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An automated method has been developed to characterize the type and spatial

distribution of twinning in crystal orientation maps from synchrotron X-ray

Laue microdiffraction results. The method relies on a look-up table approach.

Taking into account the twin axis and twin plane for plausible rotation and

reflection twins, respectively, and the point group symmetry operations for a

specific crystal, a look-up table listing crystal-specific rotation angle–axis pairs,

which reveal the orientation relationship between the twin and the parent

lattice, is generated. By comparing these theoretical twin–parent orientation

relationships in the look-up table with the measured misorientations, twin

boundaries are mapped automatically from Laue microdiffraction raster scans

with thousands of data points. Taking advantage of the high orientation

resolution of the Laue microdiffraction method, this automated approach is also

applicable to differentiating twinning elements among multiple twinning modes

in any crystal system.

1. Introduction

Crystal twinning, referring to two or more homogeneous

individuals oriented by a defined symmetry element outside

the crystal’s point group, is commonly observed during crystal

growth, recrystallization annealing, phase transformation (Li

et al., 2014) and plastic deformation (Cahn, 1954). According

to the symmetry operation added into the crystal, twinning can

be cataloged into three types, including rotation, reflection

and inversion twins (Koch, 2004). The twin axis, twin plane

and twin center are the most important elements for the three

twinning types, respectively. Twinned crystals usually exhibit

unique effects distinct from their untwined counterparts in the

aspects of mechanical behavior (Christian & Mahajan, 1995;

Salem et al., 2005; Kaschner et al., 2006), texture evolution

(Brown et al., 2005; Proust et al., 2007), and other physical

properties. Often, because they have a lower interfacial energy

than ordinary grain boundaries (OGBs), twin boundaries

(TBs) have a major impact on yield stress (Konopka &

Wyrzykowski, 1997), work hardening (Bouaziz et al., 2008)

and fatigue cracking initiation (Heinz & Neumann, 1990), and

cause migration of twin walls in some shape memory alloys

induced by external magnetic fields (Likhachev & Ullakko,

2000). It is therefore essential to characterize the type,

element and spatial distribution of twinning in a crystalline

material to understand and predict its mechanical behavior.

As crystal twinning occurs commonly at the nanometre to

micrometre scale, conventional neutron and X-ray diffraction

cannot be employed to map the spatial distribution of crystal

twinning owing to their limited spatial resolution. Although
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electron diffraction based on transmission electron micro-

scopy (TEM) has an exceptional advantage of spatial resolu-

tion, its angular resolution is poor, and the viewing area is

usually only a couple of micrometres. With the emergence of

microdiffraction techniques such as electron backscatter

diffraction (EBSD) and synchrotron polychromatic X-ray

microdiffraction (mXRD), the microstructure (such as phase

distribution, crystallographic orientation, local microstrain

and defect distribution) of heterogeneous materials can be

studied on a length scale spanning intra-granular and inter-

granular dimensions. EBSD provides high spatial resolution

(down to the nanoscale) but relatively low angular/orientation

resolution (1–0.5� in the conventional setup, 0.1� in high-

resolution mode) (Wilkinson et al., 2006). Additionally, in

order to capture high-quality diffraction patterns, it is crucial

to make the EBSD sample surface free of contaminants,

oxidation layers and charge accumulation. However, with the

technique of mXRD, one can achieve an angular resolution

down to 0.01� and a 10�4 strain resolution with proper cali-

bration (Budai et al., 2003; Chen et al., 2010). Besides, it is

much easier to prepare samples for mXRD than for EBSD

because of the stronger penetration ability of X-rays

compared to backscattered electrons.

However, analysis and interpretation of mXRD data are less

advanced than those for TEM and EBSD. Though people have

characterized the type and/or distribution of twinning by

mXRD before (Savytskii et al., 2003; Wang et al., 2010; Guo et

al., 2011; Mun et al., 2011; Li et al., 2014), the need for an

automatic approach that is valid for all seven crystal systems

still exists (Wang et al., 2013). In this study, the X-ray Micro-

diffraction Analysis Software (XMAS) (Tamura, 2014) is used

to index Laue diffraction patterns and measure the crystal-

lographic orientation. Then a ‘look-up’ approach is developed

to determine and map the crystal twinning by comparing the

orientation outputs of a mXRD raster scan with a calculated

look-up table, which is established taking into account

geometric relationships between twin pairs and the rotational

symmetry of the point group.

2. Methodology

It is noted that the tensors referred to in this article are

denoted as three-dimensional square matrices. In the case of

hexagonal and trigonal systems, three-digit Miller index

notation is used throughout the mathematical calculations,

and the final outcomes are entirely converted to four-digit

Bravais–Miller indices.

According to Friedel’s law, conventional diffraction tech-

niques without anomalous scattering (Rossmann, 1961) are

unable to determine the existence of an inversion center in a

crystal from the intensities of its diffraction pattern. This is

because conventional diffraction methods impose an addi-

tional inversion center on the diffraction pattern. As a result,

inversion twins cannot be identified with the conventional

Laue diffraction method, and thus only rotation and reflection

twins are discussed in this paper. Moreover, because of the

addition of the inversion center, the method employed here is

insensitive to the chirality of the crystals, and thus reflection

twin cannot be detected in crystals with noncentrosymmetry.

