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A user-friendly open-source Monte Carlo regression package (McSAS) is

presented, which structures the analysis of small-angle scattering (SAS) using

uncorrelated shape-similar particles (or scattering contributions). The under-

determined problem is solvable, provided that sufficient external information is

available. Based on this, the user picks a scatterer contribution model (or

‘shape’) from a comprehensive library and defines variation intervals of its

model parameters. A multitude of scattering contribution models are included,

including prolate and oblate nanoparticles, core–shell objects, several polymer

models, and a model for densely packed spheres. Most importantly, the form-

free Monte Carlo nature of McSAS means it is not necessary to provide further

restrictions on the mathematical form of the parameter distribution; without

prior knowledge, McSAS is able to extract complex multimodal or odd-shaped

parameter distributions from SAS data. When provided with data on an

absolute scale with reasonable uncertainty estimates, the software outputs

model parameter distributions in absolute volume fraction, and provides the

modes of the distribution (e.g. mean, variance etc.). In addition to facilitating the

evaluation of (series of) SAS curves, McSAS also helps in assessing the

significance of the results through the addition of uncertainty estimates to the

result. The McSAS software can be integrated as part of an automated reduction

and analysis procedure in laboratory instruments or at synchrotron beamlines.

1. Introduction

Quantification of nanoscale structures is set to become a

requirement in industrial preparation of materials (EU, 2011).

Therefore, a toolset is desired to obtain quantitative

morphological parameter distributions of (size-)disperse

nanoparticle mixtures with minimal effort, high flexibility,

accuracy and high reliability.

The most commonly used technique for nanostructural

quantification is transmission electron microscopy (TEM).

TEM is essential in determining the overall morphology of the

nanostructural features and can often be used to coarsely

quantify their parameters. Obtaining a statistically repre-

sentative quantification of the nanostructure, however, is

reliant on the probing of large numbers of objects. To improve

its representation of the bulk of the sample, it should prefer-

ably be performed through sampling from multiple locations

throughout a bulk-scale sample (Klein et al., 2011; Meli et al.,

2012). As TEM has remained largely resilient to automation

efforts, this continues to be a tedious and labour-intensive

task. It is, therefore, beneficial to combine the localized

resolving power of microscopy with another technique more

suited for bulk-scale nanostructural quantification such as

small-angle scattering (SAS) (ISO, 2014; Pauw, 2013).

SAS offers one reliable route to bulk quantification of

materials: it can characterize the nanostructure of large
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amounts of material with a minimum of tedium, easily

extracting size distributions and volume fractions (for

example). Practically, however, one of the biggest stumbling

blocks in its application has been the data correction and

analysis. Although the discussion of data corrections is beyond

the scope of this work [see Jacques et al. (2012), Pauw (2013)

and Kieffer & Karkoulis (2013) for such discussions], it has to

be stressed that correct analysis of data is reliant on the quality

thereof. There can be no good results without proper data

which, in turn, cannot be considered complete without

reasonable uncertainty estimates on the data values. Prior

work has shown that reasonable data uncertainty may be

estimated as the maximum of the values given (a) by the

standard error of the mean (obtained during the averaging or

binning procedure), (b) by propagating photon counting

uncertainties through the data corrections and (c) by limiting

the data uncertainty to be no less than 1% of the data value

(Pauw, 2013; Rosalie & Pauw, 2014; Schnepp et al., 2013).

After suitably corrected SAS data have been obtained,

analysis thereof can be performed through a classical

approach: using a least-squares optimization to match the

measured data to a model scattering pattern, defined by a

handful of model parameters (Pedersen, 1997). However, the

assumptions made in such model functions [on both the

scatterer shape and the mathematical form of the parameter

distribution(s)] are often insufficiently flexible to describe the

morphology of many samples. Good agreement between the

model function and the measured data will then not be

achieved, in particular for samples where the actual dispersity

does not adhere to the inherently assumed model parameter

distribution form (such as lognormal, Gaussian or Schultz–

Zimm), or where such a distribution form is not known or can

not be assumed a priori.

