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The theory developed by Caglioti and co-workers [Caglioti, Paoletti & Ricci

(1958). Nucl. Instrum. 3, 223–228; Caglioti, Paoletti & Ricci (1960). Nucl.

Instrum. Methods, 9, 195–198; Caglioti & Ricci (1962). Nucl. Instrum. Methods,

15, 155–163] and Sabine [(1987). J. Appl. Cryst. 20, 23–27, 173–178] that provides

an analytical description of the instrumental resolution function of single-crystal

and powder diffractometers consisting of sequences of collimators and crystals is

extended by including the effect of collimating and refocusing mirrors. A simple

analytical expression with only two fitting parameters (the beam divergence

after reflection by the collimating and the refocusing mirrors) is determined, this

expression being applicable to all mirror settings. The new theory is applied to

experimental data collected at the Swiss Light Source Materials Science

beamline powder diffractometer for three photon energies under extreme

mirror bending conditions using the small-linewidth powder sample

Na2Ca3Al2F14.

1. Introduction

Between 1958 and 1962, Caglioti, Paoletti and Ricci published

three fundamental papers describing how to construct, on the

basis of a Gaussian approximation, analytical expressions for

the instrumental resolution function (IRF) of single-crystal

and powder neutron diffractometers consisting of sequences

of collimators and monochromator crystals (Caglioti et al.,

1958, 1960; Caglioti & Ricci, 1962). Sabine (1987) extended

this work to synchrotron optical systems consisting of alter-

nate collimators and reflecting crystals. Several other studies

have been devoted to the determination of the instrumental

resolution and the profile shape functions (Hastings et al.,

1984; Cox et al., 1988; Cox, 1991; Langford et al., 1991, Scardi et

al., 1996; Balzar et al., 1997; Masson, Dooryhée et al., 2001;

Masson, Guinebretiere et al., 2001). More recently, Masson et

al. (2003) proposed a new theoretical approach, which consists

of generating the instrumental profile through the convolution

of angle-independent aberration functions, whose analytical

form can be of any kind. The method is very general and,

therefore, applicable to any synchrotron optical system.

However, this approach does not generate simple analytical

expressions and, therefore, is not ideal for simulating instru-

mental functions to define quickly the optimum optical para-

meters for a given experiment or detect irregularities in the

instrument performance, in particular for optical systems with

focusing optics that can be set very differently depending on

the degree of bending of the mirrors.

In this article, we further develop Sabine’s work by

including the effect of collimating and refocusing X-ray

mirrors on the overall instrumental resolution function and

formulate a simple analytical expression under the same

Gaussian approximation. Experimental evidence that justifies

the legitimacy of the approximation is also provided. The

theoretical study presented in this article specifically applies to

the optical setting at the Swiss Light Source Materials Science

(SLS-MS) beamline powder diffraction station. However, the

formulation is performed in such a way that the reader can

easily adapt it to describe any optical setting consisting of

single crystals, collimators and collimating/refocusing X-ray

mirrors. In x2, we briefly recall Sabine’s expression for the

total reflection probability and the FWHM (full width at half-

maximum) for a powder diffractometer, a double-crystal

monochromator and an analyzer crystal on the counter arm,

and in x3, we extend Sabine’s expression to include the effect

of the collimating and refocusing mirrors on the overall IRF.

In x4, we describe how to determine the widths ��0p and ��0f of

the beam divergence probability distribution functions after

reflection by the first collimating and the second focusing

X-ray mirrors, taking into account the effects arising from

incorrect and/or approximated mirror curvatures, and we

derive the analytical expression of collimator-like terms
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appearing in the extended Sabine-like expression, using the

Liouville theorem. A detailed theoretical derivation of ��0p
and ��0f has been deposited as supplementary information.1 In

x5, we analyze the effect of additional contributions influen-

cing the IRF, and in x6, using our model we simulate theore-

tical IRFs as a function of relevant experimental parameters.

In x7, we apply our model to experimental data collected at

the SLS-MS beamline powder diffractometer at three

different photon energies using Na2Ca3Al2F14 (NAC) powder

(Courbion & Ferey, 1988) and discuss the results. A brief

description of the powder station and the experiments is also

provided. Finally, in x8 we draw our conclusions.