For example, the Brazil twin in quartz is formed by reflecting

the parent crystal across the {1120} mirror plane. In this case

neither the position nor the intensity of the Laue diffraction

peaks will change with the formation of the twin domain,

unless the anomalous scattering technique is applied

(González-Mañas et al., 1993). Therefore, reflection twins can

only be identified in crystals with centrosymmetry. Their Laue

groups are listed in Table 1.

It can be proven that, for centrosymmetric crystals, the

relationship between a reflection twin and its parent can be

expressed by a pure rotation. The rotation angle–axis pair

associated with the reflection twin is defined by the twin plane,

lattice parameters and crystal point group (for details see

x2.3). A rotation twin by definition is also described through a

rotation axis and angle. We therefore will describe both types

of crystal twinning by look-up tables in terms of rotation

angle–axis pairs in this paper. By comparing the experimental

observed misorientation between each two adjacent positions

in a mXRD scan with the calculated ones, twin boundaries can

be detected within a suitable angular tolerance, and twin type

and element can be uniquely determined.

2.1. Treatment of rotations

The orientation of a crystal can be represented as a matrix,

and in this article we follow the definition used by XMAS and

call it orientation matrix G:

G ¼

a

b

c

2
4

3
5 ¼

ax ay az

bx by bz

cx cy cz

2
4

3
5; ð1Þ

where row vectors a, b and c are the basis lattice vectors while

x, y and z are the unit vectors of a Cartesian laboratory

coordinate system (O-xyz). On the other hand, it is often

convenient to define another Cartesian coordinate system (O-

aoboco, and we call it orthonormal coordinates in this article)

which is associated with the crystal lattice coordinate system

O-abc, so that the orientation for a crystal from any of the

seven crystal systems can be defined as a pure rotation that

brings O-xyz into O-aoboco. Here we define that the two

coordinates of O-abc and O-aoboco share the same origin and

the co axis is collinear with the c axis, bo is perpendicular to the

ac plane, and ao lies hence in the ac plane to fulfill the right-

handed criterion (Matthies et al., 1988); ao, bo and co are unit
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Table 1
Crystal systems and Laue groups.

Crystal systems Laue groups

Triclinic 1
Monoclinic 2/m
Orthorhombic mmm
Tetragonal 4/m, 4/mmm
Trigonal 3, 3m
Hexagonal 6/m, 6/mmm
Cubic m3, m3m



vectors. Therefore, the transformation matrix L that brings O-

aoboco to O-abc has the following form:

L ¼

a sin � �b sin � cos �� 0

0 b sin � sin �� 0

a cos � b cos � c

2
4

3
5; ð2Þ

where a, b, c are the edge lengths of the unit cell, �, �, � are the

angles between the edges, and �* is the angle between the

reciprocal unit axes a* and b*. The relationships between O-

abc, O-aoboco and O-xyz are displayed in Fig. 1. Consequently,

the [uvw] direction in the lattice coordinate system can be

transformed into the [uovowo] direction referred to the

orthonormal coordinate system as

uo

vo

wo

2
4

3
5 ¼ L

u

v

w

2
4

3
5 and

u

v

w

2
4

3
5 ¼ L�1

uo

vo

wo

2
4

3
5; ð3Þ

where the superscript �1 denotes the inverse matrix. Simi-

larly, the (hokolo) plane in the orthonormal coordinate system

can be obtained from the (hkl) plane in the lattice coordinates

by (He & Jonas, 2007)

ho

ko

lo

2
4

3
5 ¼ ½LT

�
�1

h

k

l

2
4

3
5 and

h

k

l

2
4

3
5 ¼ LT

ho

ko

lo

2
4

3
5; ð4Þ

where the superscripts T and �1 denote the transpose and

inverse of a matrix, respectively.

For a mathematical representation of rotations, one can

alternatively choose rotation matrices, rotation angle–axis

pairs, Euler angles or unit quaternions. Here we prefer to use

unit quaternions for all calculations but angle–axis pairs to

display the final results, because the former are more accurate

in computing while the latter are more transparent in

expressing the rotation. The unit quaternion q = [q0 q1 q2 q3]

corresponding to an angle–axis pair {�, [u1 u2 u3]} has the form

of

q0 ¼ cosð�=2Þ; qi ¼ ui sinð�=2Þ; i ¼ 1; 2; 3; ð5Þ

where q0 and qi are the scalar and vector parts, respectively.

Accordingly, the rotation matrix R in terms of unit quaternion

q is

R ¼

1� 2ðq2
2 þ q2

3Þ 2ðq1q2 � q0q3Þ 2ðq1q3 þ q0q2Þ

2ðq1q2 þ q0q3Þ 1� 2ðq2
1 þ q2

3Þ 2ðq2q3 � q0q1Þ

2ðq1q3 � q0q2Þ 2ðq2q3 þ q0q1Þ 1� 2ðq2
1 þ q2

2Þ

2
4

3
5:
ð6Þ

The mutual transformation between these rotation repre-

sentations can be found elsewhere (Brannon, 2002).

