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and bUniversité de Lorraine, Faculté des Sciences et Technologies, Institut Jean Barriol FR 2843,
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The space group of a crystal pattern is the intersection group of the

eigensymmetries of the crystallographic orbits corresponding to the occupied

Wyckoff positions. Polar space groups without symmetry elements with glide or

screw components smaller than 1/2 do not contain characteristic orbits and

cannot be realized in patterns (structures) made by only one crystallographic

type of object (atom). The space-group diagram of the general orbit for this type

of group has an eigensymmetry that corresponds to a special orbit in a

centrosymmetric supergroup of the generating group. This fact is often

overlooked, as shown in the proposed solution for Plates (i)–(vi) of IUCr

Teaching Pamphlet No. 14, and an alternative interpretation is given.

1. Introduction
Although crystallography is a centennial science, its presence

in higher education is in jeopardy. Indeed, crystallography is

very often nothing more than a chapter in introductory solid-

state physics and chemistry books and in mineralogy text-

books, and therefore the treatment it receives in graduate-

level courses is often only incidental. As a result of this lack of

formal crystallographic education, many young crystal-

lographers have acquired their knowledge in the field through

a rather slow and sometimes tortuous self-education process,

using some excellent books available on the different aspects

and applications of crystallography, and attending schools and

workshops covering basic and advanced aspects and new

developments of crystallography at different levels. This

continues to be the case nowadays, especially, but not only, in

the developing world, where the lack of strong crystal-

lographic societies or associations keeps crystallography as a

very rarely taught topic at the undergraduate level and only

for specific areas in graduate schools. Paradoxically, this

difficulty of learning crystallography may also be at the root of

its outstanding development in the past century, since modern

crystallographers come from such different knowledge areas

as physics, chemistry, materials science, mineralogy and

biology, permanently enriching this already wide area of

science.

This problem has been tackled by the IUCr at different

times through different strategies, all aimed at compensating

for the lack of formal education in crystallography. The

creation of the IUCr Teaching Commission (IUCr-TC) in 1954

was one of these actions, and the systematic work of convin-

cing academia to include crystallography as a separate subject

in undergraduate and graduate-level courses has always been

part of the work of the IUCr. Nowadays, in some universities

in Europe specific graduate programmes on crystallography

exist as a consequence of this push, but they are often isolated

efforts by researchers in just a few universities. Being very

aware of the differences in development of crystallographic

teaching in different regions of the world, in the late 1970s the

IUCr-TC undertook the task of providing academia with a

series of short booklets or pamphlets directed at helping

students to self-educate and teachers to introduce the basic

concepts of crystallography to advanced undergraduate or

graduate students. These so-called IUCr Teaching Pamphlets

have become standard and widely used crystallographic

teaching materials. Since the first series published in 1980,

continued by the second series published in 1984, up to some

recent additions, a total of 23 IUCr Teaching Pamphlets have

been published and made available for free at the IUCr

website (http://www.iucr.org/education/pamphlets). These are

in general high-level teaching materials checked carefully for

errors and inconsistencies. Nevertheless, some topics that

should form the common background of a crystallographer

are not (yet?) included and their absence results in some

inconsistencies, even in this professional series. Here, we point

out the concepts of orbit eigensymmetry and intersection

symmetry, which are practically never presented even in
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graduate courses. Without them, serious oversights may occur,

and indeed have occurred, as we will show.

2. Space groups as intersection groups of the
eigensymmetries of crystallographic orbits

The operations of a space group G applied to an atomic

position give rise to an infinite set of equivalent atoms called a

crystallographic orbit or point configuration [for details of the

difference between these terms, see Koch & Fischer (1985)].

Let the eigensymmetry of the ith orbit Oi be E(Oi), or Ei for

brevity. The relation between Ei and G gives rise to the

following subdivision, where T is the normal subgroup of

translations (Engel et al., 1984):

(1) Ei = G: the orbit is called characteristic;

(2) Ei > G: the orbit is called noncharacteristic; it can be

further subdivided depending on whether

(2.1) T(Ei) = T(G): the noncharacteristic orbit is non-

extraordinary (term usually omitted);

(2.2) T(Ei) > T(G): the noncharacteristic orbit is extra-

ordinary, the latter term taking priority over the former (an

extraordinary orbit is always noncharacteristic, while the

opposite is not true).