2. Sabine’s expression for a powder diffractometer, a
double-crystal monochromator and an analyzer crystal
on the counter arm

The case of a powder diffractometer, a double-crystal mono-

chromator (DCM) and an analyzer crystal on the counter arm

can be easily obtained from the four-crystal spectrometer in

setting (1, �1, 1, �1) by assuming that the powder sample

behaves as a single crystal with an infinite mosaic spread

[Sabine (1987), p. 26, equation (9)]. The total reflection

probability I(�) has, therefore, the following expression:

Ið�Þ ¼

Z Z
d� d� exp�

" 
�

�0m

!2

þ 2

 
�� �

�0m

2
!

þ

 
b�þ �� �

�0a

!2#
; ð1Þ

with

b ¼ tan �a=tan �m � 2tan �=tan �m:

In equation (1), �0m denotes the width of the vertical beam

divergence probability distribution function, �0m and �0a are

the widths of the monochromator and the analyzer crystal

mosaic block probability distribution functions (or Darwin

widths), and � = � � �m is the difference between the mono-

chromator Bragg angles of an individual (�) and the central

(�m) ray. The angle � takes into account the finite detector

acceptance. The integration in equation (1) over � and �

between�1 and +1 leads to an analytical expression for the

IRF, whose FWHM is given2 by

�2
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In this article, we derive a more general expression that

includes the contribution of the two collimating and refo-

cusing X-ray parabolic mirrors to the overall IRF. The

reflection probabilities are built up as products of exponential

terms, according to the general Caglioti–Paoletti–Ricci and

Sabine approach. The ultra-high-resolution case, corre-

sponding to a collimating first mirror and a flat second mirror

to produce a parallel incident beam on the sample, is here

treated as a limiting case of a collimating mirror, for which

only the effects of gravity and thermal deformation are rele-

vant.

3. Sabine-like IRF expression in the presence of
parabolic collimating and refocusing mirrors

Fig. 1 describes the SLS-MS beamline powder diffraction

optics consisting of a wiggler source, a collimating mirror, an

Si(111) DCM, a refocusing mirror and an analyzer Si(111)

crystal following the powder sample. In the Debye–Scherrer

geometry, the optical configuration in the vertical diffraction

plane is therefore (1, �1, 1, �1, 1, �1). Referring to Fig. 1,

when the first mirror is bent into an ideal parabola, a beam of

divergence �m from a point-like source in the focal point

becomes, after being reflected by the first collimating mirror, a

nominally perfect parallel beam. It is then monochromated by

the DCM and refocused by the second parabolic mirror to a

focal point, where the sample is located. In reality, even

ignoring manufacturing mirror imperfections, a departure

from the ideal collimating and refocusing conditions always

occurs as a result of finite source size, optical aberrations (in

particular coma and spherical aberrations; Susini, 1995;

Howells, 1994) and approximations performed when shaping

the mirror (e.g. symmetric versus asymmetric bending). The

departure from ideal conditions changes the probability of the

photon being reflected as a function of the local incidence

angle, which, in turn, is a function of the photon energy. Let
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Figure 1
High-resolution optical setting at the Swiss Light Source Materials Science beamline powder diffraction station described in the text.

1 Supplementary material has been deposited in the IUCr electronic archives
(Reference: HX5036). Services for accessing this material are described at the
back of the journal.

2 Note that in IRF equations the FWHMs �i , �i always replace the
corresponding distribution function widths �0i , �0i that appear in the
probability expressions.



��0p and ��0f be the widths of the beam divergence Gaussian

distribution functions after reflection by the first and second

bent parabolic mirrors. Under ideal conditions and one-to-one

focusing optics (magnification equal to one), ��0p should be

zero (perfectly collimated beam) and ��0f should be equal to

the source vertical divergence �0m. In x4, we describe the

derivation of analytical expressions for ��0p and ��0f in the

case of real parabolic mirrors (Susini, 1995) in order to

determine their best estimate for the specific system under

investigation when these quantities are not already known. We

observe that, at the SLS Materials Science beamline, the

mirrors’ grazing incident angles are changed as a function of

energy (above 10 keV photon energy) according to an

empirical algorithm that is also implemented in our model

(Patterson et al., 2005).

We need now to formulate appropriate expressions for the

terms to be added to Sabine’s equation (1); these terms

describe the presence of collimating and refocusing mirrors.

Since the mirrors essentially affect the vertical beam diver-

gence, we can formally treat them as collimators, but we

additionally take into account that

(i) a mirror changes the degree of collimation of the beam

according to Liouville’s theorem (Arndt, 1990);

(ii) the beam direction is inverted after reflection.

