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The widely used restraint-based approach to structural analysis using diffraction

data is critiqued. The convenience of using rigid constraints, through the use of

internal coordinates, is discussed.

1. Introduction

The aim of this letter is to express criticism of the widely used

restraint-based approach to structural analysis from diffraction data

and to underline the advantages of using constraints and internal

coordinates. The debate is decidedly aged, but I believe that

reopening it is desirable.

The problem of how to perform least-squares (LS) structural

refinement from X-ray diffraction measurements, taking into account

the subsidiary structural information available (known bond lengths,

bond angles etc.), was debated back in the 1960s. The vexed question

was whether to use constraints (precise specifications) or restraints

(flexible specifications).

Constraints have, in fact, been used sparingly in the past 40–50

years (see later); restraints, on the other hand, have been used

abundantly and are still widely employed. Another aim of this letter

is to give reasons for the low popularity of constraint-based methods.

The ordinary LS procedure involves finding the minimum of the

sum

S ¼
PN

n¼1

wnðyo;n � yc;nÞ
2; ð1Þ

where yo;n are N measurable values and yc;n the corresponding values

computable as functions of J variables pj, with J much less than N,

and where wn are appropriate weight factors. In diffraction analysis,

yn are either the squared structure factors F2
n or the moduli jFnj; the

variables pj are structural variables, commonly the atomic fractional

coordinates (a.f.c.).

Countless coordinate systems can be used, of course, as alter-

natives to the a.f.c., provided there are biunivocal relationships. The

convenience of using internal coordinates (i.c.) for defining the

molecular structure (bond lengths, bond angles and torsion angles)

was soon recognized (see e.g. Wilson et al., 1955), since chemically

connected atoms frequently have foreseeable distances and/or angles.

Even so, other parameters will be necessary for defining the position

and orientation of the molecules in the crystal, viz. molecular rota-

tions and translations.

The number of i.c. needed for modelling an N-atom crystal

structure is 3N, the same as the a.f.c. In the case of molecular crystals

without symmetry, there are six rigid-body parameters and 3N � 6

molecular i.c. to be assigned among interatomic distances and angles.

The latter are indeed more than 3N � 6 and the selection of i.c.

among bond lengths and angles must be done carefully to produce a

non-redundant coordinate system (Califano, 1974; Pulay et al., 1979).

There are several good reasons for pursuing non-redundance. The

first is that, in modelling molecular structures, non-redundant i.c.

behave as strictly independent variables, so that the a.f.c. are analy-

tical functions of the i.c., whilst redundant coordinates imply non-

analytical building steps (e.g. solving one or more equations); the

second reason is that, in performing LS refinements, the number of

degrees of freedom is reduced and one obtains matrices of the

smallest possible size; the third is that redundant systems imply

singular matrices and matrix inversion with standard procedures (e.g.

Gauss-Jordan & Cholesky; see Press, 1996) is not allowed.

Finally, if redundancy is avoided, carrying out a structural refine-

ment based on internal coordinates is as simple as in the a.f.c. case,

with the added advantage of having a smaller number of variables, if a

number of i.c. (typically bond lengths, but also bond angles in certain

cases) can be kept fixed. This applies of course in difficult cases, with a

low data-to-unknown ratio. As discussed elsewhere (see Immirzi,

2007b), there is a general rule, which is applicable to all molecular

crystals, for choosing the i.c. correctly: include all bond lengths among

the i.c., then choose the other i.c. among angles, considering carefully

the kind of construction adopted. There are several possibilities, the

best known being the z-matrix method, devised by Eyring (1932).

Other methods, discussed elsewhere (Immirzi, 2007a,b), make up for

the limitations of the z-matrix method, which is not sufficient to cover

all cases.

2. Using constraints and internal coordinates

If subsidiary information is available that can be considered as

precise specifications, which analytically assume the form of K

equations (constraints) of type f1ðpjÞ ¼ 0, . . . fKðpjÞ ¼ 0, one could

find the above minimum of S [equation (1)], whatever the coordinate

system is, by adopting the method devised by Lagrange (1797), later

termed the method of the undeterminate multipliers (Mellor, 1912).

