
cif applications

916 doi:10.1107/S0021889810018145 J. Appl. Cryst. (2010). 43, 916–919

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 6 April 2010

Accepted 16 May 2010

2010 International Union of Crystallography

Printed in Singapore – all rights reserved

ASTAR: a .NET class library for STAR/CIF
manipulation

Yun Lin

Instrumental Analysis and Measurement Center, Fuzhou University, Fuzhou, Fujian, 350002, People’s Republic

of China. Correspondence e-mail: transi@fzu.edu.cn

A .NET class library for STAR/CIF manipulation, ASTAR, has been developed

and is available at http://xstar.sourceforge.net/astar/. The library provides

facilities to read and write STAR/CIF files and an object model to manipulate

data in STAR/CIF files. While the library is written in the C# programming

language, it can be utilized by programs written in various programming

languages targeting the .NET platform.

1. Introduction

The STAR (Self-defining Text Archive and Retrieval) syntax (Hall,

1991) provides a way for simple, easy-to-comprehend, flexible and

extensible data exchange. The syntax permits most types of data

items, data structures and data cells.

The CIF (Crystallographic Information File) syntax (Hall et al.,

1991), derived from the STAR syntax, is widely used in crystal-

lography for data archiving and exchange. While CIF was primarily

designed to describe small-molecule structures and crystallographic

experiments, a specialized CIF format, mmCIF (Bourne et al., 1997),

was developed to describe protein structures and is an alternative to

the PDB (Protein Data Bank; Bernstein et al., 1977; Bermann et al.,

2000) format. Besides the advantages mentioned above, another

important feature of CIF is that data in CIF files can be validated

against standard dictionaries which are written in the Dictionary

Definition Language (DDL) (Hall & Cook, 2005; Westbrook et al.,

2005). A DDL dictionary is itself a CIF file containing definitions of

data items and categories used in CIF data files.

Another application of STAR is NMR-STAR, which was devel-

oped for archiving and exchanging data from NMR spectroscopic

studies on biomolecules, at the Biological Magnetic Resonance Bank

(BMRB, http://www.bmrb.wisc.edu/).

Programming libraries for manipulation of STAR/CIF files are

available in various programming languages, including Fortran (Hall

& Bernstein, 1996), C (Westbrook et al., 1997), Objective C (Chang &

Bourne, 1998), Perl (Bluhm, 2000) and Python (Hester, 2006). These

libraries can significantly ease the task of adding CIF or STAR

functionality to software projects. ASTAR, described in this article, is

a class library developed for working with CIF and STAR files on the

.NET platform.

The .NET Framework is a new platform for building, deploying

and running applications. It was first developed by the Microsoft

Corporation (http://www.microsoft.com/net/). Part of the Microsoft

.NET Framework was standardized by the ECMA (European

Computer Manufacturers Association, 2001, 2006; http://www.

ecma-international.org/publications/standards/Ecma-335.htm) and

the ISO (International Organization for Standardization, 2003, 2006;

http://www.iso.org/iso/catalogue_detail.htm?csnumber=42927) as an

open specification under the name of Common Language Infra-

structure (CLI), which was published as ECMA-335 and ISO/IEC

23271. Mono (http://www.mono-project.com/) is an open-source and

cross-platform implementation of the Common Language Runtime

(CLR), which is binary compatible with Microsoft .NET and supports

Windows, Linux, Mac OS X, Free BSD and other UNIX-like oper-

ating systems. The .NET Framework offers a number of advantages to

software developers, including support for many modern program-

ming features (such as memory management, exception handling,

thread management and concurrent computing), a consistent

programming model and a foundational class library across different

languages. Programs and modules on .NET are compiled into

Common Intermediate Language (CIL) assemblies which are

portable across software and hardware platforms. The .NET platform

does just-in-time (JIT) compilation at runtime to achieve perfor-

mance close to native machine code. While .NET is widely used in

information technologies, much work has been done in scientific

computing with .NET, e.g. Math.NET (http://www.mathdotnet.com/),

ILNumerics.NET (http://ilnumerics.net/) and SCINET (http://

www.obacs.com/).

ASTAR, exploiting the advantages of .NET, can be utilized for

STAR/CIF manipulation on various hardware and software platforms

supported by .NET (either the Microsoft .NET or Mono imple-

mentation) and can interoperate with different programming

languages targeting the .NET platform.