2.2. Calculating look-up tables for rotation twins

A rotation twin is defined as two twin components brought

into coincidence by rotating the parent lattice by a well

defined angle � (360�/n, n = 2, 3, 4, 6) around a well defined

axis t (twin axis) (Koch, 2004). The process of creating the

theoretical misorientation table for rotation twins relies on

rotational operations and symmetry operations of point

groups. In a specific crystal, the transformation matrix L is

obtained from the lattice constants by equation (2). The

directions of all symmetry-equivalent twin axes t in the crys-

tallographic coordinate system are converted to the corre-

sponding indices to in the orthonormal coordinate system by

equation (3):

to ¼ normðL tÞ; ð7Þ

where norm means normalization of a vector. The resulting

angle–axis pairs {�, to} are then converted to a group of

rotation matrices R by combining equations (5) and (6).

For completeness, one must take into account the rotational

symmetry operations of the respective point group, which can

be expressed as a set of rotation matrices S (Kocks et al., 2000).

Therefore, the matrices X describing the full rotational rela-

tionships between twin and parent orientations are obtained

as

X ¼ S R: ð8Þ

Subsequently, the rotational relationships between twin

components are represented as a group of rotation angle–axis

pairs {�, uo} derived from matrices X by inverse operations of

equations (6) and (5) (Brannon, 2002). It is worth noting that

the indices uo are in the orthonormal coordinate system. They

are then transformed into the corresponding indices u in the

lattice coordinate system by applying equation (3). Through

the procedure executed above, the look-up table of correla-

tion between rotation twin pairs is generated, involving a

group of rotation angles and corresponding rotation axes

{�, uo}.

2.3. Calculating look-up tables for reflection twins

A reflection twin is defined as two twin components brought

into coincidence by a mirror operation along a well defined

plane. Previous efforts to derive the correspondence matrices

related to the mirror twin–parent lattice orientation (Calbick

& Marcus, 1967; Bevis & Crocker, 1968; Niewczas, 2010) were
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Figure 1
The definition and mutual relationship of the three coordinate systems
referred to in this article.



restricted to cubic and hexagonal systems and did not include

the intrinsic rotational symmetry of their point groups. Here

we show an alternative way to implement a look-up table,

which is valid for all seven crystal systems and takes rotational

symmetry into account.

With respect to a specific reflection twin, the indices {p1 p2

p3} denoting the family of the twin planes in crystallographic

coordinates are converted to the corresponding indices {po
1 po

2

po
3} in orthonormal space utilizing the transformation matrix L

by equation (4). In linear algebra, the Householder transfor-

mation is introduced to describe a reflection (Householder,

1958):

H ¼ I � 2

p̂po
1

p̂po
2

p̂po
3

2
4

3
5 p̂po

1 p̂po
2 p̂po

3

� �
; ð9Þ

where H is the Householder matrix, I is the identity matrix,

and the unit vector [p̂po
1 p̂po

2 p̂po
3] is obtained by normalizing the

indices of each plane in {po
1 po

2 po
3}. The determinant of the

Householder matrix H is �1, indicating that a mirror opera-

tion changes the chirality of the coordinate system. Since as

stated above Laue diffraction is insensitive to chirality, it is

safe to multiply H by �1 without introducing a change in the

orientation of the crystal. It can be shown that det(�H) = 1

(det means the matrix determinant) and [�H]�1 = [�H]T,

which identifies �H as a rotation matrix.

Similar to the case of rotation twins, the rotational

symmetries of the point group need to be taken into account.

Thus the correspondence matrices X linking twin and parent

lattices can be expressed as

X ¼ S �H½ �; ð10Þ

where S is, again, the group of rotation matrices expressing the

rotational symmetry of the point group in a given crystal.

Finally, each rotation matrix in X is transformed into a pair of

angle–axis {�, u} in the lattice coordinate system following the

same route as for the rotation twin.

2.4. Experimental identification of twinning

As outlined in the previous section, a look-up table for

orientation relationships between two twin components can

be established as long as all the twin elements (twin axis or

twin plane) in a specific crystal are known. The existing twin

mode thereafter is identified utilizing a ‘look-up’ table method

by comparing the misorientation measurements from mXRD

scans with the theoretical rotation angle–axis pairs in the look-

up table.