Modern analysis methods are available for this class of

samples (e.g. size-disperse) which allow for the retrieval of

model parameter distributions without assumptions on the

form of the distribution. While the general shape of the

scatterer still has to be defined in order to arrive at a unique

solution [see, for example, Rosalie & Pauw (2014)], the

methods are no longer restricted to a limited set of model

parameter distribution forms. Such modern methods include

Titchmarsh (Fedorova & Schmidt, 1978; Botet & Cabane,

2012) or indirect Fourier transforms, based either on

smoothness criteria (Glatter, 1977; Svergun, 1991), maximum

entropy optimization (Hansen & Pedersen, 1991) or Bayesian

hyperparameter estimation (Hansen, 2000). While these carry

a certain mathematical elegance, they can be challenging to

implement, understand and apply. This mathematical

obscurity furthermore hinders thorough understanding of the

failure modes, which can lead to crucial errors in their appli-

cation.

Recently, a conceptually straightforward Monte Carlo-

based method was presented for determining model para-

meter distributions from small-angle scattering patterns

(Pauw, Pedersen et al., 2013), which has since been applied to

explore the size distributions of a variety of samples including

metal alloys (Rosalie & Pauw, 2014), novel oxygen reduction

reaction catalysts (Schnepp et al., 2013), polymer fibres (Pauw,

Ohnuma et al., 2013), plasmoids (Meir et al., 2013), iron oxide

nanoparticles (Lak et al., 2014) and quantum dots (Abécassis

et al., 2015). While these results have been encouraging, the

lack of user friendliness of the method has hindered its

adoption by a broader audience.

Through a multinational collaborative effort spanning

several years, a drastic improvement on the software usability

was effected. This was mostly accomplished through a

comprehensive rewrite of the implementation following

modern coding standards and conventions, and the addition of

a graphical user interface. After a brief recapitulation of the

method concept, the software capabilities and interface are

detailed, and application examples are given.

2. McSAS fitting procedure

2.1. Core concept

The McSAS method is a Monte Carlo rejection sampling

approach for retrieving model parameter distributions, such as

size distributions, from scattering patterns (Pauw, Pedersen et

al., 2013). Central to the method lies a set of independent non-

interacting contributions, each of which is an instance of the

elementary scatterer model chosen by the user. Depending on

the chosen model, one or more parameters can be selected for

Monte Carlo optimization (hereafter, referred to as ‘fitting

parameter’).

If the measured data are provided in absolute units, calcu-

lations can be performed resulting in absolute volume frac-

tions. In order for this to work, information on the scattering

length densities of the phases within the sample needs to be

provided. For the included two-phase models, only the
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Figure 1
The main process of the McSAS software for parameter optimization. In
each cycle, an attempt is made to replace one of the model contributions
in order to improve the agreement between model and measured data.



differences of the scattering length density of the scatterer and

that of the matrix are necessary. These scattering length

densities are readily obtained from a variety of online tools

(Brown & Kienzle, 2015).

The optimization procedure (shown in Fig. 1) progresses

through replacement of contributions in the set. At the end of

the optimization procedure, the spread of fitting parameter

values of the contributions in this set defines the final para-

meter distribution.

2.2. Optimization procedure

The method starts from a set of non-interacting scatterers of

predefined shape (e.g. spheres, rods, ellipsoids) but with

random values chosen for the fitting parameter(s) of each

contribution in the set. The total model scattering pattern is

given by the (weighted1) sum of the scattering patterns of each

scatterer in the set.

A figure of merit (�2
r ) is calculated from the model based on

the distance between the model and measured data, weighted

by the measured data uncertainty estimates (Pedersen, 1997).

In order to obtain this figure of merit, the model intensity is

matched to the measured data set through scaling and addi-

tion of an optional flat background contribution. The scaling

and background parameters are obtained by least-squares

minimization of �2
r. The figure of merit thus indicates when the

model describes the data on average to within the data

uncertainty (�2
r � 1). Thereby, a suitable cutoff criterion for

optimization is provided, which generally prevents over-fitting

of the data and allows for the estimation of uncertainties on

the resultant distribution.