2. Implementation

2.1. Programming

ASTAR is written in the C# programming language. GPLEX

(Gough, 2008) and GPPG (Kelly, 2008) are used to generate the

lexical scanners and parsers from the STAR/CIF grammar files. By

default, the library is compiled into a .NET assembly file (AStar.dll)

and the dependencies of the lexical scanners and parsers are

included. Programs written in different .NET programming languages

can utilize ASTAR by adding references to this assembly file at

compile-time or runtime.

2.2. Namespaces

The classes in the ASTAR library are defined in different name-

spaces.

(1) AStar:Common: the common classes for STAR and CIF are

defined in this namespace, including the NamedItemCollection<T>
class, which is the base class of most collection classes in ASTAR, and

the Measurand structure, which represents a measurand value and

the associated standard uncertainty.

http://crossmark.crossref.org/dialog/?doi=10.1107/S0021889810018145&domain=pdf&date_stamp=2010-06-05

(2) AStar:Cif: the classes related to CIF are defined in this

namespace.

(3) AStar:Star: the classes related to STAR are defined in this

namespace.

2.3. Differences between STAR and CIF

CIF is similar to STAR except for some restrictions on the CIF

syntax: (i) the exclusion of the ASCII characters 0x0B and 0x0C; (ii)

the limit on the maximum number of characters in a text line or a data

name; (iii) the limit on the use of save-frames and save-frame

references; (iv) the exclusion of global blocks; (v) the limit on

looping levels (a recursive loop is not allowed).

ASTAR supports both specifications. Because most of these

differences must be handled at the lexical scanning and parsing

stages, the lexical scanner, parser and other classes for each specifi-

cation are implemented independently and defined in different

namespaces. The implementation of CIF has been tested against the

IUCr ‘trip’ test suite (http://www.iucr.org/iucr-top/cif/developers/

trip). In the rest of this article, we will only focus on the CIF part of

ASTAR.

2.4. Object model to represent a CIF file

Fig. 1 shows the representation of a CIF file using the ASTAR

objects. The important object classes in the AStar:Cif and

AStar:Common namespaces are briefly described below.

(1) A CifPack object represents a CIF file and contains CifBlock

objects. CifPack is the top-level collection class of the ASTAR

CIF object model and is derived from the base class

NamedItemCollection<CifBlock>.

(2) A CifBlock object represents a data block in the CIF file.

(3) A CifFrame object represents a save-frame in the data block.

(4) CifBlock and CifFrame are both derived from the same

abstract base class CifFieldCollection.

(5) A CifFieldCollection object contains CifField objects

which represent data items in the data block or save-frame.

CifFieldCollection is derived from the base class

NamedItemCollection<CifField>.

(6) A CifPrimitiveField object represents a tag–value pair in

the data block or save-frame and holds a single CifValue object.

(7) A CifLoop object represents a loop structure in the data block

or save-frame and contains CifLoopField objects.

(8) A CifLoopField object represents a tag and the associated

value list in the loop structure and holds a CifValueList object.

(9) CifPrimitiveField and CifLoopField are both derived

from the same abstract base class CifField.

(10) The class CifLoopRow is provided for the convenience of row-

oriented data access on CifLoop.

(11) A CifValue object represents a single value. Various methods

are provided for conversion between CifValue and other .NET data

types, including String, Int32, Int64, Double and Measurand.

(12) A CifValueList object contains CifValue objects.

CifValueList implements the IList<CifValue> interface.

(13) CifValue and CifValueList are both derived from the same

abstract base class CifXData.

(14) The structure Measurand is provided for the convenience of

grouping a measurand value and the associated standard uncertainty.

(15) The generic class NamedItemCollection<T> is a collection

of T objects, where the class T implements the INamed interface.

NamedItemCollection<T> implements the ICollection<T>
interface and provides the indexing functionality based on either the

order or the name (case insensitive) of the item in the collection.

3. Using ASTAR

3.1. Input, output and data manipulation

Figs. 2 and 3 show two examples written in C# and Python (the

IronPython implementation, http://ironpython.codeplex.com/). More

examples written in other programming languages, including VB

.NET, F# (http://research.microsoft.com/en-us/um/cambridge/projects/

fsharp/) and Ruby (the IronRuby implementation, http://ironruby.

codeplex.com/), are available in the ‘src/LangInterop’ directory of the

source package of ASTAR. These examples demonstrate basic CIF

input, output and data manipulation with the ASTAR class library.

The details are described below.

(1) File input. As shown in Part A of each example, a CifPack

object is created by calling the constructor with the path to the CIF

cif applications

J. Appl. Cryst. (2010). 43, 916–919 Yun Lin � ASTAR 917

Figure 1
Representation of a CIF file with the ASTAR CIF object model.