2.4.1. Misorientation measurements from XMAS. The

misorientation matrix �G between any two pixels in a mXRD

scan from the XMAS outputs [G1 and G2, as explained in

equation (1)] is deduced as follows:

�G ¼ GT
1 GT

2

� ��1
: ð11Þ

From the inverse operations of equations (5) and (6), the

misorientation matrix �G is represented as a rotation angle–

axis pair {�cal, [ul
cal vl

cal wl
cal]} (the subscript cal means the

calculation results, and the superscript l denotes the labora-

tory coordinate system), and the rotation axis can be trans-

formed into [ucal vcal wcal] in the lattice coordinate system

through a similar transformation operation with equation (3):

ucal

vcal

wcal

2
4

3
5 ¼ GT

2

� ��1
ul

cal

vl
cal

wl
cal

2
4

3
5: ð12Þ

The misorientation of any two adjacent grains is expressed as a

rotation angle–axis pair from a mXRD measurement. By

comparing measured values with the calculated angle–axis

pairs in the look-up table for each measured position pair,

twins are unambiguously identified within a specified toler-

ance range.

2.4.2. Tolerance for determination of twinning types. The

look-up table, involving a set of rotation angle–axis pairs,

reveals the rotational relationship between two twin compo-

nents. On the other hand, two adjacent grains are character-

ized as a pair of twins as long as the following two conditions

are satisfied simultaneously: first, the misorientation angle �cal

between the two grains must be equal to one of the theoretical

rotation angles defined in the look-up table; second, the

rotation axis ucal of two adjacent orientations must be parallel

to the theoretical axis corresponding to the rotation angle.

Before applying this method to real samples, it is necessary

to consider the potential deviations of the calculated �cal and

ucal values from the theoretical case. One contribution arises

from the orientation resolution of the experimental technique

(�0.01� for mXRD) and calculation errors. Secondly, a mate-

rial subjected to a mechanical/electrical/magnetic/temperature

field may exhibit small changes of the lattice parameters and/

or grain rotation from the strain-free state. For example,

deformation twinning is known to be accompanied by grain

rotations arising from the accumulation of geometrically

necessary dislocations (GNDs) (Straumanis, 1949). As a

result, the X-ray diffraction peaks from such materials will be

either broadened or split. Consequently, the measurement

accuracy of the crystal orientation is reduced.

Because of inherent uncertainties and errors in the crystal

orientation measurements, it is normal that between a pair of

twinned orientations the experimentally observed misor-

ientation is slightly different from the theoretical rotation

angle, and the rotation axis is not exactly parallel to the

theoretical direction. To account for these possibilities in

terms of the algorithm discussed, two orientations are defined

as a twin pair when

j�cal � �thj<Ea and jnormðuo
calÞ normðuo

thÞ � 1j<Eb;

ð13Þ

where the subscript th denotes the theoretical values, uo
cal and

uo
th are the corresponding axes in orthonormal coordinates

converted from ucal and uth by equation (3), and Ea and Eb are

open input variables defining the deviation angles between the

measured misorientation angle–axis pairs and the theoretical

values, depending on the resolution limit of the technique,

sample preparation history, defect density etc.
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3. Applications

Scanning Laue mXRD experiments were conducted on

beamline 12.3.2 at the Advanced Light Source (ALS) of

Lawrence Berkeley National Laboratory (LBL). The samples,

mounted on a precision translation stage, were scanned at 45�

relative to the incident beam with an energy bandpass

between 5 and 24 keV at the focal spot (about 1 � 1 mm). At

each scanning position, a Laue diffraction pattern was

recorded with a PILATUS 1M detector located above the

sample in reflection geometry at 90� with respect to the inci-

dent X-ray beam. More details of the mXRD experiment setup

can be found elsewhere (Kunz et al., 2009). The obtained Laue

patterns were indexed using the software package XMAS

(Tamura et al., 2003) after calibrating the diffraction geometry.

The procedure provides an accurate measure of spatially

resolved grain orientations. By comparing the orientation

measurements with the look-up table for a certain twin mode

pixel by pixel, one can determine the types of crystal twinning

unequivocally and therefore the spatial distribution of twin

boundaries. Here we give several examples of the applications

of the look-up table described above.

3.1. Identification of the Dauphiné twin in quartz – a general
case of rotation twinning

The occurrence of the Dauphiné twin in trigonal �-quartz

(space group P3121/P3221) is often related to the �–� phase

transformation (Van Tendeloo et al., 1975) or deformation

processes (Zinserling & Schubnikow, 1933). The Dauphiné

twin law is a rotation twin related to a 180� rotation around the

h0001i axes. Given the space-group symmetry, the twin axes

actually consist of two equivalent axes [0001] and [0001].

However, for simplicity, the former is used to explain the

algorithm. To formulate the look-up table for the Dauphiné

twin, we first derive the transformation matrix L from equa-

tion (2) using the lattice parameters of a = 4.921 Å and c =

5.416 Å (Glinnemann et al., 1992):

L ¼

4:9210 �2:4605 0

0 4:2617 0

0 0 5:4160

2
4

3
5: ð14Þ

By equation (7), the normalized indices of the twin axis in the

orthonormal coordinate system are also [001]; then the angle–

axis pair {180�, [001]} is converted to a rotation matrix R by

applying equations (5) and (6):

R ¼

�1 0 0

0 �1 0

0 0 1

2
4

3
5: ð15Þ

To describe the twinning correlations comprehensively, one

must multiply the rotation matrix R by each of the six rotation

matrices S belonging to point group 32 (Kocks et al., 2000), and

thus six rotational matrices X are obtained and represented as

six angle–axis pairs {�, uo} (Table 2). Finally, these axes are
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Table 2
The rotational parameters involved in the derivation process of the look-up table for Dauphiné twinning (twin element is {180�, [0001]}) in �-quartz.

