
computer programs

604 doi:10.1107/S1600576715001788 J. Appl. Cryst. (2015). 48, 604–607

Journal of

Applied
Crystallography

ISSN 1600-5767

Received 23 November 2014

Accepted 27 January 2015

Nebula: reconstruction and visualization of
scattering data in reciprocal space

Andreas Reiten,a* Dmitry Chernyshovb and Ragnvald H. Mathiesena

aDepartment of Physics, Norwegian University of Science and Technology, Trondheim, Norway, and bSwiss–

Norwegian Beamlines, European Synchrotron Radiation Facility, Grenoble, France. Correspondence e-mail:

andreas.reiten@ntnu.no

Two-dimensional solid-state X-ray detectors can now operate at considerable

data throughput rates that allow full three-dimensional sampling of scattering

data from extended volumes of reciprocal space within second to minute time-

scales. For such experiments, simultaneous analysis and visualization allows for

remeasurements and a more dynamic measurement strategy. A new software,

Nebula, is presented. It efficiently reconstructs X-ray scattering data, generates

three-dimensional reciprocal space data sets that can be visualized interactively,

and aims to enable real-time processing in high-throughput measurements by

employing parallel computing on commodity hardware.

1. Terminology

Texel, texture element or texture pixel: the fundamental unit of

texture space used in computer graphics. Textures are represented by

arrays of texels, just as pictures are represented by arrays of pixels.

Viewing frustum: in three-dimensional computer graphics, the

region of space in the modeled world that may appear on the screen;

it is the field of view of the notional camera.

Graphics processing unit (GPU): a specialized electronic circuit

designed to rapidly manipulate and alter memory to accelerate the

creation of images in a frame buffer intended for output to a display.

Memory bandwidth: the rate at which data can be read from or

stored into a semiconductor memory by a processor.

OpenGL (Open Graphics Library): a cross-language multi-plat-

form application programming interface for rendering two-dimen-

sional and three-dimensional vector graphics (http://opengl.org).

OpenCL (Open Computing Language): a framework for writing

programs that execute across heterogeneous platforms consisting of

central processing units, graphics processing units and other proces-

sors (http://khronos.org/opencl).

Qt: a cross-platform application framework that is widely used for

developing application software with a graphical user interface

(http://qt-project.org).

Git: a distributed revision control and source code management

system (http://git-scm.com).

2. Introduction

With the emergence of fast two-dimensional solid-state X-ray

detectors (Kraft et al., 2009), full three-dimensional sampling of

scattering data from extended volumes of reciprocal space may be

carried out within second to minute timescales, provided that the

X-ray source is adequately bright. This is particularly useful in

experiments that seek to investigate the volumetric properties of

features in reciprocal space, e.g. diffuse scattering, finite size effects,

multiple twins or crystallites, etc. Faster data acquisition also opens up

opportunities for novel studies where material response may be

investigated in situ during external loading, with, for example, diffuse

scattering as the response probe. For such three-dimensional scat-

tering experiments, simultaneous analysis and visualization is a major

advantage, allowing for remeasurements in the event of flaws and on-

the-fly reassessment of measurement strategy.

There are currently a few programs available that specialize in

visualizing three-dimensional volumes. Max3D (Britten & Guan,

2007; http://www.chemistry.mcmaster.ca/facilities/xray/221-max3d)

resamples data onto a voxel grid and lets the user manually reload

smaller diffraction volumes at higher resolution. Chimera (Pettersen

et al., 2004) is an extensible program for interactive visualization and

analysis of molecular structures and related data that can also be used

for reciprocal space viewing. Like Max3D it uses voxel grids for

volume viewing, but it is not concerned with data reconstruction.

Falch et al. (2013) describe a visualization method that distinguishes

itself by operating directly on the unstructured samples, rather than

resampling them to form voxels. They also employ an octree data

structure to achieve faster rendering.

