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A worked example of polytypism is presented, aimed at assisting under-

graduates in the learning and instructors in the teaching of this topic. In

particular, this crystallography concept, not necessarily obvious for beginners, is

illustrated pedagogically using to that end the model case of the prolific

polytypism of silicon carbide (SiC). On the basis of concepts that are easily

assimilated by students (i.e. simple topological constraints) this article first

presents a unified description of the polytypism phenomenon in SiC that allows

one to understand without difficulty the existence of its numerous polytypic

variants and how they develop. Then the various notations used to designate

these different polytypes are described, and finally the crystal structures of the

most common are discussed. This worked example is thus expected to contribute

to motivating undergraduates in the study of a crystallography topic that often is

not treated in sufficient depth in class.

1. Introduction
A good knowledge of crystallography, the science devoted to

crystal structures, is very important in the study of other

disciplines such as physics, chemistry, geology and engi-

neering, and is also relevant in others such as biology and

mathematics, to name just a few. It is not surprising therefore

that the study of crystallography is part of the undergraduate

curricula of many academic degree programs at most univer-

sities around the world. In some of these programs, crystal-

lography is a core subject, with separate, specific credits

devoted to its learning. In the engineering degrees, however,

crystallography typically does not constitute by itself an entire

subject of study but is introduced to the undergraduate within

broader courses on materials science. In this scenario, the

learning of crystallography is sometimes difficult, or at least

problematic, for two reasons. Firstly, crystallography taught as

a lecture course is a very dry subject for undergraduates with a

pure engineering background, as it involves the learning of

concepts that are not necessarily obvious for beginners.

Secondly, instructors do not have sufficient time to develop

crystallographic concepts to the required depth in class

because of the great diversity of content to be covered in a

typical materials science course. Fortunately, most textbooks

on materials science (e.g. Shackelford, 2009; Askeland et al.,

2011; Callister & Rethwisch, 2012) devote various chapters to

discussing in detail crystallographic concepts such as bonding,

the Bravais lattice, the unit cell, crystal structure, defects in

crystals and others, and to explaining them pedagogically by

presenting illustrative examples and practical exercises toge-

ther with the abstract concepts. Unfortunately, other concepts,

such as for instance polymorphism and polytypism, are hardly

ever treated adequately, despite their also being important for

the correct understanding of other materials science subjects,

such as phase transformations and properties in metals and

ceramics. These concepts are of course covered appropriately

in crystallography books and treatises (Verma & Krishna,

1966; Krishna & Verma, 1966; Trigunayat & Chadha, 1971;

Trigunayat, 1991), but these texts are often too advanced for

engineering students because crystallography is introduced at

a relatively early stage in their degree course. Clearly, to

motivate the study of these other crystallographic concepts it

is even more vital than before to introduce them together with

adequate worked examples that involve only simple concepts

and that can arouse the interest of engineering students.

With these premises in mind, this teaching and education

paper is aimed at presenting a worked example of polytypism,

in particular a unified description of the polytypism in silicon

carbide (SiC) that is at the same time appealing and useful.

Since we use only concepts that are easily assimilated by

students, in particular simple topological constraints, this

example of polytypism can be either taught in class or left to

be assimilated individually by the undergraduates as home-

work with relatively little effort. Discussion of the theories

explaining the occurrence and stability of the different SiC

polytypes is far beyond the purpose of the present paper.

2. Unified view of polytypism in SiC

SiC is the only compound that can be formed by combining

silicon (Si) and carbon (C), as is shown in the Si–C phase

diagram presented in Fig. 1 (Olesinski & Abbaschian, 1984).