Each iteration of the Monte Carlo (MC) procedure consists

of replacing one of the scattering objects in the set by another

object of the same basic shape but with different, randomly

chosen values for its fitting parameter(s). This replacement is

accepted if it reduces �2
r, i.e. if the agreement of the resulting

MC scattering pattern with the measured pattern is improved.

These iterations continue until the convergence criterion of

�2
r � 1 is reached (the convergence criterion value can be

adjusted by the user to support data with over- or under-

estimated uncertainties). After completion, the model para-

meter distribution is determined through grouping (binning)

of the fitting parameter values in the set.

In addition to this, a ‘minimum observability limit’ is

determined for each contribution in the set, which specifies the

minimum volume fraction of scatterers required to make a

measurable contribution to the scattering pattern (i.e. a

contribution exceeding the measurement uncertainty). More

specifically, a minimum observability limit ’min;k (in units of

volume fraction) can be defined for any method where the

total model intensity comprises a set of quantized components,

whose partial contributions are IkðqÞ for a given component

volume fraction ’k, and where the measurement data uncer-

tainty �ðqÞ is available:

’min;k ¼ min
q2ðqmin; qmaxÞ

�ðqÞ’k

IkðqÞ

� �
: ð1Þ

Its derivation and use is further explored elsewhere (Pauw,

Pedersen et al., 2013).

Finally, the uncertainty on the resultant parameter distri-

bution is determined through analysis of the sample standard

deviation of a multitude of independent MC solutions. These

uncertainty estimates and the observability limits are key

values in the application of the method. They provide infor-

mation to distinguish between numerical noise and size

distribution components which are shown by the data and,

moreover, allow for the assessment of the statistical signifi-

cance of differences in resultant size distributions. The accu-

racy of such uncertainty estimates and observability limits in

the McSAS result are, however, directly reliant on the provi-

sion of reasonable uncertainty estimates on the measured

data.

With this procedure, McSAS is able to retrieve any form-

free size distribution provided a basic scatterer shape is given.

A test of the retrievability of a wide range of unimodal and

multimodal size distributions has been demonstrated for a

large variety of simulated size distributions in the supple-

mentary information given by Pauw, Pedersen et al. (2013). A

comparison between size distributions of precipitates in alloys

is also available, obtained from electron microscopy and

McSAS analysis of small-angle X-ray scattering (SAXS) data

(Rosalie & Pauw, 2014).

2.3. MC method benefits and drawbacks

2.3.1. Features. McSAS has proven to be remarkably useful

owing to its ability to work in absolute units and the wide

variety of available models. These models include spheres,

isotropic cylinders and ellipsoids, core–shell ellipsoids, and

core–shell spheres.

Furthermore, two polymer chain models have been added:

Kholodenko worm (Kholodenko, 1993) and Gaussian chain

(Debye, 1947). For densely packed spheres, a model has been

included based on the local monodisperse approximation

(LMA), which is one of the few structure factors that can be

directly implemented given the internal design of the MC

method, coupled with the Percus–Yevick (PY) approximation

(see x5) (Kinning & Thomas, 1984). This particular model

combination will, hereafter, be referred to as ‘LMA-PY’.

McSAS can run with or without a user interface, enabling

integration into existing data processing procedures. Multiple

data files can be provided on the command line for batch

fitting. The fitting procedure can then be automatically initi-

ated, inheriting the settings of the previous GUI instance.

Graphical output and population statistics are calculated for

a user-specified number of parameter ranges (regions of

interest). The distributions can be shown with the (horizontal)

parameter axes in logarithmic or linear scales, and the
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1 The scattering patterns of the individual contributions of the set are weighted
with the inverse of their volume to obtain a more evenly matched impact on
the total (Porod, 1952). This process drastically reduces the required number
of contributions and improves fitting flexibility. For most practical scattering
patterns we encountered, about 200–300 contributions are sufficient to
describe the scattering patterns with a minimum of optimization iterations.



(vertical) amount number-weighted or volume-weighted. For

broad distributions, however, volume-weighting is strongly

recommended (see the note in x2.3.2). The distributions shown

include the minimum observability limit, i.e. the minimum

required amount for each contribution to be statistically

significantly contributing.