Symmetry operators S of point group 32 Rotation matrices X = SR Angle–axis pairs in O-aoboco {�, uo} Angle–axis pairs in O-abc {�, u}

1 0 0

0 1 0

0 0 1

2
4

3
5 �1 0 0

0 �1 0

0 0 1

2
4

3
5 {180�, [001]} {180�, [0001]}

�1=2 31=2=2 0

�31=2=2 �1=2 0

0 0 1

2
4

3
5 1=2 �31=2=2 0

31=2=2 1=2 0

0 0 1

2
4

3
5 {60�, [001]} {60�, [0001]}

�1=2 �31=2=2 0

31=2=2 �1=2 0

0 0 1

2
4

3
5 1=2 31=2=2 0

�31=2=2 1=2 0

0 0 1

2
4

3
5 {60�, [001]} {60�, [0001]}

�1=2 �31=2=2 0

�31=2=2 1=2 0

0 0 �1

2
4

3
5 1=2 31=2=2 0

31=2=2 �1=2 0

0 0 �1

2
4

3
5 {180�, 1

2[3
1/210]} {180�, [1010]}

1 0 0

0 �1 0

0 0 �1

2
4

3
5 �1 0 0

0 1 0

0 0 �1

2
4

3
5 {180�, [010]} {180�, [0110]}

�1=2 31=2=2 0

31=2=2 1=2 0

0 0 �1

2
4

3
5 1=2 �31=2=2 0

�31=2=2 �1=2 0

0 0 �1

2
4

3
5 {180�, 1

2[3
1=210]} {180�, [1100]}



transformed into the lattice coordinate system by applying

equation (3) and denoted as Bravais–Miller indices.

The quartz sample demonstrated here was from the San

Andreas Fault Observatory at Depth (Chen et al., 2015). A

thin section was prepared by mounting

a slab with epoxy on a glass slide, with

subsequent mechanical grinding and

polishing to �30 mm thickness. A

320 � 240 mm area was scanned with

the mXRD technique with a step size of

4 mm and then analyzed using XMAS.

Owing to the uncertainty in unequi-

vocally indexing a Laue pattern of

trigonal crystals, XMAS may give a

wrong indexing with an orientation

ambiguity of 60 or 180� around the c

axis. Therefore, the output data

from XMAS were rechecked using

an improved peak-intensity-fitting

method (Chen et al., 2012).

The orientation of the scanned area

is represented in Figs. 2(a)�2(c) by

Euler angles ’1, � and ’2 in Bunge

notation (Bunge & Morris, 1982),

respectively. The grey pixels indicate

the failure of orientation indexing from

XMAS, either because these positions

correspond to a different mineral

phase with too few reflections or

because the lattice at these spots

contains too many defects. A pixel-to-

pixel misorientation examination and

comparison with the last column of

Table 2 suggest that both OGBs and

Dauphiné TBs are detected in the

scanned area, and their distribution is

shown in Fig. 2(d) with blue and red

curves, respectively. In this example, a

2� tolerance for both Ea and Eb was

employed. It is worth noting that the

misorientation between the parent and

twin domains here is 180� around the

[0110] axis. In other words, one would

probably miss those Dauphiné twin

boundaries if not paying attention to

the rotational symmetry matrices S

when deducing the look-up table.

3.2. Identification of spinel twin in
cubic crystals – a general case of
reflection twinning

Table 3 summaries the theoretical

misorientation angles and corre-

sponding axes for the {111}h112i twin

in face-centered cubic (f.c.c.) crystals

(spinel twin law). In this case, the

angle–axis pairs {60�, h111i}, {180�, h111i}, {180�, h112i} and

{70.53�, h011i} have been reported in the previous literature

(Santamarta & Schryvers, 2004; Zhu et al., 2005), while

{109.47�, h011i}, {131.81�, h012i} and {146.44�, h113i}, which are
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Figure 2
The crystallographic orientation maps of the �-quartz sample indicated by Euler angles (a) ’1, (b) �
and (c) ’2 in the Bunge setting. (d) The distribution of Dauphiné twin boundaries denoted in red and
ordinary grain boundaries in blue. Scale bars represent 50 mm.

Figure 3
The inverse pole figure maps of the SS304 sample along (a) the normal of the sample surface and (b)
the y axis, with the corresponding color code shown at the top right corner. (c) The distribution of
{111} TBs delineated in red and OGBs in blue. (d) {111} stereographic projections of the three
selected grains marked in (a) and (c), and the overlapped poles denoted by dashed circles. Scale bars
represent 20 mm.



seldom referred to by previous studies, are also discovered by

taking the rotational symmetry into account.

An area of 150 � 119 mm was scanned with 1 mm step size

on a piece of annealed and polished stainless steel 304 (SS304)

with the micro-focused X-ray beam (Lupinacci et al., 2015).

