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The emerging technique of serial X-ray diffraction, in which diffraction data are

collected from samples flowing across a pulsed X-ray source at repetition rates

of 100 Hz or higher, has necessitated the development of new software in order

to handle the large data volumes produced. Sorting of data according to

different criteria and rapid filtering of events to retain only diffraction patterns

of interest results in significant reductions in data volume, thereby simplifying

subsequent data analysis and management tasks. Meanwhile the generation of

reduced data in the form of virtual powder patterns, radial stacks, histograms

and other meta data creates data set summaries for analysis and overall

experiment evaluation. Rapid data reduction early in the analysis pipeline is

proving to be an essential first step in serial imaging experiments, prompting the

authors to make the tool described in this article available to the general

community. Originally developed for experiments at X-ray free-electron lasers,

the software is based on a modular facility-independent library to promote

portability between different experiments and is available under version 3 or

later of the GNU General Public License.

1. Introduction
Serial X-ray diffraction using X-ray free-electron laser

(XFEL) sources, in particular the expanding technique of

serial femtosecond crystallography (SFX), is revolutionizing

biological structure determination. Using X-ray pulses that

outrun the effects of radiation damage, the X-ray dose can be

more than a thousand times higher than that achievable with

conventional X-ray sources, enabling measurements from

crystals at room temperature, crystals that are too small for

easy study at synchrotron sources or where time resolution is

desired to trace the path of biochemical reactions (Chapman et

al., 2011; Seibert et al., 2011; Redecke et al., 2013). Such

experiments generate large quantities of data that must be

rapidly processed and analysed. The Coherent X-ray Imaging

instrument at the Linac Coherent Light Source (LCLS), for

example, delivers full frames of data at up to 120 Hz, resulting

in 432 000 diffraction patterns per hour and data sets of tens to

hundreds of terabytes in size. Analysing such large data sets is

challenging, especially for small research groups, necessitating

the development of new ‘big data’ paradigms in X-ray

diffraction data processing.

To address the pressing issue of processing big data sets in

serial X-ray diffraction we have developed a set of data

analysis tools for serial imaging, specifically designed with the

task of processing large data sets in mind. This software, called

Cheetah, evaluates key data quality metrics such as number of

Bragg peaks or maximum resolution, retaining only frames

with a high likelihood of being usable for structure determi-

nation or further analysis from the stream of millions of

detector frames, whilst producing condensed data such as

virtual powder patterns, radial intensity profiles and peak lists

for subsequent analysis. Reduced data are output in a facility-

independent HDF5 output, including the CXI (Maia, 2012)

data format, enabling downstream analysis programs such as

CrystFEL (White et al., 2012) to be written in an instrument-

and facility-independent manner. This is particularly impor-

tant given the plethora of unique file formats and interfaces

developing at each experimental facility. The core functions of

Cheetah are implemented as a plain C++ library for portability

between facility-dependent file formats and to maximize the

potential for code reuse.

The purpose of Cheetah is to evaluate the quality of each

data frame for rapid feedback on experiment progress, reject

data frames that should not be subjected to further analysis

and perform the data pre-processing steps that are required

for subsequent analysis. Data can be sorted according to
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various criteria and compiled into reduced forms such as

virtual powder and radial stacks, as defined later in this paper,

for subsequent analysis. To this end Cheetah performs the

following primary functions:

(1) Correction of detector artefacts not already handled at

the readout stage

(2) Estimation and subtraction of photon background

(3) Hit finding and frame sorting

(4) Identification and integration of Bragg peaks

(5) Generation of virtual powder diffraction patterns and

radial lineout stacks

(6) Generation of statistics on hit rate and resolution

(7) Conversion of selected frames into a facility-indepen-

dent format for subsequent analysis

Data are output in HDF5 format, providing instrument-,

background- and geometry-corrected data in a portable

structure reusable across multiple facilities.

2. Detailed description

Key steps in the data analysis chain are described in detail

below. The goal is to find a workable balance between

computational efficiency and robustness of analysis, so that the

many terabytes of data typically collected are efficiently

reduced to a more manageable data volume worthy of more

detailed analysis. Minimum user intervention is desired so that

Cheetah can run autonomously and largely unsupervised

either in real time or using batch processing on saved data.

Rapid execution is desirable for fast feedback during the

course of an experiment, ideally as close to real time as

possible.

2.1. Detector corrections

2.1.1. Correction for detector artefacts. Cheetah includes

modules for the correction of detector artefacts: saturated

pixels are identified and flagged, after which detector offsets

determined from X-ray-free dark frames (dark calibration)

are subtracted, followed by estimates of the common mode

offset on each module (additive fluctuation in offset on indi-

vidual modules). Pixels are corrected for individual gain

variations (gain calibration) and finally known bad pixels are

masked out. Nonlinearity in detector response can be rectified

and detector-specific corrections applied. Routines are

included for the generation of dark calibration data from

X-ray-free data sets and gain calibrations from data sets with

uniform detector illumination. These detector corrections are

a standard part of any experimental analysis: they are included

because the high data rates currently prevent these steps from

being performed at the time of detector readout, and thus they

must be performed as a part of the data analysis. Detector

correction functions in Cheetah can be individually turned on

or off as needed when detector correction functions are

incorporated as a part of facility-provided analysis packages.

User-defined masks can be loaded to separately define bad

pixels and detector regions to be ignored during analysis.

2.1.2. Geometry specification for segmented detectors.
The femtosecond-duration pulses delivered by X-ray free-

electron lasers have necessitated the development of new

detector technologies capable of integrating all photons

arriving within the space of a few femtoseconds whilst

sustaining full-frame readout at the FEL pulse repetition rate.

Many of these detectors consist of multiple discrete detector

modules tiled together to form one large detector. Specifying

the location and relative position of pixels in a detector is

critical to image analysis.