Lastly, population statistics of the solution are determined

independently of the histogramming procedure. For each

selected parameter and range, the total value and the four

distribution modes are provided: the mean, variance, skew and

kurtosis. These are number- or volume-weighted depending

on the user’s choice. Such population statistics simplify the

analysis of population trends for in situ experiments or other

inter-related data sets.

2.3.2. Drawbacks. Owing to its ‘brute force’, iterative

nature, the method is not as fast as some of the alternatives

mentioned in the Introduction. Optimization speed is strongly

dependent on the accuracy of the data. A reasonably accurate

data set (with small data uncertainties) may require a few

minutes on a normal modern desktop computer. This is

expected to improve in the near future through implementa-

tion of multithreading.

Secondly, there is a risk of under-specifying the fitting

model when more complex models are chosen. For example, if

a cylindrical scatterer model is chosen, and its length and

radius are allowed to span the same size range, the solution is

no longer unique and a multitude of valid solutions will be

found. This manifests itself through excessive uncertainties in

the result, originating from large discrepancies between the

independent McSAS repetitions. Such ambiguity can be easily

arrived at when using models such as core–shell objects and

anisotropic objects. For these complex shapes, the allowed size

ranges for the shape parameters may require the application

of strict constraints before a unique solution is obtained.

Two common failure modes of the McSAS method can

occur. The first happens when data are provided containing

unrealistically low uncertainty estimates, which will lead to an

attempt by McSAS to describe ostensibly significant data

variations as features in the size distribution. This will lead

either to a failure to reach convergence or to spurious features

in the resulting parameter distribution. To alleviate this

problem somewhat, the uncertainty is clipped to be at least

1% of the intensity value. Previously, this has been found to be

a practical limit from data correction considerations (Pauw,

Pedersen et al., 2013) and is a value supported by experimental

results (Hura et al., 2000). This lower limit can be adapted or

bypassed if better estimates can be guaranteed.

The second failure mode occurs when the fitting range is set

too broad (beyond the range supported by the data). It is

recommended to keep size parameters within the limits

dictated by the q range of the data,2 estimated as �=qmax �

R � �=qmin. Exceeding these limits may result in spurious

features appearing beyond these limits, as explored in the

supplementary information given by Pauw, Pedersen et al.

(2013).

Of further note is that small-angle scattering data represent

a weighted distribution: volume-weighted according to Porod

(Porod, 1952) or surface-weighted in terms of observability

[explored, amongst others, in the article by Pauw, Pedersen et

al. (2013)]. The implication of this is that volume-weighted size

distributions can be easily retrieved using a Monte Carlo

approach, as small to medium volume fractions of small-sized

scatterers can be readily distinguished in scattering patterns.

Not so for small number fractions of small-sized scatterers in a

disperse mixture, for which exceedingly little evidence exists

in most measured scattering patterns (and in particular for

broad size distributions). Therefore, when (broad) size

distributions determined using McSAS are shown in their

number-weighted form, the values and uncertainties of the

small-sized components can be seen to vary excessively (with

some values becoming untenably large). Such issues are

usually not encountered when using classical fitting methods.

Classical methods circumvent this issue, as the integral

equation that is solved strictly constrains the distribution

probability at all sizes (e.g. the probability distribution typi-

cally assumes a value of zero at its smallest size). These

methods are, therefore, seemingly capable of determining

even small number fractions of small scatterers accurately.

However, the evidence for small numbers of small-sized scat-

terers may be very weak in the data. In summary, the strict

assumptions placed in classical methods on the number-

weighted size distribution shape may conceal the lack of

evidence for the absence or presence of scatterers at the small

end of the distribution, thus implying accuracy where there is

none.

3. Current implementation

3.1. User interface features

The user interface is divided into several panels, each

limited to a different aspect of the process (see Fig. 2). These

consist of a ‘Data Files’ panel, an ‘Algorithm’ panel, a ‘Model’

panel and a ‘Post-fit Analysis’ panel, and will be discussed in

order.

The ‘Data files’ panel shows data files loaded upon startup

(as command-line arguments) or files added through the right-

click menu. All files will be treated identically when the fit is

run, though their order of processing can be changed as

desired. Available data are read from the input file, which is

expected to consist of three semicolon-separated columns of q

(nm), I [(m sr)�1] and the uncertainty estimate �ðIÞ [(m sr)�1].