Thus, for the total probability I(�) of a photon being

reflected by all the optical elements in Fig. 1 and finally being

detected, we therefore write

Ið�Þ ¼

Z Z Z Z
d� d� d� d� exp�
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with

b ¼ tan �a=tan �m � 2tan �=tan �m;

�0m;effective ffi

�0m if the mirror angular acceptance � the

source divergence

�0c if the mirror angular acceptance< the

source divergence

8>><
>>:

ð4aÞ

��0f;effective ffi

��0f if the sample size ðor the slit widthÞ � the

spot size

�0s if the sample size ðor the slit widthÞ< the

spot size:

8>><
>>:

ð4bÞ

The second option in (4a) also

describes the case of a beam size on

the first mirror that is intentionally

limited by a slit preceding the mirror

(mirror mapping).

The quantities �0c and �0s act as

collimator-like terms, which mimic the

finite planar angular acceptance of the

first mirror (�0c) and the sample or a

slit before it (�0s) owing to their finite

dimensions. Since the beam is almost

parallel between the collimating and

the refocusing mirror, and because the

mirrors are assumed to have almost

equal dimensions, no further colli-

mating term is considered before the

second mirror.

With respect to Sabine’s expression

(1), equation (3) includes two addi-

tional probabilities due to the

presence of the collimating and the

refocusing mirrors, and two additional

integrals over the angles � and �,

which describe the local angular tilt,

with respect to a reference direction,

of the normal to the first and the

second mirror surfaces. Let us

consider the collimating mirror

described in Fig. 2(a). The path of the
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Figure 2
Ray paths in parabolic collimating (a) and refocusing (b) mirrors.



central (reference) ray that is reflected by the mirror surface at

its pole P is SPM, and SAN is the path of an individual ray with

divergence � with respect to the centerline and which is

reflected by the mirror at A. PH = nP and AK = nA are the

normals to the mirror surface at P and A. For a perfectly

collimating mirror, the angular tilt � of the normal to the

mirror surface between P and A is given by the angle between

the normals nP and nA: � ¼ �=2. Therefore, the quantity

(2� � �) expresses the residual divergence out of the colli-

mating mirror of the individual ray AN with respect to the

centerline PM, and its integral over all mirror surface points

will be zero only in the case of a perfectly collimating mirror.

Analogously (see Fig. 2b), 2� expresses the divergence out of

the refocusing mirror of the individual ray A0S0 with respect to

the centerline P0S0, and its integral over all mirror surface

points will be equal to the source divergence �m only in the

case of a perfectly refocusing mirror and no limiting slits in

between. We observe that the integration in � and � in

equation (3) is equivalent to adopting a statistical approach to

the problem of estimating the IRFs in the presence of colli-

mating and focusing optics. The real value of the normal to the

surface at each point of the mirror is, therefore, not accessible

as it is with ray-tracing approaches. At each point of the

mirror, an average over all possible values of the surface

normal that lead to a non-zero reflection probability (i.e.

within the width of the divergence distributions) is, instead,

calculated. It should be noted that the sketches in Fig. 2 simply

explain the meaning of the equation (3) variables without

reflecting the adopted statistical approach.

Equation (3) is general and can be written for both ideal

and real mirrors and for all mirror settings, e.g. first and second

mirror flat (flat–flat), first and second mirror bent (bent–bent),

and first mirror bent and second mirror flat (bent–flat). The

ideal bent–flat and flat–flat would, then, be obtained by setting

� (bent–flat) or both � and � (flat–flat) to zero and sending

��0f (bent–flat) or both �0�p and ��0f (flat–flat) to infinity

before integrating equation (3) in d� and d�.3 The result of the

integration would be Sabine’s expression (2).

The integration of equation (3) gives a simple analytical

expression:

�2ð2�Þ ¼
�
��2

p þ �2
m=2

��
tan �a=tan �m � 2tan �=tan �m

�2

þ �2
a þ ��2

f;effective: ð5Þ

Note that when dealing with real collimating and refocusing

mirrors that never produce a beam of perfectly zero or �m

divergence, expression (5) is always applicable and eventually

allows one to diagnose incorrect settings of the mirror radii of

curvature, as explained in x4. For a given optical system,

equation (5) can be directly employed to fit the experimental

data with ��p and ��f as fitting parameters.

We observe that often a slit before the first mirror is used in

order to collimate further the beam emitted by the source (as

is the case at the SLS-MS beamline). In this case, the higher

the angle of incidence on the mirror, the higher its angular

acceptance. Translated into photon energies, this means that

the lower the energy, the higher is the collection by the mirror

of secondary diffraction maxima produced by the slit

preceding the first mirror. We expect, therefore, that for low-

energy photons, the model becomes less predictive since the

source probability function would be less suitably described by

a Gaussian function.