For example, the CSPAD detector (Hart et al., 2012) used in

the CXI instrument at LCLS consists of 64 separate modules,

of 194 � 185 pixels each, tiled to produce a 2 megapixel

detector of just over 1500 � 1500 pixels in size, read out at the

LCLS repetition rate of 120 Hz. Individual modules or groups

of modules may be moveable with respect to one another, and

the pixel grid may not be perfectly

aligned in translation or rotation

between different modules. Meanwhile,

the pnCCD detector can continuously

save full frames at up to 200 Hz with

50 eV spectral resolution (Strüder et al.,

2010) using two independently move-

able 512 � 1024 pixel modules located

on either side of the direct beam.

Detectors planned for use at the

European XFEL will achieve a large

detection area by tiling together many

small high-speed detectors.

The following practical problems are

encountered when analysing data from

detectors composed of multiple

modules:

(1) mechanical mounting of indivi-

dual modules may not ensure relative

alignment of pixel columns and rows

between modules, especially if modules
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Figure 1
(a) ‘Raw’ non-interpolated layout of detector data (in this case for the CSPAD detector) with well
defined module boundaries as internally represented for data processing. (b) ‘Assembled’ layout of
the same modules as mounted on the physical detector system. A pixel map containing the
coordinates of each data pixel in a suitably defined laboratory coordinate system is used to map
between data in ‘raw’ layout and pixel locations in physical space.



or groups of modules can be separately translated to suit the

experiment;

(2) the location of module boundaries must be known

because they define regions of non-existent signal between

modules;

(3) data from the detector may be saved in a layout bearing

no resemblance to the physical layout of pixels on the

detector; and

(4) the exact location of modules might not be known at the

time initial data processing is performed and may instead be

refined during subsequent analysis, in which case assembling a

physically correct image during initial processing is pointless.

We address these concerns by processing each module

separately as an individual detector irrespective of its physical

location or orientation. Analysis tasks such as background

subtraction and peak finding are performed separately on

each module to prevent artefacts caused by signal jumps at

module boundaries. For example, the CSPAD detector data is

arranged in memory into one non-interpolated two-dimen-

sional array of 8� 8 modules (1552� 1480 pixels) in size with

well defined module boundaries, as shown in Fig. 1(a). Once

the locations of module boundaries are known, the majority of

data reduction operations can be performed on data in this

‘raw’ layout.

Assembly of data into a physically correct layout, as shown

in Fig. 1(b), is avoided if at all possible and only used for

convenience when viewing images or when it is necessary to

perform fast Fourier transforms (FFTs) of an entire diffraction

image. This approach avoids interpolation errors when indi-

vidual row and column pixels are not perfectly aligned

between modules, and errors that arise because precise

knowledge of module boundaries is typically discarded when

individual modules are assembled into a single image prior to

analysis. A virtual powder diffraction pattern formed by

summing diffraction from many lysozyme nanocrystals in both

raw and assembled layouts is shown in Fig. 2, illustrating

clearly the different pixel layout between raw and assembled

data.

Accurate specification of detector geometry is critical for

certain types of analysis, for example radial integration of

powder patterns or indexing of nanocrystal diffraction

patterns. The detector geometry is specified in a pixel location

map containing the coordinates of each detector pixel in a

suitably defined coordinate system: this pixel map serves as

the link between the indices of pixels in the data stream and

the physical detector geometry and is referred to whenever

knowledge of physical pixel or event locations is required. In

practice the physical locations of individual detector modules

are first determined using optical metrology data, obtained on

a coordinate measuring machine, and subsequently refined

using Debye–Scherrer rings from virtual powder diffraction

patterns, then further refined using the results of auto-

indexing of Bragg spots from a known sample.

Since modular detectors are, at the time of writing, still

somewhat of a novelty in X-ray science we note the following

practical consequences of analysing non-assembled data as

performed in Cheetah:

(1) Viewing images by eye is easier when data are presented

in a physically correct layout, and this is performed by image

viewing software when needed.

(2) Bragg peaks are identified in raw layout and their

coordinates converted to physical scattering vectors (kx, ky, kz)

using the detector calibration pixel map for indexing and

integration of reflections. There is no need to produce an
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Figure 2
Virtual powder diffraction data (see x2.5.3) from many lysozyme nanocrystals in (a) the ‘raw’ non-interpolated layout of detector data and (b) the
‘assembled’ layout. Assembling a physically correct image requires interpolation of the raw data onto a regular pixel grid and results in irregular
locations of individual module boundaries, due to the moveable central hole and mechanical tolerances in the placement of individual modules. The gaps
between detector modules need to be accounted for in the analysis, and module geometry may be refined during subsequent analysis. For these reasons
data analysis is performed in raw layout whenever possible.



interpolated image as the coordinates kx, ky, kz on the curved

Ewald sphere can be calculated directly from detector coor-

dinates for each pixel.

(3) For assembling data into three-dimensional diffraction

volumes, coordinates on the Ewald sphere can be calculated

directly from the pixel map for mapping into three-dimen-

sional diffraction space – there is once again no real need to

produce an interpolated image.

(4) Fast Fourier transforms need an array with regular pixel

spacing and therefore require assembly of a physically correct

image before Fourier transformation. Correction for Ewald

sphere curvature can be performed at the same time as image

assembly and may be required even if the detector has perfect

pixel alignment.

(5) The main reason to perform image assembly is for

interfacing with existing image analysis programs that assume

a detector with regularly spaced pixels on a regular grid. For

such programs, data must be interpolated onto a regular grid,

or detectors must be constructed in such a way as to ensure

sub-pixel accuracy in pixel alignment between modules. Such

programs could in principle be rewritten for handle segmented

detectors (for example, as performed in CrystFEL); however,

extensive software rewriting may be neither practical, feasible

nor even possible in many cases. Cheetah can output assem-

bled data for use in such programs if needed.

2.1.3. Pixel flagging. Pixels are flagged during processing

for special treatment as follows.

(1) A ‘bad pixel mask’ may be provided by the user (in the

form of a binary image) to indicate pixels that have been

identified as being unreliable: such pixels will not be consid-

ered for further analysis at any stage of data processing.

(2) A ‘peak mask’ may be provided to stipulate regions to

be ignored specifically at the peak finding stage, which may be

used to speed up the processing or to block regions of the

detector that tend to produce erroneous peaks.