The software presented here works by resampling data to form a

voxel octree and can be seen as a hybrid between the approaches

taken in Max3D and by Falch et al. (2013). The resampling combined

with the octree structure help improve the rendering time and allow

the data to span over large regions. The construction of the octree is

also relatively fast, as heavy computations are done on the GPU

where applicable. The aim of the program is rapid reconstruction and

interactive visualization of three-dimensional data, meeting real-time

processing requirements of high-throughput measurements.

3. Program specification

The software is divided into two major modules unified by a graphical

user interface. The first module administers file selection and

reconstruction, including generation of three-dimensional data sets.

The second module handles volume rendering of the data sets and is

equipped with a toolkit to help users view and analyze features. This

section describes the workings of the two modules, and continues to

specify features, performance, and the software and hardware

environments.

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576715001788&domain=pdf&date_stamp=2015-02-21


3.1. Reconstruction

The reconstruction procedure by which two-dimensional X-ray

images are projected onto the Ewald sphere can be divided into three

steps. First, the real-space position of each image pixel is calculated

using the detector and diffractometer geometry found in the image

headers. The program reads CBF files (Bernstein & Hammersley,

2005) and assumes a four-circle � diffractometer (Thorkildsen et al.,

1999). Other geometries and file format interpreters can be imple-

mented on demand. The pixel position relative to the sample dictates

the direction of the scattered ray and allows the reciprocal space

vector, Q, to be expressed as

Q ¼ k0 � k; ð1Þ

where k denotes the wavevector of the incident beam and k0 is the

wavevector of the scattered ray. jkj ¼ jk0j ¼ 1=� under the kinematic

approximation, where � is the wavelength.

Second, a set of corrections are applied to the intensity value of

each image pixel. These include a Lorentz–polarization correction,

incident beam flux correction and background subtraction. The

Lorentz correction is given by

L ¼
!

�ðv � �bkk0Þ
; ð2Þ

where v is the velocity of a reciprocal node as it is rotated through and

intersects with the Ewald sphere at angular speed !, as shown in Fig. 1

(Buerger, 1940). The velocity vector is defined by the sample rotation

axis and Q. The polarization correction is given by

P ¼ 1
2 ð1þ cos 2�2

Þ � 1
2 � cos 2 sin 2�: ð3Þ

Here � is the Bragg angle, is the angle between the diffracting plane

and the plane of incidence, and

� ¼
E2
� � E2

�

E2
� þ E2

�

; ð4Þ

where E� is the amplitude of the �-polarized field, i.e. the component

oscillating in the plane of incidence, and E� is the amplitude of the

component oscillating perpendicular to it (Kahn et al., 1982).

The background subtraction is approximated for each frame by a

linear least-squares fit of a plane through a number of user-defined

pixel regions that are deemed representative of the background. The

regions can be selected for each frame individually or for a series of

frames. The maximum intensity for each pixel position in a series can

be found and visualized to help distinguish regions that remain

background throughout the scan. Optionally, a uniform background

value can be subtracted for simplicity. The latter method can be used

to quickly yield a data set of manageable size suitable for a first

inspection in three dimensions. A more rigorous and yet universally

applicable background correction is currently beyond the scope of

the software.

Third, data above zero intensity are put into an octree structure to

facilitate interpolation. The data are then sampled over several

overlapping voxel grids, each one with twice the resolution of the last,

such that each voxel is repeatedly divided into eight new blocks until

a desired resolution has been reached. Since only non-empty blocks

of a grid are sampled further, the result is a sparse data structure

called a sparse voxel octree (Crassin et al., 2009; Gobbetti et al., 2008)

(cf. Fig. 3 below).

3.2. Visualization

The sparse data sets are visualized using volume ray casting

(Levoy, 1988; Drebin et al., 1988). In short, each texel on the screen

used for rendering corresponds to a ray penetrating the volume

containing the data set. The direction and extent of each ray is

determined by a viewing frustum extending from a hypothetical

camera point. The rays traverse the data and samples are taken along

each ray in a front-to-back manner, with each intensity sample

matched to an RGBA color value. The colors are blended together,

and the texel takes the value of the accumulated color upon

completing the ray traversal (cf. Figs. 2 and 3). This mode of visua-

lization is the default and is referred to as normal color blending.