An optional fourth column can be used to indicate the

azimuthal angle ’ to aid fitting of anisotropic scattering

patterns (a future feature). To help with determining reason-

able limits of size parameters in particular, basic analysis is

performed when loading each data file. The minimum and

maximum values of the provided q vector are used to estimate

the maximum and minimum possible scatterer size under the

assumption of solid spherical scatterers. Those estimates are
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2 More precisely, it is the q point spacing which defines the upper limit.
However, there is a tendency during the azimuthal averaging procedure to
over-specify the number of bins, leading to excessively small q point spacing.



displayed next to each data file and, by double-click, can be

applied as optimization limits for radius-type model para-

meters.

The ‘Algorithm’ panel contains a subset of MC algorithm

settings addressable by the user (see Table 1). The most

important of these is the chi-squared criterion. While this is

per default set to 1, it may prevent reaching a state of

convergence (�2
r � 1) for data whose uncertainty estimates

are insufficiently large or poorly estimated. Increasing this

value will allow the convergence condition to be reached, after

which the fit may be evaluated. This increase directly affects

the uncertainties on the resultant distribution. Additionally,

the number of shape contributions can be increased. While the

default setting of 300 is sufficiently large to reach the

convergence criterion for most scattering patterns, and small

enough to reach it rapidly, there may be cases for which an

increased number is desired. Using the timing information

shown in the graphical output, the number of shape contri-

butions can be optimized to reach convergence as fast as

possible (a method discussed by Pauw, Pedersen et al. (2013).

Likewise, the number of repetitions can be changed. These

independent repetitions are used to estimate the uncertainties

on the resultant size distribution, but a reduced number

computer programs
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Table 1
Selected program parameters and their effects on the computation.

For the advanced settings and defaults that can be found in the mcsasparameters.json file, only selected values are listed.

Location Parameter name Effect

GUI Algorithm panel Convergence criterion The least-squares value (�2
r ) at which the fit is considered a success. For data with good uncertainty

estimates, this can be set to 1. For a quick fit, it can be set to larger values. Values below 1 are not
recommended.

Number of repetitions The number of independent optimizations to be run. Larger values will result in improved uncertainty
estimates on the result (and a slightly smoother result), but calculation time increases
proportionally.

Number of contributions The number of individual contributions whose weighted sum comprises the total model intensity. Too
few or too many will result in slow optimization times. Most patterns can be fitted using 300
contributions quickly, but times can be optimized using the timing information shown in the result.

Find background level If selected, a flat background is fitted during matching of model and data. This speeds up the fit with
minimal effect on the result, as many scattering patterns contain a flat scattering component as well
(due to density variations or incoherent scattering).

GUI Post-fit Analysis
panel

Parameter The parameter to show the distribution of.
Lower & upper The distribution will be shown in this parameter range only. This can be used to cut off regions outside

the range of interest. Population statistics also apply only to this range.
Number of bins The number of divisions to use in the distribution display. By increasing this number, more detail may

be visible provided one stays within the Shannon channel limit (indicated in the ‘Data Files’ panel).
An increase in the number of divisions will also negatively affect uncertainty estimates and
observability limits.

X-axis scaling Scaling (linear or logarithmic) for the parameter axis of the distribution. Logarithmic recommended
for wide parameter ranges.

Y-axis weighting The vertical axis can be shown in volume or number distributions. Volume-weighted distributions
recommended; number-weighted distributions can be used for samples with a narrow dispersity.

mcsasparameters.json

(file, advanced settings
and defaults)

maxIterations If convergence has not been reached within this number of iterations, the optimization attempt is
aborted. Larger values may allow complex calculations to finish successfully, but often
nonconvergence can be traced back to poor initialization settings. Increasing this value increases
the maximum possible calculation time.

compensationExponent Adjusts internal weighting of scattering pattern contributions. Adjustment between 0.3 and 0.7 may
lead to slight speed increases for some samples.

eMin Minimum uncertainty estimate in fraction of intensity. Default 0.01 sets the uncertainty value to be no
less than 1% of the data intensity value. Can be increased or reduced based on best guess estimate
for minimum inter-related data point uncertainty. A too low value may prevent reaching
convergence.