(3) Saturated pixels may be detected on a shot-by-shot basis

by applying a simple user-specified intensity threshold (the

saturation level is detector dependent).

(4) Regions of the detector that are physically shadowed

from X-rays may be flagged, which is useful for determining

background or electronic noise fluctuations.

(5) Unresponsive pixels that contain only an accurate

measure of dark current and bias level may be flagged.

(6) A ‘resolution mask’, in the form of an annulus centred

on the direct beam, may be generated from a user-specified

detector resolution range; this is updated only when the

detector is moved.

All of the above masks are optional and each affects only

certain functions in subsequent analysis.

2.2. Subtraction of photon background

Accurate subtraction of photon background is critical in

diffraction image analysis – both for the analysis of Bragg

peaks from crystalline samples and for the phasing of single-

particle diffraction patterns. Practical experience indicates

that most serial X-ray diffraction experiments have constantly

changing background signals, owing to source fluctuations or

to the sample itself; for samples flowing in a liquid or gas

stream the femtosecond-duration X-ray pulses capture snap-

shot images of the background medium on time scales shorter

than those of their intrinsic fluctuations. Background

subtraction algorithms must take account of these fluctuations.

Background subtraction in Cheetah is performed in one of

two ways. When the photon background is relatively steady

from shot to shot but changes slowly over the course of many

frames we subtract a background estimated from the recent

history of non-hit frames. This ‘running background’

subtraction typically works well for samples in the gas phase

and is relatively efficient to calculate; however, it can prove

problematic for samples flowing in a liquid suspension where

there is significant shot-to-shot variation in background. This

is typically the case for serial nanocrystallography in a flowing

liquid jet at resolutions where there are weak Bragg peaks

mixed in with regions of relatively strong solvent scattering.

For nanocrystals in liquid jets, local background subtraction

on each pixel in each image is performed prior to determining

Bragg peak locations; this is more computationally expensive

but sometimes proves necessary for accurate Bragg peak

characterization.

2.2.1. Running background subtraction. Running back-

ground subtraction uses the many blank frames interleaved

between hits to provide an up-to-date estimate of background

signal in the data. Running background subtraction is

performed by populating a buffer with the most recent non-hit

frames and periodically calculating a pixel-wise median

through this buffer, which is used to estimate the recent

photon background (Fig. 3). Although a median filter is

somewhat more computationally intensive than a simple

average, we have found this median to provide a better

background estimate than an average because simple aver-

aging is more strongly affected by outlier pixel values. The

buffer depth, n, is adjusted according to the rate of fluctuation

in photon background, tempered by considerations of

computational efficiency.

Running background subtraction works well when the

photon background is relatively constant over the course of

several data frames and provides a reasonable estimate of

background from beamline optics, residual gas and any slow

drifts in detector offsets. The background frame buffer serves

multiple purposes, enabling hot pixels to be identified (pixels

with abnormally high signal in more than 80% of frames in the

buffer are excluded from subsequent analysis) and the stan-

dard deviation of the background to be calculated (used for

determining signal-to-noise on a per-pixel basis). Additionally,

static detector offsets are automatically incorporated into the

running background, obviating the need for careful calibration

of detector dark frames. Typically a buffer of n = 50 or n = 100

is used, which at the LCLS is about 0.5–1 s worth of data.

Buffer depths of more than n = 500 typically provide no added

benefit, because residual signal is affected more by shot-to-

shot fluctuations than poor sampling of background frames.

2.2.2. Local background subtraction. For samples delivered

in a liquid jet we observe that scattering from the liquid jet
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itself can vary significantly from shot to shot. Consequently a

running background estimate may not always adequately

account for this shot-to-shot variation in background signal

and can be problematic for analysis. However, for crystalline

samples (Boutet et al., 2012; Redecke et al., 2013), we know in

advance that diffraction from the sample will form small and

sharply defined Bragg peaks when compared to the photon

background consisting of diffuse scatter and solvent scattering

that vary on relatively long length scales. For such samples we

find it effective to perform local background subtraction

across the entire image: the background in the vicinity of a

pixel is estimated as the median of all pixel values in a box of

side length 2r + 1 either side of the pixel of interest (taking

care to avoid running over the edge of detector module

boundaries) (Fig. 4). Provided the box is sufficiently large

compared to the size of the Bragg peaks, the majority of pixels

will contain background signal rather than signal from the

peak. The blind median of all pixel values within this box will

serve as an adequate estimate of the local background for the

purposes of peak detection and screening, provided the area

of the box is at least twice the area of any potential Bragg

peaks. We note that local background subtraction obviates the

need to accurately specify a dark calibration as any static

detector offsets are automatically accounted for during local

background subtraction.

Selection of the correct background region is necessary to

prevent excessive modification of Bragg peak intensities. For

our experiments to date, we have found that the number of

pixels in the local background region should be at least three

times the number of pixels in the peak. For small and sharp,

well separated peaks the local background region can be

relatively small and thus the calculation relatively fast. As

peak size increases the local background region must also be

increased, slowing down the background calculation. On the

other hand, a fast calculation may be preferable for screening

purposes, provided peak finding is not adversely affected. A

practical approach is to (1) apply a small local background

radius to determine which frames have sufficient peak-like

structures to be of interest, possibly using only a portion of the

detector; (2) apply a larger local background radius to inter-

esting frames only for determining the location of all peak-like

structures in the frame; and (3) save image data with only

detector artefact correction applied, along with identified

peak locations for structure factor analysis. Modification of

Bragg peak intensity is undesirable for integration of reflec-

tion intensities, making the saving of frames without local

background subtraction advisable for subsequent analysis (the

user can, of course, decide to do otherwise). In this way local

background subtraction is used only for peak finding purposes,

with original detector values preserved for subsequent

analysis.

A comparison of results from running background

subtraction and local background subtraction for crystalline

samples flowing in a water jet is shown in Fig. 5.
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Figure 4
In the case of data from crystalline samples forming well defined Bragg
peaks, the local background in the vicinity of a pixel is estimated as the
median of pixel values in a box of side length 2r + 1 either side of the pixel
of interest. For small peaks (a), the median of pixels within this box serves
as a reasonable blind estimate of the background signal. However, when
the peak becomes large compared to the box size (b), a simple median no
longer serves to estimate the background alone. For our experiments to
date, we have found that the number of pixels in the box should be at least
three times the number of pixels in the peak.