The visualization greatly depends on the choice of transfer func-

tion, i.e. the RGBA specter to which intensity values are matched. For

example, iso-surface extraction can be achieved by assigning nonzero

opacity only to a select intensity range, while a transfer function

where the alpha level gradually increases with intensity typically will

yield partially transparent features.

computer programs

J. Appl. Cryst. (2015). 48, 604–607 Andreas Reiten et al. � Nebula 605

Figure 1
The Lorentz correction is governed by the orientation of the sample rotation axis,
given by the angular velocity vector !, with respect to the scattering vector Q. The
point P represents a reciprocal lattice node in the instant it rotates through and
intersects with the Ewald sphere. Specifically, the correction is proportional to the
velocity vector v of the point P projected onto the unit wavevector �bkk0 of the
scattered ray.

Figure 2
Volume ray casting is a rendering technique in which rays traverse and sample a
volume. Here the view plane is depicted from above.



There are in addition two more imaging modes to choose from. The

integration mode replaces the normal color blending scheme by a

method that integrates sample values along the ray and assigns color

corresponding to the final value. This mode requires only minor

configuration of the view parameters and is suited to give a first

impression of the data. Finally, the slice mode can be used to visualize

any cut through the data set. The different modes are shown in Fig. 3.

3.3. Features

The software has a graphical user interface and a set of basic

features. The interface lets the user select files on the hard drive for

processing and gives control over essential reconstruction and

visualization parameters. A built-in image viewer can be used to

inspect files one by one and to remove, for example, overexposed

frames prior to reconstruction. The intensity in a series of frames can

also be integrated in a specific area to quantitatively compare the

relative intensities of features.

A unit-cell overlay can be specified based on a user-provided UB

matrix (Busing & Levy, 1967) and rotated to coincide with the data. It

is also possible to visualize custom three-dimensional functions where

the input parameters can be changed interactively.

3.4. Performance

The bottleneck for three-dimensional visualization algorithms is

computer processing power, which has increased rapidly with

continued advances in lithography. Fully capable hardware can now

be acquired off the shelf. Notably, this software benefits greatly from

using a dedicated graphics processing unit – a common component in

computer programs

606 Andreas Reiten et al. � Nebula J. Appl. Cryst. (2015). 48, 604–607

Figure 3
Example reconstruction based on data from an La0:7Sr0:3MnO3 thin film grown along ½001� on an SrTiO3 substrate. The diffuse scattering around the 013 Bragg peak is shown
in (a) normal color blending, (b) integration and (c) slice mode. The lower peaks originate from the substrate and the upper features from the thin film. The two blobs left and
right of the thin-film peak can be attributed to the two major domain configurations. The positions of the features are in agreement with previous findings (Boschker et al.,
2013). Thickness fringes are easily recognized. (d) A zoomed out view of the data set, showing diffuse features superimposed on the corresponding cubic lattice. (e) Same as
(d), but showing the sparse voxel octree structure.



most modern computers. This enables the use of OpenCL to paral-

lelize tasks that would otherwise be considerable bottlenecks in the

program work flow. In particular, parts of the reconstruction and

volume rendering algorithms benefit greatly from parallelization.

Consequently, the software requires an OpenCL capable graphics

card with sufficient video memory to store data sets during rendering.

During reconstruction, the most time-consuming task is typically to

read and decompress data from the hard drive. This step is mainly

limited by the CPU and the read speed of the hard drive. Building the

sparse voxel octree can be fast in comparison, depending on how

much of the raw data set has been omitted, and is limited by CPU

speed and graphics card memory bandwidth. Typical run times for the

test systems given in Table 1 are shown in Table 2.

From a programming standpoint the quality of the visualization is

governed by the dimensions of the display texture. Its dimensions can

be changed on demand, but in practice there is no gain from

increasing it beyond the pixel dimensions it occupies on the screen.

Reducing the texture resolution will result in a higher viewing frame

rate, and using the test systems in Table 1 this is often necessary for

smooth real-time interaction. The frame rate is limited mainly by the

graphics card memory bandwidth.