Despite SiC being a very important advanced ceramic with
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major engineering applications (both structural and func-

tional), our interest here in SiC is exclusively academic

because of its prolific polytypism, which will serve as a good

example to illustrate this crystallographic phenomenon to

students just initiated into crystallography. For the present

purposes, it suffices to define polytypism simply as the ability

of a compound to exist in different crystallographic forms that

differ essentially in one crystallographic direction, achieved by

variations in the atomic layer stacking sequence (Baumhauer,

1912). What distinguishes SiC from other compounds with

polytypism is its capacity to crystallize, somewhat unpredic-

tably, in very many polytypic variants. Indeed, to date more

than 250 different polytypes have been discovered, with

repeats of the stacking sequence varying from just two layers

to many hundreds of layers (Fisher & Barnes, 1990). In all the

SiC crystal structures, however, the Si and C atoms are always

in tetrahedral coordination, as expected for a three-dimen-

sional covalently bonded compound of group IV elements

with sp3 orbital hybridization. As shown in Fig. 2, with this

configuration each C atom is located at the centroid of a

tetrahedron at whose vertices there are Si atoms, and vice

versa. Evidently, this geometry leads to the fourfold coordi-

nation [Si4C in Fig. 2(a), and C4Si in Fig. 2(b)] that is the

signature of covalently bound structures.

From Fig. 2 it is clear that the tetrahedral coordination of

the atoms (C or Si) located at the centroid of the tetrahedron

is always ensured by the presence of atoms of the other

chemical species (Si or C) at the four vertices of the tetra-

hedron. Hence, it is the constraint of the tetrahedral coordi-

nation of the atoms located at these vertices that imposes

certain restrictions on how the tetrahedra themselves are

linked and stacked. Shown in Fig. 3 are the only two possibi-

lities that satisfy the double tetrahedral coordination, which,

as can be observed, themselves differ at first sight in the

relative orientation between the upper and lower tetrahedra

[they either have the same orientation, as seen in Fig. 3(a), or

are rotated 180� with respect to each other, as seen in

Fig. 3(b)]. Hereafter, to distinguish between these two possi-

bilities, the unrotated tetrahedra (also often called untwinned

tetrahedra) will be denoted as tetrahedra of type T and the

rotated ones (also called twinned tetrahedra) as tetrahedra of

type T0. As can be observed in Fig. 3, the tetrahedra have to be

stacked in layers in such a way that the triangular bases

defined by their lower three vertices define a plane. These

vertices are shared by three tetrahedra belonging to the same

layer, and also by one of the tetrahedra located in the layer

immediately below. Clearly, the top vertices of the tetrahedra

of a given layer in turn generate the lower vertices of the

tetrahedra of the layer located immediately above. Further-

more, each vertex is shared by four different tetrahedra whose

centroids in turn give rise to an inverted tetrahedron with its

centroid at the common vertex, and in addition, two neigh-

bouring tetrahedra share one and only one of their four

vertices.

In order to explain why only these two arrangements are

possible, it is very useful didactically to analyse the packing in

the plane and the stacking in the space of the tetrahedra (Si4C

or C4Si), utilizing to that end two-dimensional projections. To

distinguish between tetrahedron layers and simple tetrahedra,

the former will hereafter be denoted using boldface letters in

the form T or T0, again with the use of the prime representing

the 180� rotation. Let us denote by T1 the first layer of

tetrahedra whose plane projection is shown in Fig. 4(a), where

the subscript 1 indicates the plane projection of the positions

of the centroids and top vertices of the tetrahedra. As can be

easily visualized, there exist only two possible manners of

stacking the next tetrahedron layer upon this one, if the

condition is imposed that the bottom vertices of these new

tetrahedra have all to be placed in positions 1 in order to

satisfy the constraint that the top vertices of a tetrahedron
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Figure 2
Simple tetrahedral coordination of Si and C atoms: (a) Si4C tetrahedron
(C atom located at the tetrahedron’s centroid and Si atoms at its vertices)
and (b) C4Si tetrahedron (Si atom located at the tetrahedron’s centroid
and C atoms at its vertices).

Figure 3
Double tetrahedral coordination of Si (in grey) and C (in black) atoms:
(a) two tetrahedron layers with the same relative orientation and (b) two
tetrahedron layers with a relative rotation of 180�.

Figure 1
The Si–C phase diagram. The thick vertical line marks SiC. Adapted from
Olesinski & Abbaschian (1984).



layer have to generate the bottom vertices of the next layer.