Figure 3
Frames identified as non-hits are added to a buffer of n images depth. A pixel-wise median through this buffer estimates the current photon background
signal. Hot pixels and the standard deviation of background intensity are calculated from the same buffer.



2.3. Image analysis
2.3.1. Identification of possible Bragg peaks. Peaks in the

intensity are identified as connected clusters of more than nmin

pixels but fewer than nmax pixels in which every pixel has

counts above a threshold value. The lower limit nmin serves to

reject single-pixel outliers, whilst the upper limit nmax rejects

overly diffuse peaks. The entire image is scanned, taking care

to process each detector module separately and excluding any

masked areas.

For most cases the following procedure serves to identify

the majority of peaks in the image:

(1) Starting with the first pixel in memory, if the pixel

intensity is below a specified static threshold [in raw analog-to-

digital units (ADU)], move on to the next pixel.

(2) If the pixel intensity is above a specified signal

threshold, locate all connected pixels that also meet the above

criterion, whilst not crossing a detector module boundary. If

the number of connected pixels falls within the range [nmin,

nmax], then the connected region will be counted as a peak.

Connected pixels are masked once evaluated to avoid the

possibility of counting them twice in further analysis.

(3) The centroid of the peak and total intensity are calcu-

lated and used as the pixel location and intensity.

(4) Background noise around the peak is calculated, and the

peak is retained only if the integrated intensity within the peak

is sufficiently high above surrounding noise levels.

(5) Once a peak has been identified, move on to the next

pixel and repeat until all pixels have been examined.

A constant threshold might suffice for samples with low

background noise and sharp peaks. The most challenging

samples, however, are ones that have weak peaks relative to

the background. This background is often spatially varying,

with notably elevated signal and noise in regions of solvent

scattering. For such samples a static threshold no longer

suffices. Instead, we exploit the largely radial symmetry of the

noise profile to calculate a radially dependent threshold for

the peak search. First the average intensity IðrÞ and standard

deviation �ðrÞ are calculated as a function of radial position r

on the detector for each image immediately prior to the peak

search. Obvious peaks are excluded from the SNR calculation

using an iterative procedure. The peak search threshold is then

given by the radially dependent value ThreshðrÞ ¼ IðrÞ +

SNR �ðrÞ, where SNR specifies the desired threshold in units

of standard deviation within the annular shell. A minimum

value of ThreshðrÞ should be specified to avoid problems with

almost empty frames. This algorithm is embodied in ‘peak-

finder 8’. We have found values of SNR between 6 and 8 and a

minimum threshold of 30 counts to be surprisingly robust for

the analysis of data from the CXI instrument at LCLS across a

range of samples and injection types. Values should be opti-

mized to obtain the best results.

When regions of the detector have significantly non-

isotropic noise characteristics – for example, owing to

coherent speckle in the water ring region – it may be hard to

define one static threshold across the entire image. In such

cases a second algorithm may be used, which applies a local

intensity threshold based on local noise levels:

(1) Starting with the first pixel in memory, if the pixel

intensity is below a specified threshold (in raw ADU), move

on to the next pixel.

(2) If any of the eight nearest neighbour pixels have a

greater intensity, move on to the next pixel.
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Figure 5
Comparison of results from running background subtraction and local background subtraction for crystalline samples flowing in a water jet. (a) Image
after subtraction of a water ring averaged over multiple frames; fluctuations in pulse intensity and water jet structure result in imperfect background
subtraction using running background subtraction. (b) Subtraction of local background using a moving median filter of width 7 pixels produces a cleaner
image for peak detection.



(3) Once the brightest pixel in a region is found, calculate

the mean background intensity hIi and standard deviation

�(I) within a concentric annulus of user-specified radius. The

signal-to-noise ratio for this pixel is SNR = (I � hIi)/�(I).

(4) If either the background-corrected intensity (I� hIi) or

the SNR level of the pixel is below the user-defined thresholds,

move on to the next pixel.

(5) The number of connected pixels that also meet the

above criteria are counted. If the number of connected pixels

falls within the range [nmin, nmax], then the connected region

will be counted as a peak. Connected pixels are masked once

evaluated to avoid the possibility of counting them twice in

further analysis.

(6) The centroid of the peak is calculated and used as the

pixel location value.

(7) A test is performed to check that there is not another

peak nearby (within a specified distance); if nearby peaks are

found, only the one with the highest SNR will be kept.

(8) Once a peak has been identified, move on to the next

pixel and repeat until all pixels have been examined.

Each detector module is analysed separately to avoid

complications in crossing from one module to another, and

local background intensity and signal-to-noise �(I) can be

calculated during the local background subtraction step to

avoid redundant calculation steps. Each peak ends up being

characterized according to its position (X, Y), integrated

intensity (I) and signal-to-noise ratio (SNR).

Peak searching can be applied first to selected portions of

the detector (for example, the inner 1/4 of the detector) and

only extended to the rest of the detector if sufficient peaks are

found in the initial search region. This provides a speedup of

almost 4 times because time-consuming steps such as back-

ground subtraction and peak finding are first conducted on

only a portion of the detector, quickly eliminating blank

frames. Pre-screening a region of interest can significantly

reduce time spent on blank frames, provided an appropriate

region of interest can be defined.

2.4. Identifying sample hits

Once the tasks of background correction and image

evaluation have been performed, events identified as poten-

tially useful hits are flagged and exported to a facility-inde-

pendent HDF5 file for subsequent analysis. Event selection is

based on relatively simple criteria depending on sample type.