3.5. Software and hardware environment

The program is written in C++ and uses OpenGL and OpenCL for

rendering and parallelized computations, respectively. The graphical

user interface is provided by Qt 5. The software has been tested under

64 bit Arch Linux and 64 bit Windows 7, with the hardware specifi-

cations as shown in Table 1. The minimum hardware requirement is

an OpenCL 1.1 and OpenGL 4.0 capable graphics card and 2 GB of

system RAM. The maximum data set size is limited by the available

system RAM, the graphics card RAM and the system hard drive

space, but there are no fixed lower bounds on the latter two.

3.6. Availability and documentation

The source code is available under the GNU General Public

License at https://github.com/Natnux/nebula. Documentation for

users exists in the wiki on the same page. Anyone is invited to browse

the source code, and code contributions through Git are greatly

appreciated.

Thanks are extended to Dag Breiby (Department of Physics,

NTNU), Jostein Fløystad (SINTEF Energy Research) and Thomas

Falck (Department of Computer and Information Science, NTNU)

for inspiration in the early phase of development, and to Thomas

Tybell (Department of Electronics and Telecommunications, NTNU)

for providing the sample used to collect the data presented in Fig. 3.

References

Bernstein, H. & Hammersley, A. (2005). International Tables for Crystal-
lography, Vol. G, Definition and Exchange of Crystallographic Data, edited
by S. R. Hall & B. McMahon, pp. 37–43. Heidelberg: Springer.

Boschker, J., Monsen, Å., Nord, M., Mathieu, R., Grepstad, J., Holmestad, R.,
Wahlström, E. & Tybell, T. (2013). Philos. Mag. 93, 1549–1562.

Britten, J. & Guan, W. (2007). IUCr Commission on Crystallographic
Computing Newsletter, No. 8, pp. 96–108.

Buerger, M. (1940). Proc. Natl Acad. Sci. USA, 26, 637–642.
Busing, W. R. & Levy, H. A. (1967). Acta Cryst. 22, 457–464.
Crassin, C., Neyret, F., Lefebvre, S. & Eisemann, E. (2009). Proceedings of the

2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, pp. 15–22.
New York: ACM.

Drebin, R. A., Carpenter, L. & Hanrahan, P. (1988). ACM SIGGRAPH
Comput. Graph. 22(4), 65–74.

Gobbetti, E., Marton, F. & Iglesias Guitián, J. A. (2008). Vis. Comput. 24, 797–
806.

Kahn, R., Fourme, R., Gadet, A., Janin, J., Dumas, C. & André, D. (1982). J.
Appl. Cryst. 15, 330–337.

Kraft, P., Bergamaschi, A., Broennimann, Ch., Dinapoli, R., Eikenberry, E.,
Henrich, B., Johnson, I., Mozzanica, A., Schlepütz, C., Willmott, P. &
Schmitt, B. (2009). J. Synchrotron Rad. 16, 368–375.

Levoy, M. (1988). IEEE Comput. Graph. Appl. 8, 29–37.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M.,

Meng, E. C. & Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605–1612.
Thorkildsen, G., Mathiesen, R. H. & Larsen, H. B. (1999). J. Appl. Cryst. 32,

943–950.

computer programs

J. Appl. Cryst. (2015). 48, 604–607 Andreas Reiten et al. � Nebula 607

Table 2
Example run times processing the 1726 frames (4.3 GB compressed data) that
constitute Fig. 3.

The sparse voxel octree that was generated was 13 levels deep.

System Reading and reducing data (s) Octree generation (s)

Laptop, Arch Linux 172 26
Laptop, Windows 7 211 85
Desktop, Arch Linux 117 24
Desktop, Windows 7 127 32

Table 1
Specification of test systems.

Laptop Desktop

RAM 16 GB @ 1333 MHz 16 GB @ 2400 MHz
CPU Intel Core i7-2630QM @ 2.0 GHz Intel Core i7-4790 @ 3.6 GHz
Graphics card Nvidia GT 560M @ 60.0 GB s�1 Nvidia GTX 760 @ 192.3 GB s�1

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5002&bbid=BB13