These possibilities are (i) stacking of a tetrahedron layer with

the same orientation as before in T1, but this time with the

tetrahedron centroids and top vertices located in the positions

labelled 2 as shown in Fig. 4(b), so that this new tetrahedron

layer will be denoted T2; and (ii) stacking of a layer of tetra-

hedra rotated 180� relative to the tetrahedra in layer T1, and in

addition with the tetrahedron centroids and top vertices

located at the positions labelled 3 as shown in Fig. 4(c), so that

this new tetrahedron layer will be denoted T3
0 . If this pattern

continues with the stacking of new tetrahedron layers, it is

easy to deduce that both the tetrahedra T and T0 can only take

the positions labelled as 1, 2 and 3 in Fig. 5. Therefore, one

concludes that there are a total of only six possible types of

tetrahedron layers (Ti or Ti
0, with i = 1, 2 or 3; the numerical

labels 1, 2 and 3 can be changed to the letters A, B and C if

preferred). It is worth mentioning that the hexagonal

arrangement of the positions of the tetrahedron centroids

labelled 1, 2 and 3 (see for example Fig. 4a) is reminiscent of

the stacking of idealized hard spheres used typically to illus-

trate the construction of the hexagonal and cubic close-packed

structures, although in these latter cases there are only three

possible types of sphere layers (denoted typically as A, B and

C) owing to the invariance of spheres with respect to rotations.

Clearly, each one of the numerous polytypic variants of SiC

has its own characteristic stacking sequence, formed by

combining some or all of these six possible types of tetra-

hedron layers. However, it is important to mention that a key

aspect is that these stacking sequences are not random, but

they have necessarily to satisfy certain constraints. This is

because on a given tetrahedron layer it is only possible to

stack two of the five remaining tetrahedron layers, one of

which will be formed by tetrahedra with the same orientation

as before and the other by tetrahedra rotated 180�. In parti-

cular, Fig. 6 shows that on type T1 and T1
0 layers, only type T2

or T3
0 layers can be stacked; on type T2 and T2

0 layers, only type

T3 or T1
0 layers can be stacked; and on type T3 and T3

0 layers,

only type T1 or T2
0 layers can be stacked. Note that, because

the top vertices of the tetrahedra of the layers T and T0 with

the same subscript occupy the same positions, the tetrahedron

layers that can be stacked on them are necessarily the same.

According to the above discussion, it can be deduced that

the different stacking sequences have to satisfy certain

constraints, which can be expressed mathematically as follows:

(1) A given tetrahedron layer of the type T or T0 is followed

by another tetrahedron layer with the same relative orienta-

tion (T or T0) according to the following rules:

Ti ! Tj ) j ¼ iþ 1� 3�i3;

T 0i ! T 0j ) j ¼ i� 1þ 3�i1;
ð1Þ

where �mn is the Kronecker delta function (which adopts the

value 1 if m = n and 0 if m 6¼n).

(2) A given tetrahedron layer of the type T or T0 is followed

by another tetrahedron layer rotated 180� (T0 or T) according

to the following rules:

Ti ! T 0j ) j ¼ i� 1þ 3�i1;

T 0i ! Tj ) j ¼ iþ 1� 3�i3:
ð2Þ
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Figure 5
The six possible manners of placing the tetrahedron layers: (a) untwinned
tetrahedra situated in positions 1, 2 or 3, and (b) twinned tetrahedra also
in positions 1, 2 or 3.

Figure 4
Two-dimensional representation of the spatial distribution of tetrahedra:
(a) positioning of the first tetrahedron layer, (b) stacking of a new
tetrahedron layer with the same relative orientation as before and (c)
stacking of a new tetrahedron layer rotated by 180�.



These mathematical restraints can be more easily visualized

in the flow chart shown in Fig. 7. As can be seen, it consists of a

set of two concentric equilateral triangles whose vertices are

occupied only by tetrahedron layers of the type T or T0, and

the arrows that emanate from each tetrahedron layer point to

the two unique possible subsequent tetrahedron layers.

Logically, movements within each of these two triangles

correspond to stacking tetrahedron layers of the same type (T

or T0), whereas jumps from one triangle to the other generate

orientation changes of the tetrahedron layers.

Finally, it is worthwhile to mention that in principle one

could generate an infinite number of possible stacking

sequences that satisfy the above restraints, and therefore,

theoretically, the number of potential SiC polytypes is infinite.

This is entirely consistent with the great number of different

SiC polytypes discovered to date.