Figure 2
The main interface of the McSAS software upon startup, showing four
configuration panels. The ‘Data Files’ panel allows selection and input of
the data of interest, the ‘Algorithm’ panel contains settings to adjust the
optimization method behaviour, ‘Model’ contains all parameters and
settings relevant to the chosen morphology, and ‘Post-fit Analysis’ holds
the settings for histogramming and visualization of the result.



should suffice for initial testing. Lastly, a selection can be made

on whether a flat background contribution is to be taken into

account when matching the MC intensity to the detected

signal.

The ‘Model’ panel contains all information on the model

used to describe the scatterer morphology. The pulldown

menu offers a selection of models that can be used to define

the contributions’ scatterer shape. The associated parameters

and options for the model chosen will then be shown on the

right-hand side. Parameters which are selected for fitting

require upper and lower bounds to be set.

The ‘Post-fit Analysis’ panel offers basic analysis capabil-

ities for interpretation of the MC result. When a range entry is

added, the user can select which parameter to histogram, what

parameter range to consider (if they decide not to auto-

matically follow the model parameter range) and how many

bins to use. Increasing the number of histogram bins will lead

to increased detail in the resulting histogram at the cost of

larger uncertainties and evidence requirements via observa-

bility limits. Furthermore, a choice can be made whether to use

a linear or logarithmic parameter scale (useful for distribu-

tions spanning several decades) and whether to plot volume-

or number-weighted size distributions. When using absolute

units, only the volume-weighted distribution will contain

absolute values; the number-weighted distribution is normal-

ized for lack of information.

Finally, the ‘Start’ button starts the process, and the ‘log’

shows the output of the program as it runs (and is auto-

matically stored in a file).

3.2. Support, availability and licensing

All McSAS information, including instructions and down-

loadable items, are available through http://mcsas.net/. A

reasonable degree of support is provided by the authors

subject to the availability of time. Instructional videos are

available to help the user get started.

The software is written in the Python 2.7 programming

language and available as a Git DVCSS repository. The

interpreted code should run without issue on any desktop

computer running any operating system that supports Python

2.7. It has been tested on the three main operating systems:

Windows, Linux and Mac OS X. Standalone packages of stable

versions are also available for these operating systems, which

do not require Python to be available on the host computer.

The software is released under an open-source GPLv3 license,

allowing for academic and commercial adoption given proper

attribution. Users for whom the software has been useful may

refer to this work.

4. Application example 1: bimodal nanoparticle
reference material

To test the ability of the program to retrieve bimodal size

distributions, a reference material was measured containing

two fractions of silica nanoparticles [reference material ERM-

FD-102 (Kestens & Roebben, 2014)]. The first fraction

computer programs
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Figure 3
McSAS graphical output showing the best fit obtained using the MC
method to a scattering pattern obtained from a mixture of dilute particles
with certified diameter of 17 (2) nm and 89 (2) nm silica particles. The
particle volume ratio of small to large particles is 19:1.

Figure 4
McSAS graphical output showing the volume-weighted size distribution
associated with the MC fit of dilute silica particles shown in Fig. 3.



consists of 0.36 vol.% of 17 (2) nm-diameter nanoparticles.

The second fraction consists of nanoparticles with a mean

diameter of 89 (2) nm at a volume fraction of 0.018 vol.%.

This makes the volume ratios of the two components 95 and

5%, respectively.

The measurements were performed on an Anton Paar slit-

collimated instrument utilizing mirror-monochromated

copper K� radiation and modified to use a Dectris Mythen

detector. The data have been calibrated to absolute intensity

using the methods described by Orthaber et al. (2000), the

scaling of which was verified using a measurement of bovine

serum albumin. The reference material, a water background

and an empty capillary background were measured for 30 min

each, corrected and desmeared using the software provided by

Anton Paar. The data thus collected have been regrouped and

averaged over 50 intervals, logarithmically spaced in q. The

uncertainty has been set as the largest of (a) the propagated

data uncertainty or (b) the standard error on the mean. None

of these uncertainty estimates are smaller than 1% of the

intensity value. The data span a q range of 0:057 � q �

2.88 nm�1, corresponding to an estimated size range of 1.09 �

R � 55:4 nm.