A crystal structure S can be seen as the union (in the

algebraic meaning) of all the crystallographic orbits O corre-

sponding to the Wyckoff positions occupied by the atoms of

the structure. The space group of the structure G(S) is, instead,

the intersection of the eigensymmetries of these orbits. In fact,

for each orbit, only the symmetry operations that are common

to the other orbits are promoted to symmetry operations of

the whole structure, the others being local symmetry opera-

tions [for the meaning of a local operation, see Nespolo et al.

(2008)];

S ¼ [iOi; GðSÞ ¼ \iEðOiÞ: ð1Þ

A space group whose general orbit is noncharacteristic does

not contain any characteristic orbits. This arises immediately

from the consideration that the eigensymmetry of a special

orbit is at least equal to that of the general orbit. Space groups

without characteristic orbits cannot be realized in structures

with only one crystallographic type of atom. In fact, if a

structure S is composed of only one type of atom, which, under

the action of G, generates one orbit O, then necessarily G(S) =

E(O), which requires that the orbit is characteristic. Space

groups without characteristic orbits are typically pyroelectric

groups without d mirrors, or screw axes with a screw compo-

nent different from 1
2 (i.e. containing only 21, 42 and 63 as screw

axes). In these space groups, the eigensymmetry of each orbit

has an additional symmetry element q perpendicular to the

symmetry element defining the polar direction(s): either a

mirror perpendicular to the polar axis or a twofold axis

perpendicular to the polar plane (in the absence of metric

specialization, space group P1 is an exception because the

triclinic metric is not compatible with a proper or improper

rotation of order higher than 1). In fact, atoms in the orbit are

in one of the following four situations: (i) on planes separated

by full lattice translations; (ii) on planes separated by half

lattice translations; (iii) along directions separated by full

lattice translations; and (iv) along directions separated by half

lattice translations. These atoms have q in their eigen-

symmetry, and the symmetry operation s(q) about q defines a

coset s(q)G so that G [ s(q)G = E is the eigensymmetry of the

orbit. As a consequence, the general orbit in G corresponds to

a special orbit in E, whose site symmetry group is precisely

defined by q. For these cases, the space-group diagrams in
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do not indicate any additional symmetry elements, because for

structures composed of more than one orbit these are local

elements, although each diagram gives only one general orbit.

However, when applying the opposite reasoning, from the

orbit to the space group, the implicit assumption that the orbit

is general may result in the underestimation of the eigen-

symmetry and thus of the space group, as we will now show.

3. Missing symmetry elements in the IUCr Teaching
Pamphlets

IUCr Teaching Pamphlet 14 (Space Group Patterns; Meier,

2001) is the continuation of IUCr Teaching Pamphlet 13

(Symmetry; Dent Glasser, 2001). It contains 15 plates showing

groups of feet or hands (or, as we interpret them, footprints

and handprints) periodically and symmetrically arranged to

represent crystal patterns1 in each of the 230 types of space

group in a particular setting. Pamphlet 14 is designed to put

into practice the concepts of symmetry introduced in

Pamphlet 13, and starts with an explanatory introduction

where the symbols and rules for the use of the plates are

outlined.

In general, two types of symbol are used for the symmetry

patterns. Footprints are used for space groups containing only

twofold symmetry operations [Plates (i)–(vi)], while hand-

prints are used for space groups with rotations of higher order.

The feet symbols are also used to exemplify planar groups that

can be obtained as a projection of a space group along the

vertical axis. The difference between a hand and a foot may

not be evident from examining real hands and feet, but in the

plates footprints are only used to represent polar space groups,

the polar direction being taken as the direction of projection,

since footprints are always looked at from above. Feet differ,

however, in their handedness (right or left). Handprints,

instead, are shown both right and left and palm up or palm

down.

The polar space groups represented by footprint patterns

are precisely the types without characteristic orbits: Pma2

(No. 28) [Plate (i)], Pnc2 (No. 30) [Plate (ii)], Pbn21 (No. 33)

[Plate (iii)], Cc (No. 9) [Plate (iv)], Cmc21 (No. 36) [Plate (v)]

and Aea2 (former space group symbol Aba2) (No. 41) [Plate

(vi)]. The plates represent only the general orbit of these

groups, so that G(S) = E(O). Because the eigensymmetry of
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1 A crystal pattern is a generalization of a crystal structure to a set of any
objects or figures. A crystal structure is a special case of a crystal pattern,
where the objects are atoms.



the orbit is higher than that of the generating group, the space

group given in the text is systematically a subgroup of the

space group corresponding to the plates. In other words, each

plate shows a special orbit in a centrosymmetric space group,

while the text describes it as a general orbit in a polar group.