Hughes (1941) discussed the method in the crystallographic context;

Waser (1963) pointed out that the method, while elegant, is often

cumbersome in numerical applications. The problem is that when

dealing with K constraints, the above LS matrix is not J � J but

ðJ þ KÞ � ðJ þ KÞ instead. As a consequence, the matrix becomes,

when K is more than a few units, rather ill conditioned and the

procedure impractical.

Only a few crystallographic problems can be treated using the

Lagrange method; one is the chain continuity in polymers (see

Tadokoro, 1979; Immirzi et al., 2007). If precise specifications are

numerous, it is decidedly better to use i.c. instead of ordinary a.f.c.

With this strategy, the size of the LS matrix does not increase but

decrease, since the number of i.c. truly optimized is much less than

the number of the a.f.c.
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The internal coordinates route, without deepening the redundancy

problem (see above), was followed by Arnott & Wonacott (1966) who

implemented the well known computer program LALS (linked atoms

least squares; see also Smith & Arnott, 1978), which is of general

applicability but has been used mainly in polymer crystallography.

LALS has been repeatedly updated; the latest version is that

reported by Okada et al. (2003).

There are other computer programs (e.g. SHELXL; Sheldrick,

2008) claiming the use of constraints without using internal coordi-

nates, however. Such a procedure is limited to the case of linear

relationships between a.f.c. accounted for by appropriate elimination

of one variable computed as a function of others. To give a simple

example, an atom lying along the x; y; 0 diagonal (P422 space group)

is ‘constrained’ to have x ¼ y and this identity can be imposed with

this machinery. There are, however, many more complicated situa-

tions (e.g. local non-crystallographic symmetries) and an elegant

general solution exists for treating them with simplicity: using i.c. and

using a symbolic language for the molecular modelling. The general-

purpose program TRY, available free of charge on the Web (http://

www.theochem.unisa.it/try.html), allows this.

3. Using restraints

On the whole, constraints are used somewhat infrequently. In

contrast, restraints are used rather liberally by most crystallographers

whenever they are dealing with many variables and limited data, and

also simply when they are dissatisfied with the results obtained with

the ordinary procedure. Studies done using restraints are very

numerous; in protein crystallography they are used very extensively.

The restraint-based least-squares approach was first proposed by

Waser (1963); recent articles have been written by Watkin (1994) and

by Prince et al. (1999). The well known crystallographic package

SHELX (Sheldrick, 2008) also makes use of restraints. Waser’s idea

was to add to the above sum S [equation (1)] a second sum S0 to be

performed on a number of quantities fm (typically bond lengths and

bond angles) also computable as a function of the structural variables

and having target values f �m:

S0 ¼
P

m

w0mðfm � f �mÞ
2: ð2Þ

The minimum of Sþ S0 is pursued instead of S. In practice, the role of

S0 is that of ‘forcing’ the pj variables towards values rendering fm close

to f �m. The w0m are appropriate weights assigned by the user; the higher

the w0m, the stronger the forcing. The ‘idealized’ values for w0m would

be 1=�2ðf �mÞ, the latter being the standard deviations for the f �m
observed in the reference structural models. Frequently, w0m are more

or less arbitrary.

4. Critical observations

In the author’s opinion, the restraint-based LS procedure, although

founded on heuristic considerations, needs to be questioned. Waser’s

idea of treating the subsidiary conditions as if they were ‘observa-

tional equations’ is wanting, because it regards experimental data

(the F2
obs values) as analogous to the subsidiary information, whereas

in fact the latter are merely ‘expectations’. Summing data and

expectations in constructing the LS matrix brings about several

nonsensical inconsistencies.

Arguments against the restraint-based LS fit are as follows.