Analysis of the data using the McSAS program results in the

fit shown in Fig. 3. To achieve this, the standard settings have

been used, except for the number of repetitions (100) and the

scattering length density difference (1.017�10�5 Å�2). The

two populations have been correctly resolved in the analysis

(see Fig. 4), with the first population 1.09� R � 25 nm having

a volume-weighted mean of 9.86 (6) nm and a volume fraction

of 0.311 (3)%. The second population 25 � R � 55.4 nm has a

volume-weighted mean of 45 (2) and volume fraction of

0.013 (4)%.

Although the agreement is good, the values do deviate

slightly from the stated values for the reference material.

Furthermore, as the large-sized component is present at small

volume fractions and close to the end of the measurement

range, its characterization is not as accurate as that of the small

component.

5. Application example 2: densely packed
nanoparticles
Dense systems add a degree of complexity to small-angle

scattering and are, therefore, interesting as a test case for MC

methods. A suitable data set of densely packed, dry SiO2

spheres (with a stated radius of 75 nm) has been provided by

Peter Høghøj of Xenocs, as part of a demonstration data set

measured on their Xeuss SAXS instrument. The SiO2 spheres

are packed in a randomly jammed fashion, implying that the

volume fraction vf is approximately 0.63 (Song et al., 2008).

A reasonable fit can be obtained using classical fitting

methods implemented in SASfit (Bressler et al., 2015), with a

model of Gaussian distributed spheres and a structure factor

consisting of a PY hard-sphere interaction model assuming the

local monodisperse approximation, forming the aforemen-

tioned LMA-PY combination. This resulting fit is shown in

Fig. 5. Most of the intensity can be described well, apart from

the region at low q.

A fit to within data uncertainty can be obtained using the

same model in McSAS (see Fig. 6), with the volume fraction vf

set to 0.63. Note that the instrumental resolution has not been

considered in either the classical or the MC approach. The

main feature in the resultant size distribution (shown in Fig. 7)

is indeed at the size indicated for the sample [with a number-

weighted mean radius of 76.1 (2) nm], but a minor component

is visible at about half the radius of the main component.

While the origin of the minor features cannot be established

without further investigation, we have found that a similar

good fit can be obtained when other volume fractions are set

computer programs
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Figure 5
Best fit using a classical model (implemented in SASfit) to a scattering
pattern obtained from packed silica spheres. Model uses a sphere form
factor with a LMA-PY structure factor and a Gaussian size distribution.

Figure 6
The best fit obtained using the MC method to a scattering pattern
obtained from packed silica spheres. Model using a sphere form factor
with a LMA-PY structure factor.



(possible between �0:5 � vf � 0:7). Changing the volume

fraction drastically affects the size distribution and demon-

strates that there are a multitude of solutions accessible

through adjustment of the volume fraction. This highlights

once more that information must be provided on the sample to

allow SAS analyses to arrive at a unique solution. However,

the overall result is quite satisfactory and a clear improvement

compared with the classical approach.

6. Conclusion

Although the McSAS package provides the user with a

comprehensive model library, it can be readily extended with

additional models. The relatively high computational effort

increases with the complexity of new models, but should not

be a major concern given the ever increasing availability of

computing power. Concerning the significance of the resulting

particle distributions, care must be taken that sufficient

external information is provided to ensure a unique solution.

This is of particular importance for complex models.

Acknowledgements

We would like to acknowledge Peter Høghøj and Xenocs for

their provision of the dense spheres data set. Furthermore, the

editor and referees are thanked for their insightful comments.

IB acknowledges financial support by the MIS program of

BAM.

References

Abécassis, B., Bouet, C., Garnero, C., Constantin, D., Lequeux, N.,
Ithurria, S., Dubertret, B., Pauw, B. R. & Pontoni, B. (2015). Nano
Lett. 15, 2620–2626.

Botet, R. & Cabane, B. (2012). J. Appl. Cryst. 45, 406–416.
Bressler, I., Kohlbrecher, J. & Thünemann, A. F. (2015). SASfit: A

Comprehensive Tool for Small-Angle Scattering Data Snalysis. In
preparation.