3. Naming the different SiC polytypes

Originally, the different SiC polytypes were denoted by labels

in the order that they were being discovered, using simply the

succession of Roman numerals I, II, III and so on. However,

this notation soon became impractical as the number of

discovered polytypes increased dramatically, which made it

necessary to use some other nomenclature. Evidently, one

possibility would be to list the entire sequence of tetrahedron

layers T and T0. However, while this notation is probably a

complete and unambiguous representation of the polytypes, in

practice it is very tedious as it is not at all compact, especially

for those polytypes with long stacking sequences. Thus, today

there exist various other notations to denote and more easily

differentiate the huge number of existing and ‘future’ SiC

polytypes. The most common of these notations is the

Ramsdell (1945) notation. It does not distinguish between

untwinned and twinned tetrahedron layers, and designates the

polytypes merely as nX, where n is an integer number that

gives the order of periodicity (i.e. the total number of tetra-

hedron layers in the stacking sequence) and X is a letter that

indicates the type of Bravais lattice (C for cubic, H for hexa-

gonal and R for rhombohedral). Given the lack of distinction

between untwinned and twinned tetrahedron layers in the

Ramsdell notation, the layers T1 and T1
0 are often both

denoted simply as layer A, T2 and T2
0 as layer B, and T3 and T3

0

as layer C, which constitutes the so-called ABC notation.

Another two designations that essentially derive from the

ABC notation are the Hägg (1943) notation and the Nabarro–

Frank notation (Frank, 1951). In the Hägg notation, the cyclic

movements A! B, B! C and C! A are all given with the

operator + and the anticyclic movements A!C, C! B and

B! A with the operator �, so that the polytypes are desig-

nated by listing the consecutive + or � operators. The

Nabarro–Frank notation is similar to the Hägg notation,

except that the operators + and � are replaced by the trian-

gular operators4 and5, respectively. A further simplification

of the Hägg and Nabarro–Frank notations is the Zhdanov

(1945) notation, which simply lists in parentheses the series of

the sums of the numbers of successive like operators, together

with a subscript indicating the repetitions if this is the case.

The utility of this compact notation is that, because it directly

provides the number of consecutive layers without rotation of

180� in the stacking sequence, it is indicative of the ‘zigzag’

chain.

Finally, another appropriate manner of designating the SiC

polytypes is the Wyckoff–Jagodzinski notation (Wyckoff, 1948;

Jagodzinski, 1949), which examines the ABC stacking

sequence and labels each individual layer depending on

whether it has cubic or hexagonal local symmetry. Thus, when

the layers situated immediately on either side of a given layer

are similar the sandwiched layer is denoted as h owing to its

local hexagonality, and, conversely, if they are different it is
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Figure 7
Flow chart of the stacking sequence of tetrahedron layers in the SiC
polytypes.

Figure 6
The two possible tetrahedron layers that can be stacked on a given layer,
always one with the same relative orientation and the other rotated by
180�: (a) T2 or T3

0 on T1, (b) T3 or T1
0 on T2, (c) T1 or T2

0 on T3, (d) T2 or T3
0

on T1
0, (e) T3 or T1

0 on T2
0, and ( f ) T1 or T2

0 on T3
0.



denoted as c owing to its local cubicity (although sometimes k

is used instead of c, from the German kubisch).

4. The most common SiC polytypes
As mentioned above, the number of SiC polytypes discovered

to date is already enormous. Some of them have been

observed only sporadically, while others appear regularly.

Indeed, there seem to be four polytypes of short stacking

sequences (and therefore of small unit cells) that are far more

abundant than the rest of the polytypes and can consequently

be considered the ‘basic’ SiC structures. In what follows, the

crystallographic aspects of these four basic SiC polytypes will

be described in more detail.

The sequence T1T2T3 is the only one that can be generated

by stacking tetrahedron layers with the same relative orien-

tation and results in the only SiC polytype with cubic

symmetry (i.e. the polytype 3C). For this reason this polytype

receives the special name of �-SiC. The rest of the poly-

types, with hexagonal and rhombohedral symmetries, are all

known collectively as �-SiC. Other interesting sequences are

T1T2T1
0T3
0 and T1T3

0T2
0T1
0T2T3, which form the two principal SiC

polytypes with hexagonal symmetry (i.e. the polytypes 4H and

6H). Finally, it is also important to highlight the sequence

T1T2T1
0T3
0T2
0T3T1T3

0T2
0T1
0T2T3T2

0T1
0T3
0 , which yields a typical SiC

polytype with rhombohedral symmetry (i.e. the 15R polytype).