Let us examine Plate (i), reproduced in Fig. 1. This is a

crystal pattern corresponding to the general orbit of a space

group of type Pma2. The + symbol at the top right of the

picture indicates that the z coordinate of the feet is located

away from z = 0. A footprint has eigensymmetry m. Because

all feet are located at the same z coordinate, this mirror also

occurs in the space group of the pattern, at z coordinates + and
1
2+ with respect to the chosen origin. This mirror implies the

existence of further symmetry elements, namely twofold screw

axes parallel to [100], twofold axes parallel to [010] and

inversion centres at the intersection of 2[001] with m[001] (Fig. 2).

The space group of the pattern shown in Plate (i) is thus Pmam

[standard symbol Pmma (No. 51) obtained by an acb trans-

formation]. In this type of space group the footprints are no

longer in a general position but in a special position with site

symmetry ..m (.m. in the standard setting). A shift of the origin

is necessary to obtain the standard description. Once this shift

is applied, it is possible to recognize that the orbit corresponds

to Wyckoff position 4i or 4j, depending on where the origin is

placed with respect to the orbit. The space group of the

pattern would only be of type Pma2 if the footprint did not

possess eigensymmetry m, i.e. if the top and the bottom of the

footprint were different, as is the case for the handprints, for

which palm up and palm down are shown.

The same argument applies to Plates (ii)–(vi), where the

supposedly polar arrangements of footprints correspond not

to a general orbit in G (polar) but to a special orbit in the

centrosymmetric supergroup E. The correct space-group types

are then Pncm [Plate (ii); standard symbol Pmna (No. 53)],

Pbnm [Plate (iii); standard symbol Pnma (No. 62)], C2/c (No.

15) [Plate (iv)], Cmcm (No. 63) [Plate (v)] and Aeam (No. 64)

(former space group symbol Abam) [Plate (vi); standard

symbol Cmce].

4. Discussion

The usual way of introducing space groups in crystallography

courses is via the application of space-group operations to

objects in a general position to generate a crystal pattern. The

opposite approach, from pattern to space group, is didactically

more interesting, not only because a space group is indeed the

a posteriori interpretation of a crystal pattern in terms of its

symmetry, but also because it underlines several features that

normally go unnoticed, namely (i) the eigensymmetry of each

orbit, (ii) the nature of a space group as the intersection group

of these eigensymmetries, and (iii) the presence of local

symmetry operations, which are part of the eigensymmetry of

an orbit but not common to the other orbits. Adopting this

approach in parallel with the more common way of introdu-

cing space-group symmetry avoids oversights like those

present in Teaching Pamphlet No. 14 discussed in this article.

This pamphlet is frequently downloaded from the IUCr web

site, suggesting it is still in widespread use, making our re-

interpretation and this discussion of some didactic value for

teachers who use it.

LS thanks the anonymous student who first solved Plate (i)

‘incorrectly’ by placing a mirror plane in the plane of the feet,

drawing our attention to the possible misinterpretation that

the use of footprints may lead to in the first six plates of

pamphlet No. 14. The authors are also indebted to Brian

McMahon from the Chester office of the IUCr for providing

information on the download of IUCr Teaching Pamphlet

No. 14 from http://www.iucr.org/education/pamphlets/14. The
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Figure 1
Plate (i) of IUCr Teaching Pamphlet 14, with the symmetry elements of
the space group that has generated the orbit represented by the set of
footprints. Axes, not shown in the original plate but described in the text,
are oriented as in the first projection of each orthorhombic group, i.e. c is
the projection direction, a is directed vertically down and b is directed
horizontally right.

Figure 2
Plate (i) of IUCr Teaching Pamphlet 14, with the symmetry elements
missing in Fig. 1. The eigensymmetry of this orbit is Pmam [standard
symbol Pmma (No. 51)], which is also the space-group type of a crystal
pattern composed of this orbit alone.



critical remarks of two anonymous reviewers are gratefully

acknowledged.
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