After indexing all 17 850 Laue patterns with XMAS auto-

matically, the inverse pole figure (IPF) maps were plotted. The

crystallographic orientations in the direction normal to the

sample surface and parallel to the y axis are shown in Figs. 3(a)

and 3(b), respectively. Comparing the experimental measure-

ments and theoretical misorientation angle–axis pairs, the

distribution of various boundary types is drawn in Fig. 3(c),

where {111} TBs are delineated in red and the OGBs in blue.

The tolerances Ea and Eb were both set at 1� in this example.

In addition, it is worth noting that the grain information from

only one IPF map may be misleading. For example, the twin

boundary circled in Fig. 3(c) is almost invisible in the IPF map

along the sample surface normal in Fig. 3(a), while it is clearly

seen in Fig. 3(b).

In order to double check the output of the automated

twinning identification approach, the {111} stereographic

projection of the three adjacent grains marked in Figs. 3(a)

and 3(c) is plotted in Fig. 3(d). The (111) poles of Grain 1 and

Grain 2 overlap, so that they follow the {60�, [111]} rotation

angle–axis pair, while the (111) pole of Grain 2 is coincident

with the (111) pole of Grain 3, corresponding to the {131.81�,

[021]} rotation angle–axis pair listed in Table 3. As mentioned

above, the latter case here is easily overlooked if not consid-

ering the symmetry matrices S.

3.3. Multiple twinning modes in hexagonal metals

Seven twinning modes have been reported in hexagonal

close-packed metals, namely {1011}h1012i, {1012}h1011i,

{1013}h3032i, {1121}h1126i, {1122}h1123i, {1123}h1122i and

{1124}h2243i. In order to test the resolution/capability of our

automated approach, a magnesium (Mg) AZ31 alloy was

rolled to about 3% reduction and then cut and polished for

mXRD study. Fig. 4(a) shows the IPF map of a 450 � 300 mm

area along the sample surface normal. The scanning step size

here was 3 mm. From a comparison of misorientation between

each two adjacent scanning spots with the theoretical condi-

tions listed in Table 4, we obtain the spatial distribution of

different types of TBs and OGBs plotted in Fig. 4(b) using the

tolerance of 3� both for Ea and for Eb. As illustrated in

Fig. 4(b), one of the major benefits of this automated twinning

identification algorithm is the immediate representation of the

specific twin or even multiple twin types and corresponding

spatial distribution by handling a tremendous number of data

points in mXRD maps.

To scrutinize the boundaries in Fig. 4(b), one should find

some discrete pixels indicating a certain twin type along an

ordinary grain boundary, because the Laue diffraction peaks

from the highly plastically deformed region become fuzzy and

streaked, so that the crystal orientation is not measured

accurately.

The output results are rechecked by two means: one

through the stereographic projection approach, the other by

comparing with the previously reported matrix method

(Cheneau-Späth et al., 1994). The four grains marked in

Figs. 4(a) and 4(b) are selected as examples. From the

stereographic projections in Figs. 4(c) and 4(d), it is seen that

one of the {1012} poles of Grain 1 overlaps with one of Grain

2, while one of the {1121} poles of Grain 3 appears at the same
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Figure 4
(a) The inverse pole figure map along the surface normal of the AZ31
sample. (b) The spatial distribution of seven different types of twin
boundaries and ordinary grain boundaries. Stereographic projections of
(c) {1012} poles of Grain 1 and Grain 2, and (d) {1121} poles of Grain 3
and Grain 4, as marked in (a) and (b). Dashed circles in (c) and (d) refer
to the overlapped poles. Scale bars represent 50 mm.

Table 3
The look-up table describing the orientation relationships of spinel
twinning in f.c.c. crystals (twin element is {111}h112i).

Rotation angle Rotation axis

60� h111i
70.53� or acos (1/3) h011i
109.47� or acos (�1/3) h011i
131.81� or acos (�2/3) h012i
146.44� or acos (�5/6) h113i
180� h111i, h112i
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Table 4
The look-up table summarizing the twin–parent correlations in seven twinning systems in a hexagonal crystal, where the rotation axes are represented as
either direction indices huvtwi or the normal of the plane indices {hkil}, � = c/a.

Rotation axis Rotation axis

Twinning system Rotation angle (�) huvtwi {hkil} normal Rotation angle (�) huvtwi {hkil} normal

