnes, D., Lamesle, P., Mathon, M. H. & Levaillant,

C. (2007). Acta Mater. 55, 4877–4889.
Michels, A. (2010). Phys. Rev. B, 82, 024433.
Michels, A. (2014). J. Phys. Condens. Matter, 26, 383201.
Michels, A. & Bick, J.-P. (2013). J. Appl. Cryst. 46, 788–790.
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