Shown in Fig. 8 are the stacking sequences of tetrahedron

layers corresponding to these four basic SiC polytypes, and

Table 1 lists the various equivalent manners of denoting them.

The 3C (�-SiC) polytype crystallizes in the cubic system,

with a sphalerite-type crystal structure as is shown in Fig. 9(a).

The lattice parameter is a0 = b0 = c0 = 4.359 Å, and the space

group is F43m.1 Like the diamond structure, �-SiC has a face-

centred cubic (f.c.c.) lattice but where the asymmetric unit is

constituted by one Si atom placed at the fractional coordinates

(0, 0, 0) and one C atom at (1
4,

1
4,

1
4). The f.c.c. cell contains a

total of eight atoms (four of Si and four of C), so that the

density is 3.216 Mg m�3.

The 4H polytype crystallizes in the hexagonal system, with a

wurtzite-type crystal structure, as is shown in Fig. 9(b). The

lattice parameters are a0 = b0 = 3.073 , c0 = 10.053 Å, and the

space group is P63mc.2 The asymmetric unit is formed by two

Si atoms located at (0, 0, 0) and (1
3,

2
3,

1
4), as well as two C atoms

at (0, 0, 0.1875) and (1
3,

2
3, 0.4375). The primitive hexagonal cell

contains a total of eight atoms (four of Si and four of C),

resulting in a density of 3.239 Mg m�3.

The 6H polytype also crystallizes in the hexagonal system,

as is shown in Fig. 9(c). It also has the same type of crystal

structure (i.e., wurtzite) and space group (i.e. P63mc) as the 4H

polytype. The lattice parameters a0 = b0 and c0 are, however,

3.073 and 15.079 Å, respectively, and the asymmetric unit

consists of three Si atoms situated at (0,0,0), (1
3,

2
3,

1
6) and (1

3,
2
3,

5
6),
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Figure 8
Stacking sequences of tetrahedron layers for the four most commonly
occurring SiC polytypes: (a) T1T2T3, (b) T1T2T1

0T3
0 , (c) T1T3

0T2
0T1
0T2T3 and

(d) T1T2T1
0T3
0T2
0T3T1T3

0T2
0T1
0T2T3T2

0T1
0T3
0. Unit cells not drawn to scale.

Table 1
Notations used to designate the SiC polytypes.

Tetrahedron layers Ramsdell ABC Hägg Nabarro–Frank Zhdanov Wyckoff–Jagodzinski Type

T1T2T3 3C ABC +++ 444 1 c or k �
T1T2T1

0T3
0 4H ABAC ++�� 4455 22 (ch)2 or (kh)2 �

T1T3
0T2
0T1
0T2T3 6H ACBABC +++��� 444555 33 (hcc)2 or (hkk)2 �

T1T2T1
0T3
0T2
0T3T1T3

0T2
0T1
0T2T3T2

0T1
0T3
0 15R ABACBCACBABCBAC (++���)3 (44555)3 (23)3 (cchch)3 or (kkhkh)3 �

1 Or T2
d in the Schönflies notation. The space group number is 216, and the

Pearson symbol is cF8. The object being repeated has point group symmetry
43m. The Laue class is m3m. Parallel to the a, b and c crystallographic axes are
fourfold symmetry axes of rotary inversion. Parallel to the directions
corresponding to the four body diagonals of the cube are threefold symmetry
axes. Perpendicular to the directions corresponding to the six lines joining the
midpoints of opposite edges of the cube are mirror planes.
2 Or C4

6v in the Schönflies notation. The space group number is 186, and the
Pearson symbols are hP8 and hP12 for the 4H and 6H polytypes, respectively.
The object being repeated has point group symmetry 6mm. The Laue class is 6/
mmm. Parallel to the c crystallographic axis is a sixfold screw axis with a
rotation of 60� counterclockwise and a unit of translation 1