2.4.1. Crystalline samples producing Bragg peaks. For

crystalline samples we require a minimum number of Bragg

peaks to have been identified in the diffraction pattern for it to

be classified as a ‘hit’. After photon background subtraction,

peaks are identified and characterized by their area and SNR

to ensure they are sufficiently above local noise levels to be

real peaks consistent with Bragg diffraction from the sample

and not spurious fluctuations in local intensity. Individual

peaks are counted, and only diffraction patterns with more

than npeaks peaks are retained for further processing. No

attempt is made to separate single or multiple crystal hits

during the hit finding stage. Identification of the number of

crystal lattices is left to more sophisticated programs devel-

oped for protein crystallography; such information may be

useful for a variety of programs capable of indexing multiple

crystal lattices.

We find that for protein nanocrystals a criterion of npeaks >

20 is required for autoindexing using CrystFEL (White et al.,

2012): this criterion arising from the number of peaks required

to auto-index diffraction patterns using the Fourier approa-

ches employed in that software suite (Powell, 1999). A

minimum of two Bragg peaks would be theoretically required

for indexing and diffraction pattern orientation with respect to

the reciprocal lattice in certain cases, provided other indexing

approaches such as template matching are applied. A further

criterion based on resolution can be applied, such that only

diffraction patterns with a resolution above some prede-

termined value are retained, where resolution is defined as the

radius of the circle containing 80% of peaks (to reduce the

effect of outlier peaks on the resolution estimate). The

number and maximum resolution of these peaks are used as

metrics for determining whether the diffraction pattern should

be retained for further analysis.

The question naturally arises as to how effective the

Cheetah hit finding approach is compared with simpler

approaches. To this end we compared Cheetah with the crystal

hit finding approach employed by CASS (Foucar et al., 2012),

as described in the recent paper of Barends et al. (2013). The

CASS algorithm employed in that paper checked for the

presence of pixels above 2000 ADU in the central region of

the detector, with the presence of at least one such pixel

triggering a hit (Barends et al., 2013, supplemental material).

Whilst this algorithm performed adequately for the lysozyme

data analysed in that paper, for a different sample (G protein-

coupled receptor microcrystals in lipid cubic phase medium)

the CASS logic identified 178 940 potential hits from 1 584 452

data frames, of which 7772 could be indexed (4.3% indexing

rate). The Cheetah logic identified 10 173 hits from the same

1 584 452 data frames, from which 8738 frames could be

indexed (85.9% indexing rate). On lysozyme in a liquid jet we

can achieve indexing rates of 60% or higher using Cheetah

output, with most non-indexed frames appearing to contain

multiple crystal hits. This compares to the approximately 30%

indexing rate reported by Barends et al. (2013) for lysozyme in

a liquid jet. The indexing rate is a good estimate of the false

positive rate, as it is the indexed frames that are ultimately

useful for crystallographic data analysis. The addition of

multiple crystal indexing software to CrystFEL may enable

the use of multiple crystal hits, most of which appear to fail

during indexing and are currently counted as false positives.

These results suggest that the Cheetah peak finding approach

is capable of identifying useful data (and eliminating useless

data) with higher accuracy than a simpler approach, even

though no attempt is made at lattice identification during hit

finding. Such results are of course sample and experiment

dependent, so generalization to other samples and conditions

must be made with care.

2.4.2. Scattering from noncrystalline samples for single-
particle imaging. For the case of single-particle scattering
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there are no convenient intense and highly localized Bragg

peaks to be counted. Instead, the presence of increased

photon scattering on the detector and the spatial distribution

of those photons must be used to determine whether or not a

particle has been hit. In principle the detection of elevated

scattering should be an easy task, and indeed applying a

threshold to the sum of intensities from all pixels within a

certain region of the detector is often sufficient to find the

strongest particle hits. However, the strongest scattering

events are not necessarily the most interesting ones. Theore-

tical calculations predict that frames with as few as 100 scat-

tered photons may be useful for structural determination

(Fung et al., 2008; Elser, 2009; Philipp et al., 2012), and in

practice it is observed that the strongest scattering events

often originate from droplets, clusters or contamination rather

than the particles of interest, whilst the frames of interest are

comparatively weak (Yoon et al., 2011). Detecting weak yet

potentially useful hits is much more challenging than detecting

the strongest hits.

A simple method to identify hits involves using running

background subtraction to remove static offsets from the

detector or background gas scattering, and using the same

frame buffer to calculate the typical noise in a given pixel,

measured as the standard deviation of values for each pixel

through the same buffer of background frames. Regions with

elevated scattering are identified as pixels where the pixel

value in a given frame is above a noise threshold for that pixel,

and the number of pixels matching the threshold criteria is

counted. Experience suggests that counting pixels forms a

more reliable discriminator than total integrated image

intensity alone, owing to a reduced sensitivity to single pixels

with randomly high values. The appropriate threshold value

can be determined from per-pixel histograms of detector

counts at low photon count rates. A typical threshold of

I(x, y) > 3�(x, y) is applied, and the resolution of a diffraction

pattern is estimated as the radius of the 80th percentile of

pixels above the threshold. For detectors capable of single-

photon counting, a threshold set just below the ADU value

expected for a single photon results in the counting of photon-

containing pixels.

For extremely weakly scattering samples such as single

biomolecules probed using hard X-rays, it is difficult to

distinguish from noise using total photon counts or photon-

containing pixels alone (Elser, 2009; Philipp et al., 2012). This

is because of the small number of photons scattered from the

sample compared to background sources, including detector

noise and unavoidable scattered photons from the instrument.

In such cases it is necessary to perform more sophisticated

statistical analysis (Loh, 2012) to separate undesired scattering

from scattering from the sample. Cheetah produces histograms

of the distribution of measured counts in every individual

pixel on the detector. This enables per-pixel detection cali-

bration through the identification of histogram features

corresponding to the arrival of individual or multiple photons

for use in photon counting. Pixels with anomalous statistical

behaviour as observed in the histogram can be identified and

excluded from analysis. Calculation of the statistical distribu-

tion of detector counts in the presence of instrument noise and

background scattering enables identification of hits by calcu-

lation of the log-likelihood probability that the current frame

matches the known background statistics. In this case the

histogram of background scattering forms prior information,

and frames with a divergent log-likelihood metric are identi-

fied as statistical outliers potentially arising from particle hits

(Loh, 2012). The field of single-particle imaging is not yet as

mature as that of serial crystallography, and new approaches

will no doubt be developed in the future. In particular, the

statistical treatment of instrument background, identification

of weak particle hits above instrument noise and background

photon scattering, and the treatment of backgrounds in

particle orientation and alignment is an area of active

research.