{1011}h1012i 180 1 0 1
3

2�2

� �
{1011} 180 h1012i 1 0 1

4�2

3

� �

acos
�8�2 þ 3

8�2 þ 6

� 	
1 0 1

3

4�2

� �
{2021} acos

�8�2 � 3

8�2 þ 6

� 	
1 1 2

9

4�2

� �
{2243}

acos
�4�2 þ 3

4�2 þ 3

� 	
h1120i {1120} acos

4�2 � 3

4�2 þ 3

� 	
h1120i {1120}

acos
2�2 � 3

4�2 þ 3

� 	
h1011i 1 0 1

2�2

3

� �
acos

�2�2 � 3

4�2 þ 3

� 	
h1123i 1 1 2 2�2


 �

{1012}h1011i 180 1 0 1
3

�2

� �
{1012} 180 h1011i 1 0 1

2�2

3

� �

acos
�2�2 þ 3

2�2 þ 6

� 	
1 0 1

3

2�2

� �
{1011} acos

�2�2 � 3

2�2 þ 6

� 	
1 1 2

9

2�2

� �
{1123}

acos
��2 þ 3

�2 þ 3

� 	
h1120i {1120} acos

�2 � 3

�2 þ 3

� 	
h1120i {1120}

acos
�2 � 6

2�2 þ 6

� 	
h2021i 1 0 1

�2

3

� �
acos

��2 � 6

2�2 þ 6

� 	
h2243i {112�2}

{1013}h3032i 180 1 0 1
9

2�2

� �
{1013} 180 h3032i 1 0 1

4�2

9

� �

acos
�8�2 þ 27

8�2 þ 54

� 	
1 0 1

9

4�2

� �
{2023} acos

�8�2 � 27

8�2 þ 54

� 	
1 1 2

27

4�2

� �
{2249}

acos
�4�2 þ 27

4�2 þ 27

� 	
h1120i {1120} acos

4�2 � 27

4�2 þ 27

� 	
h1120i {1120}

acos
2�2 � 27

4�2 þ 27

� 	
h3031i 1 0 1

2�2

9

� �
acos

�2�2 � 27

4�2 þ 27

� 	
h1121i 1 1 2

2�2

3

� �

{1121}h1126i 180 1 1 2
3

2�2

� �
{1121} 180 h1126i 1 1 2 4�2


 �

acos
�8�2 þ 1

8�2 þ 2

� 	
1 1 2

3

4�2

� �
{2241} acos

�8�2 � 1

8�2 þ 2

� 	
1 0 1

3

4�2

� �
{2021}

acos
�4�2 þ 1

4�2 þ 1

� 	
h1010i {1010} acos

4�2 � 1

4�2 þ 1

� 	
h1010i {1010}

acos
2�2 � 1

4�2 þ 1

� 	
h1123i 1 1 2 2�2


 �
acos

�2�2 � 1

4�2 þ 1

� 	
h1013i 1 0 1 2�2


 �



position for Grain 4, leading to the conclusion that Grain 1

and Grain 2 are a pair of {1012} twins and Grain 3 and Grain 4

are twinned along the {1121} plane. The orientation matrices

of these four grains are expressed as

G1 ¼

2:2878 1:7037 �1:4708

�0:5583 0:4299 3:1310

3:4855 �3:7048 1:1303

2
4

3
5; ð16Þ

G2 ¼

0:5508 �0:4386 �3:1311

�2:0561 2:2672 0:9655

3:8996 3:4501 0:2028

2
4

3
5; ð17Þ

G3 ¼

0:7420 0:5740 3:0692

0:4940 2:2637 �2:2208

�4:8032 1:8482 0:8156

2
4

3
5; ð18Þ

G4 ¼

2:0957 1:3607 �2:0141

�0:1082 0:9270 3:0706

3:5314 �3:6318 1:2209

2
4

3
5; ð19Þ

respectively. For {1012} and {1121} twins, the transformation

matrices derived in previous literature (Cheneau-Späth et al.,

1994) are
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Table 4 (continued)

Rotation axis Rotation axis

Twinning system Rotation angle (�) huvtwi {hkil} normal Rotation angle (�) huvtwi {hkil} normal