(1) The sums S [equation (1)] and S0 [equation (2)] are intrinsically

non-homogeneous, even if the summed items are rendered adimen-

sional in both cases by defining the wn and w0m properly. Note that N

(the number of observations) can be as high as one wishes, without an

upper limit, and the measurement of each F2
obs may be repeated many

times; M (the number of restrained quantities) depends instead on

the actual molecular structure and cannot be increased or decreased

arbitrarily. Consequently, in the computation of the LS matrix, the

role of
P

m can be arbitrarily reduced or enhanced and the same

applies to the parameter shifts.

(2) It was stated earlier that Waser’s idea is applicable whatever the

cordinates are, and applies also to the internal coordinates them-

selves. Thus, let us perform two computations, both based on an

appropriate set of i.c.: in the first case, perform a regular LS cycle

without restraints, refining all the N i.c. which, being initially g�i ,

become g�i ; in the second case, refine the first N � K i.c., apply K

restraints to the last K i.c., and use as ‘target’ just the values g�i . This

second computation (the number of degrees of freedom reduces from

N to N � K) will bring the i.c. to g#
i , which in general are different

from g�i . If high wm values are used (at the limit infinity) and small wn

values (at the limit zero), the i.c. for the last K terms will coincide with

g�i (as target), but the first N � K i.c. will gain totally random values

since the constructed LS matrix does not depend in any way on the

measurement performed. It is evident that this is nonsense: the

procedure, any mathematical procedure, must obey the continuity

requirements.

(3) The convergence test (the ability of the procedure to find a

solution after a number of cycles), a fundamental criterion for eval-

uating the reliability of the structural model in an LS fit, may become

meaningless when the w0m weights are high. Indeed, convergence

always takes place, provided the w0m weights are large enough.

(4) A multivariate regression finds a minimum moving in a multi-

dimensional space. If no restrictions apply, the minimum point may

be everywhere; if one restriction applies, the minimum point is

compelled onto a manifold, and if there are more restrictions, it is

compelled onto the intersections of many manifolds. Using restraints,

therefore, is like simply moving in the vicinity, and it is a very

complicated and risky affair! Turning to internal coordinates (cleverly

chosen), and refining only the i.c. truly unknown, one reduces dras-

tically the dimensionality of the space and chases a point without any

restriction, forgetting manifolds and other mathematical devilries.

Why run along tortuous routes when you can follow straight ones?

Finally, it is worth noting that, in using restraints, the number of

refined parameters and the size of the LS matrices are the same as if

no restraints were imposed. By contrast, constraint-based methods

imply a robust reduction in the number of parameters to be adjusted

and, consequently, the reliability of the fit, the convergence etc. are

considerably improved. In special cases, the reduction may be drastic.

To give an impressive example, an unsymmetric calix[6]arene (54

atoms) has 162 a.f.c. and can be modelled, at fixed bond lengths, using

only 12 angles (see the TRY user manual). When the conditions are

difficult (many unknowns and limited data) the advantages are

evident.

5. Concluding remarks

This letter does not set out to dismiss the restraint-based LS approach

proposed by Waser as wrong, only to point out that there are wobbly

foundations and that there is a risk, especially when restraints are

overused, of incorrect results. In contrast, the constraint-based LS

approach is unexceptionable when internal coordinates are properly

chosen. This should be enough to reopen a critical discussion on the

rather outmoded (and hastily archived) question of whether it is

better to use constraints or restraints when dealing with complicated
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molecules. In the author’s opinion, the constraints route is decidedly

preferable when there are many parameters and limited data. If,

instead, the situation is the reverse, both constraints and restraints are

superfluous instruments. Although they do not often cause trouble, it

is preferable not to use them.

In the author’s opinion, the poor uptake of constraint-based

refinements in X-ray structural analysis, necessarily based on internal

coordinates and not on atomic coordinates, is due to a general

disregard of the fundamental point discussed above: the necessity of

using non-redundant coordinate systems. In addition, computer

programming is difficult if one wishes to create systems of general

validity. By contrast, the fortunes of the restraint-based method were

mainly a consequence of the procedural simplicity and the relatively

simple programming.
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