2.5. Program output

2.5.1. Cleaned and filtered image data. One of the primary

functions of Cheetah is the identification and saving of data

frames worthy of further analysis. To this end data frames

classified as hits can be output in a facility-independent HDF5

format containing instrument-, background- and geometry-

corrected data for subsequent analysis. The translation of data

into a facility-independent format enables downstream

analysis programs such as CrystFEL (White et al., 2012) to be

written in a facility- and instrument-independent manner for

maximum portability. This is particularly important in the light

of facility file formats being highly customized and only

readable by facility-written software with limited portability.

Frames identified as hits are listed in a plain text file, which can
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Figure 6
Cleaned and assembled image data of diffraction from a single-protein
nanocrystal, as viewed in the viewer provided for reviewing Cheetah
output.



be used for later selection of individual data frames from the

raw data stream if desired.

Reviewing data frames selected as hits is one of the primary

ways of monitoring the operation of Cheetah: to this end a

simple image viewer (Fig. 6) is included for reviewing saved

data frames and, for example, the accuracy of Bragg peak

identification.

2.5.2. Hit rate and spatial resolution. The calculation of

overall hit rate and hit rate changes over time and is easy once

events have been identified as either sample hits or blank

frames. The overall hit rate is simply the total proportion of

hits over the course of an experiment, whilst the instantaneous

hit rate is the proportion of sample hits in the last n seconds,

typically calculated as the percentage of hits averaged over 5 s

intervals (5 s at the LCLS at 120 Hz pulse repetition rate

amounts to 600 data frames). Time variations in hit rate are

particularly useful in optimizing alignment during the

experiment or diagnosing settling or clogging issues during

sample delivery (Fig. 7). For each sample hit, diffraction is

further classified according to total Bragg peak count (total

number) and resolution (resolution of the circle containing

80% of Bragg peaks) to produce peak number and resolution

histograms for individual data collection runs (Fig. 7). These

statistics provide a useful summary of sample quality, align-

ment and achievable resolution for a given experiment.

Hit rates can very wildly depend on the experiment and

sample delivery techniques. Nanocrystal diffraction in solution

typically has hit rates of 10–15%, although extremes as low as

1% have been observed for dilute samples, whilst hit rates

close to 100% have been observed for highly concentrated

samples. Aerosol samples on the other hand typically produce

5–10% hit rates, although hit rates as high as 50% have been

observed.

Low hit rates say more about the current state of the art in

sample delivery technology than anything else. In an ideal

experiment, each pulse would deliver a useful diffraction

pattern. The percentage of rejected frames alone is thus a

potentially misleading metric of hit finding ability, as it is also

dependent on sample delivery strategies. The success of data

weeding strategies should instead be measured according to

the percentage of false negatives (useful hits which are

rejected), the percentage of false positives (blank frames

retained) and the particle discrimination rate [ability to

accurately discriminate between useful sample (single parti-

cles or crystals) as opposed to junk (e.g. clusters, droplets)].

The currently available sample delivery techniques are far

from achieving the goal of 100% useful data, and thus frame

rejection strategies are currently very effective in reducing

data volumes.

2.5.3. Virtual powder patterns. Traditional powder

diffraction patterns are formed when many randomly oriented

crystals are exposed simultaneously in the X-ray beam,

producing characteristic Debye–Scherrer diffraction rings. On

the other hand, in serial crystallography many individual

crystals in random orientations are exposed to X-ray pulses

one after another. Summing up multiple serial diffraction data

frames therefore produces a diffraction pattern equivalent to

powder diffraction from many crystals. We call this pattern a

virtual powder diffraction pattern because it is formed by

digital summation of many individual crystal diffraction

patterns.

One benefit provided by virtual powder diffraction is access

to the diffraction patterns from individual crystals. Data

frames without crystalline diffraction are excluded from the

sum, reducing the contribution from solvent background,

whilst background subtraction performed on each individual

data frame enables only peaks, and not the background, to

contribute to the virtual powder diffraction pattern. This

results in a virtual powder pattern consisting of only the signal

in Bragg peaks with greatly reduced background. Fig. 8(a)

shows one individual frame of background-corrected diffrac-

tion from a single lysozyme nanocrystal at the LCLS, whilst

Fig. 8(b) shows the virtual powder diffraction pattern formed

by summing of many thousand individual background-
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Figure 7
Statistics on hits identified in a given run in the form of hit rate (a) and distribution of resolution (b).



corrected frames. Such virtual powder patterns are very useful

for detector calibration and for quickly assessing the quality of

data sets.

2.5.4. Radial stacks. Changes in the azimuthally integrated

signal from successive frames can yield important information

about the sample, for example in the case of time-resolved

wide- and small-angle X-ray scattering analysis (WAXS/

SAXS). Radial stacks where each row corresponds to the

azimuthally integrated data from successive diffraction

measurements are assembled for subsequent analysis, as

shown in Fig. 9. The two-dimensional data in radial stacks

significantly reduce data volume, compressing many gigabytes

of full detector frames into a relatively small and manageable

data set that can be easily analysed in

separate programs or taken home for

analysis. Stacks can be sorted on the

basis of criteria such as sample excita-

tion laser delay or laser-on and laser-off

states, particularly when laser-on and

laser-off states are interleaved. After

outlier rejection and normalization for

shot-by-shot variations in scattered

intensity, radial stacks can be sorted

according to reaction coordinate or

crystal type in order to study dynamic

evolution of states or other pheno-

mena: different states with closely

spaced or partially overlapping peaks in

powder diffraction rings may be able to

be sorted into different conformations

through analysis of individual shot-by-

shot powder diffraction patterns.

3. Implementation

Cheetah is written in C++ and is available as source code

under version 3 of the GNU General Public License (GPLv3).