{1122}h1123i 180
1 1 2

3

�2

� �
{1122} 180 h1123i 1 1 2 2�2


 �

acos
�2�2 þ 1

2�2 þ 2

� 	
1 1 2

3

2�2

� �
{1121}

acos
�2�2 � 1

2�2 þ 2

� 	
1 0 1

3

2�2

� �
{1011}

acos
��2 þ 1

�2 þ 1

� 	
h1010i {1010}

acos
�2 � 1

�2 þ 1

� 	
h1010i {1010}

acos
�2 � 2

2�2 þ 2

� 	
h2243i {112�2}

acos
��2 � 2

2�2 þ 2

� 	
h2023i {101�2}

{1123}h1122i 180
1 1 2

9

2�2

� �
{1123} 180 h1122i

1 1 2
4�2

3

� �

acos
�8�2 þ 9

8�2 þ 18

� 	
1 1 2

9

4�2

� �
{2243}

acos
�8�2 � 9

8�2 þ 18

� 	
1 0 1

9

4�2

� �
{2023}

acos
�4�2 þ 9

4�2 þ 9

� 	
h1010i {1010}

acos
4�2 � 9

4�2 þ 9

� 	
h1010i {1010}

acos
2�2 � 9

4�2 þ 9

� 	
h1121i

1 1 2
2�2

3

� �
acos

�2�2 � 9

4�2 þ 9

� 	
h1011i

1 0 1
2�2

3

� �

{1124}h2243i 180
1 1 2

6

�2

� �
{1124} 180 h2243i {112�2}

acos
��2 þ 2

�2 þ 4

� 	
1 1 2

3

�2

� �
{1122}

acos
��2 � 2

�2 þ 4

� 	
1 0 1

3

�2

� �
{1012}

acos
��2 þ 4

�2 þ 4

� 	
h1010i {1010}

acos
�2 � 4

�2 þ 4

� 	
h1010i {1010}

acos
�2 � 8

2�2 þ 8

� 	
h4483i

1 1 2
�2

2

� �
acos

��2 � 8

2�2 þ 8

� 	
h4043i 1 0 1

�2

2

� �



T
f1012g ¼

�0:3639 0 10:544

2:6361 �5:6361 5:2722

3 0 0:3639

2
4

3
5; ð20Þ

T
f1121g ¼

�11:5444 0 0

�10:5444 9:5444 �10:5444

2 �4 �9:5444

2
4

3
5; ð21Þ

respectively. Imposing them onto G1 and G3, the calculated

G2 and G4 are

G2cal ¼

1:4481 �1:8831 2:1636

0:5590 �0:4304 �3:1347

3:9876 3:3542 0:2504

2
4

3
5; ð22Þ

G4cal ¼

�2:0332 �2:3304 �0:9029

2:0807 1:2359 �2:1268

3:5334 �3:6095 1:3594

2
4

3
5; ð23Þ

respectively. It is obvious that the calculated orientation

matrices can also be written as

G2cal eq ¼

0:5590 �0:4304 �3:1347

�2:0071 2:3135 0:9711

3:9876 3:3542 0:2504

2
4

3
5; ð24Þ

G4cal eq ¼

2:0807 1:2359 �2:1268

�0:0475 1:0945 3:0298

3:5334 �3:6095 1:3594

2
4

3
5; ð25Þ

owing to the sixfold rotational symmetry in hexagonal crystals.

Upon comparison, taking into account experimental uncer-

tainties, the orientation matrices G2cal_eq and G4cal_eq are in

good agreement with the measured results. More grains were

selected for a similar manual check, which confirmed that the

output results from the automated approach are reliable.

3.4. Identification of reflection twins in highly deformed calcite

The {0118} mechanical twin, easily visible as lamellar

morphologies, is the predominant mechanism of plastic

deformation at low temperature in the rhombohedral (space

group R32/c) mineral calcite (Ferrill et al., 2004; Chen et al.,

2011). In our mXRD experiment, a naturally deformed calcite

sample was scanned at a 2 mm step size over an area of 280 �

140 mm. A coarse grain with several parallel twin domains can

be seen from the orientation map of the angles between the

crystal c axis and the sample surface normal shown in Fig. 5(a).

Setting the tolerance values Ea and Eb to 5 and 5.5� in our twin

identification method, the unambiguous {0118} reflection twin

is determined. The spatial distribution of twin boundaries is

delineated in Fig. 5(b). It is worth noting that the tolerances Ea

and Eb were set to relatively large values owing to the

distortion and rotation of the crystals caused by severe plastic

deformation of the sample, which could also be seen from

diffraction patterns. As shown in Figs. 5(c) and 5(d), the two

Laue patterns corresponding to the scanning spots marked in

Fig. 5(a) exhibit very different characteristics. The pattern of

Grain 1 is relatively sharp, while Grain 2 shows obvious

streaking in Laue peaks caused by the abundant presence of

geometrically necessary dislocations (Ice & Barabash, 2007).

In addition, from the {0118} stereographic projection shown in

Fig. 5(e), the (1018) pole of Grain 1 and (1108) pole of Grain 2

are close but not exactly coincident. To summarize, the

selected threshold level has a significant impact on char-

acterization of the boundary types. If grain boundaries are

misindexed as twins, Ea and Eb will need to be reduced, while

if twins are mistaken as grain boundaries, it is necessary to set

larger threshold values. In general, to fully account for any

suspected ambiguity, it is relatively straightforward to run the

deformation twin identification routine multiple times over a

small range of Ea and Eb parameters.
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Figure 5
(a) Crystallographic orientation map of the calcite sample showing the angles between the crystal c axis and the surface normal. (b) The spatial
distribution of {0118} twin boundaries. (c), (d) Two Laue diffraction patterns of the two scanning spots marked in (a), and (e) the corresponding {0118}
stereographic projection. Scale bars represent 30 mm.



4. Conclusions

A fully automated approach for determination of crystal

twinning modes is developed. This offers a fast and reliable

methodology to identify the exact nature of twinning based on

synchrotron Laue mXRD orientation maps. The major

advantage highlighted by this work is the new algorithm for

generating the theoretical look-up table which contains all the

possible rotational correlations for established twin laws. To

compare the misorientation angle and axis between adjacent

scanning spots with the established look-up table, the unam-

biguous types of crystal twinning and spatial distribution of

twin boundaries are automatically identified through an

appropriate selection of threshold values. This ‘look-up’

method is also valid for twinning determination in other raster

scanning crystal orientation mapping techniques such as

EBSD.
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