Figure 2
A code snippet which demonstrates the use of ASTAR, written in C#.

file as the argument. In more practical use, an empty CifPack object

can be created by calling the constructor with no arguments; then

various Load or Parse methods can be used to load data from

different CIF sources. In this way, the behaviour of the parser is finely

controlled and a list of syntax errors is also available.

(2) Data manipulation. As shown in Part B of each example, data

blocks (CifBlock objects) within the CIF file (CifPack object) are

iterated using the foreach or for statement, the fields (CifField

objects) in the data block are accessible via the square-bracket

notations (indexers). The GetLoop method of CifBlock is used to

obtain the loop structure (CifLoop object) that contains the field

with the specified name. Data in the loop structure are retrieved via

the iteration over the Rows property of CifLoop, which implements

the IEnumerable<CifLoopRow> interface. As shown in Part C of

each example, an empty CifBlock object is created and added to the

CifPack object, two primitive data items (CifPrimitiveField

objects) are created within the newly created CifBlock object, one

accepts a String as its value and the other accepts a Measurand as

its value. A CifLoop object containing two fields is created, and the

value list of each loop field (CifLoopField object) is set via the List

property of CifLoopField.

(3) File output. As shown in Part D of each example, the CifPack

object with the content modified in the previous procedure is saved to

a new CIF file by calling the Save method with the specified file path.

Alternatively, a String representation of the CifPack object can be

created by calling the ToText method.

3.2. Performance test

The performance of file reading (lexical scanning, parsing) and

writing (checking on names, tags, values etc.) with ASTAR has been

tested on various CLR/OS combinations. Table 1 gives some repre-

sentative times for reading and writing typical CIF files, including one

common CIF data file (from the IUCr electronic archives) for a small-

molecule structure (Lipstman & Goldberg, 2009), two mmCIF files

(from RCSB PDB, http://www.pdb.org/) for protein structures

(Varghese & Colman, 1991; Gamblin et al., 2004), and two dictionary

files (from ftp://ftp.iucr.org/pub/) written in DDL1 and DDL2.

The overall reading speed on the Mono/Linux combination is

slightly faster than on the Microsoft .NET/Windows combination.

The overall writing speed on the Mono/Linux combination is about

two to four times slower than on the Microsoft .NET/Windows

combination, which is due to the reduced efficiency of the imple-

mentation of Regex on Mono. Despite these differences caused by

different runtime implementations, the performance can be consid-

ered high enough for common desktop or server applications on

modern computer platforms, though it may not compete with some

STAR/CIF libraries which are implemented in lower-level languages

such as C and Fortran.

4. Applications

Two programs that utilize the ASTAR class library to manipulate CIF

files are included in the ASTAR project.

4.1. AXC: conversion between CIF and XML

The AXC program does conversion between CIF and XML. XML

is widely supported by computer software for data exchange. AXC

represents CIF data with the XML Document Object Model (DOM)

in a straightforward way, which is detailed in the online docu-

mentation. With the help of XSLT, the XML files can be transformed

into various XML-compliant formats, e.g. XHTML. The following

gives some sample uses of AXC:

(1) axc ciftoxml a:cif
Converts the CIF file ‘a.cif’ to an XML file ‘a.xml’.

(2) axc xml2cif b:xml
Converts the XML file ‘b.xml’ to a CIF file ‘b.cif’.

(3) axc xslt -l ctod:xsl -o d:xml c:xml
Transforms the XML file ‘c.xml’ to another XML file ‘d.xml’ using

the XSL style-sheet ‘ctod.xsl’.

4.2. ATrans: template-based CIF-to-text transformation

The ATrans program is used to generate files in arbitrary text

formats from CIF files based on template files. The following gives a

sample use of ATrans:

atrans -t report:tex:cif -o a:tex a:cif
The command generates a LaTeX file ‘a.tex’ from the CIF data file

‘a.cif’, using the template file ‘report.tex.cif’.

A template file is a CIF file containing the template entries defined

with a particular set of tags. Fig. 4 shows a sample template entry,

which is defined within a data block. The value of

tdl context type indicates the type of item that the template

should be applied to. In this example, the value ‘BLOCK’ indicates

that the item must be a data block. The looping of

tdl item type; tdl item select and tdl item apply is used

to select child items in the context and apply templates to them. The

values of tdl item type and tdl item select specify the type

and name of the child item to be selected. The values of

tdl item apply specify the template text or the names of the

cif applications

918 Yun Lin � ASTAR J. Appl. Cryst. (2010). 43, 916–919

Table 1
Execution times on a Pentium 4, 3.0 GHz PC running (a) Microsoft .NET 2.0/
Windows XP and (b) Mono 2.4.2.3/Linux 2.6.24.