2c0 in the direction
parallel to the c crystallographic axis. Perpendicular to the a1, a2 and a3

symmetry axes are mirror planes. Perpendicular to the directions 30� to a1, a2

and a3 and 90� to the c crystallographic axis are c axial glide planes with a unit
of translation 1

2c0 in the direction parallel to the c crystallographic axis.



as well as of three C atoms at (0,0, 1
8), (1

3,
2
3, 0.29167) and (1

3,
2
3,

0.95833). This time the primitive hexagonal cell contains a

total of 12 atoms (six of Si and six of C), giving a density of

3.213 Mg m�3.

Finally, the 15R polytype crystallizes in the rhombohedral

(or trigonal) system, with the space group being R3m.3 The

lattice parameters of the hexagonal cell (whose volume is

three times that of the primitive cell) are a0 = b0 = 3.073, c0 =

37.700 Å. This is shown in Fig. 9(d). The asymmetric unit is

given by five Si atoms positioned at (0, 0, 0), (0, 0, 0.1333), (0,

0, 0.4), (0, 0, 0.6) and (0, 0, 0.8667), as well as five C atoms at (0,

0, 0.05), (0, 0, 0.1833), (0, 0, 0.45), (0, 0, 0.65) and (0, 0, 0.9167).

Thus, the hexagonal cell contains a total of 30 atoms (15 of Si,

and 15 of C), with the density being 3.220 Mg m�3.

As can be seen, these �-SiC polytypes all have the same

lattice parameter at the base level, i.e. a0 = b0 = 3.073 Å, but

differ essentially in the lattice parameter c0. Nevertheless, the

step height along the c axis is the same in all cases (i.e.

10:053=4 ¼ 15:079=6 ¼ 37:70=15).

5. Summary

We have presented a worked example of polytypism

conceived to help undergraduates in the learning and

instructors in the teaching of a crystallography topic that often

is not treated in sufficient depth in class. With that educational

objective in mind we have chosen the model case of SiC, which

exhibits one of the most prolific cases of polytypism known to

date. We have begun with a definition of the concept of

polytypism, followed by a unified description of the poly-

typism phenomenon in SiC that is at the same time appealing

and useful for those students just initiated into crystallography

because it uses only simple arguments of topological

constraints to explain the existence of its numerous polytypes

and how they develop. Next have we described the typical

notations (Ramsdell, ABC, Hägg, Nabarro–Frank, Zhdanov

and Wyckoff–Jagodzinski notations) used to designate poly-

typic variants, and have applied them to the case of the four

basic SiC polytypes. Finally we have concluded by discussing

in detail the crystal structure of these four polytypes. We

believe that this worked example of polytypism may contri-

bute in the tough task of teaching crystallography to

noncrystallographers.

This work was supported by the Ministerio de Ciencia y

Tecnologı́a (Government of Spain) under grant No. MAT

2010-16848 and by the Junta de Extremadura (Spain) under

grants No. GR08071 and No. GR10045.

References

Askeland, D. R., Fulay, P. P. & Wright, W. J. (2011). The Science and
Engineering of Materials, 6th ed. Stanford: Cengage-Learning
Engineering.

Baumhauer, H. (1912). Z. Kristallogr. 50, 33–39.
Callister, W. C. & Rethwisch, D. G. (2012). Fundamentals of Materials

Science and Engineering, 4th ed. New York: John Wiley and Sons.
Fisher, G. R. & Barnes, P. (1990). Philos. Mag. B, 61, 217–236.
Frank, F. C. (1951). Philos. Mag. 42, 1014–1021.
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Figure 9
Crystal structures for the four most commonly occurring SiC polytypes:
(a) 3C, (b) 4H, (c) 6H and (d) 15R. Unit cells not drawn to scale. Si atoms
in grey (red in the electronic version of the journal) and C atoms in black.

3 Or C5
3v in the Schönflies notation. The space group number is 160, and the

Pearson symbol is hR10. The object being repeated has point group symmetry
3m. The Laue class is 3m. Parallel to the direction trisecting the a, b and c
crystallographic axes is a threefold symmetry axis. The object’s threefold
symmetry axis is parallel to this threefold symmetry axis. Perpendicular to the
direction 90� from the direction trisecting the a, b and c crystallographic axes
and parallel to the directions halfway between the individual a, b and c
crystallographic axes are mirror planes.
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