At the time of writing, the code can be downloaded from

http://www.desy.de/~barty/cheetah/. Installation and usage

instructions detailing the required libraries and computational

environment are included. Data processing within Cheetah is

multi-threaded: a single thread is responsible for reading data,

with processing passed to multiple worker threads for inde-

pendent processing (Fig. 10). Low-level functions are imple-

mented in plain C wherever possible to facilitate reuse in other

programs or use as callable functions in programs written in
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Figure 8
(a) One individual frame of background-corrected diffraction from a single lysozyme nanocrystal at the LCLS; and (b) the virtual powder diffraction
pattern formed by summing of many thousand individual background-corrected frames.

Figure 9
Radial stacks summarize the radially averaged signal for each frame (a) prior to normalization for
shot-to-shot variation and (b) after normalization and outlier rejection. Radial stacks are used for
WAXS/SAXS analysis and for comparing powder diffraction patterns on a shot-by-shot basis, and
when sorted by laser delay or other reaction coordinates facilitate data evaluation in time-resolved
studies.



MATLAB (The MathWorks Inc., Natick, MA, USA) or

Python.

Cheetah needs to interface with real-time data streams and

data files in a variety of facilty-dependent formats. This

complicates implementation because data formats and the

programs capable of reading them differ from facility to

facility. To address this problem we implemented Cheetah as a

facility-independent library – libCheetah – that implements all

necessary functionality in a framework written in portable

C++ with minimal library dependencies. libCheetah compiles

free from any dependence on facility-specific code and mini-

mizes dependence on external libraries and packages as far as

practically possible. Details of the library interface and

documentation of low-level functions are found in the distri-

bution.

The passing of experiment data to libCheetah functions is

performed by a separate program which translates the data

stream for use by libCheetah. The Cheetah front-end interface

must be implemented within the data framework provided by

the facility, or through another analysis program such as CASS

(Foucar et al., 2012). The provision of tools for reading custom

data formats is necessarily a facility responsibility. Cheetah is

implemented within the myana and psana framework at the

LCLS, as well as for the SCALA HDF5 data format. Imple-

mentations for other frameworks and facilities will be incor-

porated into the Cheetah distribution as they are developed.

Separating tasks between a facility-dependent front end

responsible for interfacing to the data stream and libCheetah

which performs facility-independent analysis tasks simplifies

debugging and enhances portability. Indeed, most problems

compiling or executing Cheetah are observed to originate in

this facility-dependent layer, including portability for reading

data off-site and backwards compatibility of file formats over

time.

Several scripts are included to assist in efficient execution of

Cheetah. hitfinder is responsible for organizing the directory

structure, ensuring that configuration files are copied into the

correct locations, and executing Cheetah either in interactive

mode or using a batch queue. process sets certain environment

variables required by hitfinder, for example specifying the

location of the Cheetah executable, the location of raw data

and the destination for processed data, before executing

hitfinder. cheetahview is provided for viewing output data

frames and is especially useful for monitoring hitfinder output

and ensuring that Bragg peaks are being accurately identified.

runstats uses the Cheetah log files to compile statistics such as

hit rate and resolution for individual data runs, while

powderplot compiles one-dimensional radial averages from

virtual powder patterns for WAXS analysis and enables the

comparison of radially averaged virtual powder diffraction in

one dimension between different runs.

4. Practical notes for users

Cheetah can be obtained and installed from http://www.desy.

de/~barty/cheetah/. Instructions for installation and use are

included as a part of the package and will no doubt be more

up-to-date than any instructions provided here. Once Cheetah

research papers

1128 Anton Barty et al. � Cheetah J. Appl. Cryst. (2014). 47, 1118–1131

Figure 10
Cheetah implementation is multi-tiered. At the top level (a), Cheetah contains programs that interface to facility-dependent file formats and real-time
data streams, translating and repackaging data from facility data formats for use by the Cheetah processing engine (b). Adaptation of this front end is all
that is required to implement Cheetah with other facility data systems and file formats. The processing engine (b) is written in a facility-independent
manner and compiled as a callable library, whilst core low-level functions (c) are implemented in plain C wherever possible to facilitate reuse of
individual modules.



is compiled and functional, the next step is to configure the

scripts process and hitfinder for the current experiment and

computational environment. These scripts specify the location

of the Cheetah executable, necessary library paths and

commands for batch queue submission, in addition to the

location of raw data, configuration files, detector geometry

data and the destination for processed data. Correctly

configuring these housekeeping scripts greatly simplifies

subsequent execution, enabling data to be processed with the

single command process <run> <configuration>. Calibra-

tions such as detector dark offset, per-pixel gain, and masks

for known bad pixels and regions to be ignored can be

specified, or are ignored if not present. The detector geometry

should be specified using an HDF5 file containing the (x, y, z)

location of each pixel on the detector as described in the

documentation.

Reviewing output is an important and necessary step in

optimizing hitfinder output and background subtraction.

Every experiment is different, even if of the same type as one

conducted previously. Not optimizing the hit finding, i.e.

expecting the default values to work, will most likely result in

sub-optimal output and either too few hits or too many false

positives. Reviewing output with an image viewer such as

cheetahview or another program is essential. This program

displays Cheetah output in either sequential order or a random

order so you can get an unbiased sample of the output. For

crystalline data, make sure that background is properly

subtracted and Bragg peaks are accurately identified and

circled, and that there are a minimum number of false Bragg

peaks, while for noncrystalline data, check background

subtraction, that areas of elevated scattering are accurately

identified, and that the threshold area is neither too large nor

too small for the given sample. A control panel is included for

ease of use, showing data sets currently available for proces-

sing, confirming current processing status and providing quick

access to commonly used functions (Fig. 11).

5. Future developments

Cheetah is a new software project and is rapidly developing to

keep pace with the emerging field of serial X-ray diffraction

using FEL sources. Support for new facilities will be added as

they come online, and new features are continually under

development to meet the continually evolving needs of new

experiments. One example is on-the-fly indexing and inte-

gration: as sample delivery methods improve, the proportion

of useful data frames will increase and at some point trans-

lating data for each hit to a separate file format ceases to be

efficient. Cheetah already identifies Bragg peak locations,

integrates the signal above the background and is aware of

detector geometry: this information could be passed directly

to the CrystFEL library (White et al., 2012) for auto-indexing

on-the-fly without the need to save any intermediate data to

disk. Another example for single-particle imaging is to

incorporate morphological sorting and sizing so that only

patterns matching the anticipated sample size and shape are

retained for further analysis.