Brown, D. & Kienzle, P. (2015). Neutron Activation and Scattering
Calculator, http://www.ncnr.nist.gov/resources/activation/.

Debye, P. (1947). J. Phys. Colloid Chem. 51, 18–32.
EU (2011). Commission Recommendation of 18 October 2011 on the

Definition of Nanomaterial. Technical Report OJ L 275, 20.10.2011.
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32011H0696.

Fedorova, I. S. & Schmidt, P. W. (1978). J. Appl. Cryst. 11, 405–411.
Glatter, O. (1977). J. Appl. Cryst. 10, 415–421.
Hansen, S. (2000). J. Appl. Cryst. 33, 1415–1421.
Hansen, S. & Pedersen, J. S. (1991). J. Appl. Cryst. 24, 541–548.
Hura, G., Sorenson, J. M., Glaeser, R. M. & Head-Gordon, T. (2000).

J. Chem. Phys. 113, 9140–9148.
ISO (2014). Particle size analysis – Small-angle X-ray scattering. ISO/

FDIS 17867:2014(E).
Jacques, D. A., Guss, J. M., Svergun, D. I. & Trewhella, J. (2012). Acta

Cryst. D68, 620–626.
Kestens, V. & Roebben, G. (2014). The Certification of the Equivalent

Spherical Diameters of Silica Nanoparticles in Aqueous Solution,
ERM-FD102, http://dx.doi.org/10.2787/95996.

Kholodenko, A. L. (1993). Macromolecules, 26, 4179–4183.
Kieffer, J. & Karkoulis, D. (2013). J. Phys. Conf. Ser. 425, 202012.
Kinning, D. J. & Thomas, E. L. (1984). Macromolecules, 17, 1712–

1718.
Klein, T., Buhr, E., Johnsen, K.-P. & Frase, C. G. (2011). Meas. Sci.

Technol. 22, 094002.
Lak, A., Thünemann, A. F., Schilling, M. & Ludwig, F. (2015). J.

Magn. Magn. Mater. 380, 140–143.
Meir, Y., Jerby, E., Barkay, Z., Ashkenazi, J. M., Narayanan, T., Eliaz,

N., LeGarrec, J., Sztucki, M. & Meshcheryakov, O. (2013).
Materials, 6, 4011–4030.

Meli, F., Klein, T., Buhr, E., Frase, C. G., Gleber, G., Krumrey,
M., Duta, A., Duta, S., Korpelainen, V., Belliotti, R., Picotto,
G. B., Boyd, R. D. & Cuenat, A. (2012). Meas. Sci. Technol. 23,
125005.

Orthaber, D., Bergmann, A. & Glatter, O. (2000). J. Appl. Cryst. 33,
218–225.

Pauw, B. R. (2013). J. Phys. Condens. Matter, 25, 383201.
Pauw, B. R., Ohnuma, M., Sakurai, K. & Klop, E. A. (2013).

arXiv:1303.2903.
Pauw, B. R., Pedersen, J. S., Tardif, S., Takata, M. & Iversen, B. B.

(2013). J. Appl. Cryst. 46, 365–371.
Pedersen, J. S. (1997). Adv. Collect. Interf. Sci. 70, 171–210.
Porod, G. (1952). Kolloid Z. 125, 108–122.
Rosalie, J. M. & Pauw, B. R. (2014). Acta Mater. 66, 150–163.
Schnepp, Z., Zhang, Y., Hollamby, M. J., Pauw, B. R., Tanaka, M.,

Matsushita, Y. & Sakka, Y. (2013). J. Mater. Chem. A, 1, 13576.
Song, C., Wang, P. & Makse, H. A. (2008). Nature, 453, 629–632.
Svergun, D. I. (1991). J. Appl. Cryst. 24, 485–492.

computer programs

J. Appl. Cryst. (2015). 48, 962–969 I. Bressler et al. � Nanoscale quantification with McSAS 969

Figure 7
McSAS graphical output panel showing volume-weighted size distribu-
tion associated with the MC fit of Fig. 6.
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