Read time (ms) Write time (ms)

File name File size (kB) (a) (b) (a) (b)

fa3203.cif 36 13 15 8 20
1nn2.cif 523 392 335 252 530
1ruz..cif 1344 1287 933 570 2093
cif_core.dic 479 77 93 60 171
cif_mm.dic 1757 343 366 230 572

Figure 3
A code snippet which demonstrates the use of ASTAR, written in Python.

template entries (data blocks). In this example, the primitive field

‘_chemical_name_systematic’ in the context (a data block) is selected

and the template text is applied to it (with the variables and

expressions evaluated and expanded), then the loop structure which

contains the field ‘_atom_site_label’ is selected and the template

‘tbl_atom’ is applied to it.

Sample template files to transform CIF into various text formats,

including HTML, LaTeX, RTF and the plain text format, are

provided in the ‘data/tdl’ directory of the source package of ASTAR.

The syntax of template files is detailed in the online documentation.

5. Availability

ASTAR is released under the LGPL or BSD licence. The source and

binary packages are freely available at the project web site, http://

xstar.sourceforge.net/astar/. The binaries are compiled with Microsoft

.NET SDK 2.0 on Windows XP and can be used on Microsoft .NET

(2.0 and above) and Mono (1.2 and above). Full documentation and

examples are also available online.

The author is grateful to the project hosting service provider,

SourceForge.

References

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,
Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice, M. D.,
Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). J. Mol.
Biol. 112, 535–542.

Bluhm, W. (2000). STAR (CIF) Parser, http://pdb.sdsc.edu/STAR/index.html.
Bourne, P., Berman, H. M., Watenpaugh, K., Westbrook, J. & Fitzgerald,

P. M. D. (1997). Methods Enzymol. 277, 571–590.
Chang, W. & Bourne, P. E. (1998). J. Appl. Cryst. 31, 505–509.
European Computer Manufacturers Association (2001). Standard ECMA-335

Common Language Infrastructure (CLI), 1st ed. ECMA, Geneva, Switzer-
land.

European Computer Manufacturers Association (2006). Standard ECMA-335
Common Language Infrastructure (CLI), 4th ed. ECMA, Geneva, Switzer-
land.

Gamblin, S. J., Haire, L. F., Russell, R. J., Stevens, D. J., Xiao, B., Ha, Y.,
Vasisht, N., Steinhauer, D. A., Daniels, R. S., Elliot, A., Wiley, D. C. &
Skehel, J. J. (2004). Science, 303, 1838–1842.

Gough, J. (2008). GPLEX. Version 1.0.1, http://plas.fit.qut.edu.au/gplex/.
Hall, S. R. (1991). J. Chem. Inf. Comput. Sci. 31, 326–333.
Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47, 655–685.
Hall, S. R. & Bernstein, H. J. (1996). J. Appl. Cryst. 29, 598–603.
Hall, S. R. & Cook, A. P. F. (2005). International Tables for Crystallography,

Vol. G, edited by S. R. Hall & B. McMahon, ch. 2.5, pp. 53–60. Heidelberg:
IUCr/Springer.

Hester, J. R. (2006). J. Appl. Cryst. 39, 621–625.
International Organization for Standardization (2003). ISO/IEC 23271:2003

Common Language Infrastructure (CLI) Partitions I to VI, 1st ed. ISO,
Geneva, Switzerland.

International Organization for Standardization (2006). ISO/IEC 23271:2006
Common Language Infrastructure (CLI) Partitions I to VI, 2nd ed. ISO,
Geneva, Switzerland.

Kelly, W. (2008). GPPG. Version 1.3.1. http://plas.fit.qut.edu.au/gppg/.
Lipstman, S. & Goldberg, I. (2009). Acta Cryst. C65, m371–m373.
Varghese, J. N. & Colman, P. M. (1991). J. Mol. Biol. 221, 473–486.
Westbrook, J. D., Berman, H. M. & Hall, S. R. (2005). International Tables for

Crystallography, Vol. G, edited by S. R. Hall & B. McMahon, ch. 2.6, pp. 61–
70. Heidelberg: IUCr/Springer.

Westbrook, J. D., Hsieh, S.-H. & Fitzgerald, P. M. D. (1997). J. Appl. Cryst. 30,
79–83.

cif applications

J. Appl. Cryst. (2010). 43, 916–919 Yun Lin � ASTAR 919

Figure 4
A sample template entry.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5485&bbid=BB21