Looking further ahead, future facilities such as the

European XFEL will provide up to 27 000 pulses per second,

representing a significant increase on the 120 Hz pulse repe-

tition rate available today. At the European XFEL saving each

and every frame for post analysis will no longer be practical

and data reduction will ideally be performed in real time.

Borrowing from terminology used in particle physics experi-

ments (Bystricky et al., 1997), the reduction of serial diffrac-

tion data may be described by three levels of event filter

(Fig. 12). Level-1 triggers employ non-image-based diag-

nostics to determine whether or not the X-ray pulse hit a

particle of interest. For example, fluorescence or time-of-flight

ion spectroscopy may be able to quickly determine whether a

given FEL pulse hit any sample and provide a veto signal prior

to detector readout. Level-2 triggers use region-of-interest

analysis to decide whether a frame should be discarded before

all event data are read out, for example by integrating the total

signal in a sub-region of the detector. The important point

about Level-2 filters is that only small portions of the entire

event data need be read out in order for a decision to be made,

thereby reducing the total volume of data that must be read

out from the instrument. Finally, Level 3 performs simplified

science analysis on full event data to decide whether to discard
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Figure 11
Control panel for Cheetah operation, showing currently available data
sets, the progress of data processing and commonly used functions such as
data reviewing.



the event or retain it for further analysis. Within this three-tier

model, Cheetah currently performs the role of a Level-3 event

filter. Certain portions of Cheetah may be suited to imple-

mentation at the L2 level, whilst research into alternative

strategies for reliable L1 vetoing using external diagnostics is

currently underway. Migrating as many functions as possible,

such as hit finding or on-the-fly accumulation of radial stacks

or autocorrelation functions, into field-programmable gate

array hardware or intelligent pixels would further speed

analysis and reduce overall data volumes. Development in this

direction is critical for data volume management from serial

diffraction experiments at the European XFEL.

6. Conclusions

The use of online data rejection is essential in serial diffraction

experiments. One recent structure determined at LCLS

involved the collection of almost 4 million detector frames

(20 TB) over 10 h of data collection; of these only 293 195

contained potential crystal diffraction patterns, of which only

178 875 (<1 TB) proved usable for structural analysis

(Redecke et al., 2013). To date the authors of this paper have

processed over 1.2 PB of data using Cheetah from a total of 24

experiments at the LCLS, yet from this

data only the relatively modest quan-

tity of 80 TB of data frames have been

extracted and used for detailed

analysis. From such statistics it is

evident that the reduction in data

transfer, storage and downstream

computation requirements resulting

from rapid analysis and event selection

can be significant, bringing such

experiments within the reach of

modest research groups who do not

have access to large-scale computation

or storage infrastructure. With experi-

ments at LCLS producing half a

million data frames per hour, the

deployment of detectors capable of

reading out hundreds of frames per

second at synchrotron sources and

frame rates of up to more than 90

million diffraction patterns per hour

possible (27 000 frames per second) at

the European XFEL, the move

towards online data screening and

rejection in serial diffraction is inevi-

table and represents a paradigm shift

in X-ray data collection for a new

generation of high-repetition-rate

experiments.

Cheetah is free and open source

software (GPLv3) and is available at

http://www.desy.de/~barty/cheetah/.
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Figure 12
Event selection in serial X-ray diffraction experiments, borrowing from terminology used in particle
physics experiments. Level-1 veto uses external diagnostics to determine whether a sample has been
intersected by the X-ray pulse, while Level-2 vetoing relies on readout of only a portion of the
detector. Level-3 event filters work in parallel, performing rapid analysis of the entire detector data
to determine whether a particular event is worthy of retention for further analysis. Cheetah currently
performs the role of a Level-3 event filter in addition to performing data reduction tasks.



Swedish Foundation for International Cooperation in

Research and Higher Education; the US Department of

Energy, Office of Basic Energy Sciences, through the Photon

Ultrafast Laser Science and Engineering (PULSE) Institute at

the Stanford Linear Accelerator Center (SLAC); the US

Department of Energy through Lawrence Livermore National

Laboratory under the contract DE-AC52-07NA27344 and

supported by the UCOP Lab Fee Program (award No.

118036); the US National Science Foundation (award MCB-

1021557 and MCB-1120997); and the National Institute of

Health (award 1R01GM095583).

References

Barends, T. R. M. et al. (2013). Nature, 505, 244–247.
Boutet, S. et al. (2012). Science, 337, 362–364.

Bystricky, J., Calvet, D., Ernwein, J., Gachelin, O., Hansl-Kozanecka,
T., Hubbard, J. R., Huet, M., Le Du, P., Mandjavidze, I. & Mur, M.
(1997). IEEE Trans. Nucl. Sci. 44, 342–347.

Chapman, H. N. et al. (2011). Nature, 470, 73–77.
Elser, V. (2009). IEEE Trans. Inf. Theory, 55, 4715–4722.
Foucar, L. et al. (2012). Comput. Phys. Commun. 183, 2207–2213.
Fung, R., Shneerson, V., Saldin, D. K. & Ourmazd, A. (2008). Nat.

Phys. 5, 64–67.
Hart, P. et al. (2012). Proc. SPIE, 8504, 85040C.
Loh, N. D. (2012). Proc. SPIE, 8500, 85000K.
Maia, F. R. (2012). Nat. Methods, 9, 854–855.
Philipp, H. T., Ayyer, K., Tate, M. W., Elser, V. & Gruner, S. M. (2012).

Opt. Express, 20, 13129–13137.
Powell, H. R. (1999). Acta Cryst. D55, 1690–1695.
Redecke, L. (2013). Science, 339, 227–230.
Seibert, M. M. et al. (2011). Nature, 470, 78–81.
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