4. Beam divergence contribution terms in the presence
of mirrors

Details of the theoretical derivation of the divergence distri-

bution widths ��0p and ��0f,effective are available as supple-

mentary information. We describe here only the principle of

this derivation and define the bending parameters ci for the

collimating (i = 1) and refocusing (i = 2) mirrors that we

employ in the discussion of the simulation and the modeling of

the instrumental resolution functions performed in xx6 and 7.

Using the Lioville theorem, we also derive the collimator-like

terms �0s and �0c, already introduced in x3, for an optical

system such as that described in Fig. 1.

Analytical expressions of an ideal parabolic mirror profile

and of real collimating or refocusing mirror profiles are

determined (see mathematical details in the supplementary

information), which take into account the mirror symmetric

bending approximation and gravity and thermal deformation

effects. The FWHM of the beam angular divergence ��p and

��f can then be derived as maximum angular deviations from

the ideal values of the normal to the mirror surfaces. For both

mirrors a numerical bending coefficient ci is defined, providing

an indication of the departure of the real mirror from the ideal

one (see mathematical details in the supplementary informa-

tion). For the first collimating mirror at the SLS-MS beamline,

the optimum c1 value, which is a function of the photon energy,

is 0.8, 0.73 and 0.5 for 10, 13 and 25 keV, respectively. The

corresponding ��p value is then 15 mrad. Analogously, for the

SLS-MS beamline refocusing mirror in bent–bent configura-

tion, the bending parameter c2 should ideally be equal to 1 for

all energies, with c2 > 1 (< 1) indicating overbending (under-

bending), whereas the ideal c2 value in a flat configuration

should, for all energies, be 0.25.

Analytical expressions for equations (4a) and (4b) in x3

(given already as FWHM values) can be determined making

use of Liouville’s theorem (Arndt, 1990). Let us consider a

simple optical configuration consisting of a source and a

collimating mirror (such as the first mirror in Fig. 1). Defining f

as the source size, �c as the planar angle of collection of rays

from the source by the mirror, w as the beam width after

reflection by the mirror and �’ as its divergence (also called

the crossfire of the beam), the theorem can be expressed as

f�c = w�’. For a point-like source and a finite �c, �’ would

obviously be equal to zero and w would be given by L1sin�1,

with L1 the length of the mirror and �1 the mirror grazing
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3 We observe that flattening the collimating mirror translates into a fairly poor
energy resolution (beam of divergence �m directly impinging on the first
monochromator crystal). Therefore, the flat–flat optical configuration is not
recommended for high-resolution powder diffraction studies, unless the
intrinsic divergence of the source is very small as in the case of undulators
(Gozzo et al., 2004).



incident angle. According to Liouville’s theorem, the larger

the size f of the source, the larger the divergence �’ of the

outgoing beam. The divergence �’ will then be given by

�’ ¼ w=d, where d is the distance between the mirror and the

virtual focus situated behind the mirror for a divergent beam

and before it for a convergent beam. For a parallel beam d!

1. If the beam of width w and divergence �’ is reflected by a

second flat mirror (length L2 ’ L1 and incident angle �2 ’ �1)

and a sample of size s is placed along the beam path, the

divergence of the beam at the sample position will still be

�’ only if s � w. In this case, according to (4a),

��f;effective ¼ ��f ’ �’. If s < w, we would, instead, have

�s ffi s=d ¼ s=w�’ ffi s=ðL2 sin �2Þ�’ and ��f;effective ¼ �s. If

the second mirror is a refocusing mirror, the spot size will

obviously be much smaller, and if s � w, as is often the

case in powder measurements, then ��f;effective ¼ ��f ’

L2 sin �2=p2 ’ L1 sin �1=p1 ’ �c. If, in spite of the second

mirror, the size of the sample (or the width of the slit before it)

s is still smaller than the spot size at the sample position then

��f;effective ¼ �s ffi s=ðd� p2Þ ffi s=p2. Thus, for the optical

system described in Fig. 1, we can summarize

sample size < spot size ! ��f;effective ¼ �s

ffi
Bent� flat ! s=ðL2 sin �2Þ�’ ’ s=ðL2 sin �2Þ��p

Bent� bent ! s=p2

�
ð6Þ

sample size � spot size ! ��f;effective ¼ ��f

ffi

(
Bent� flat ! �’ ’ ��p

Bent� bent ! L2 sin �2=p2 ’ L1 sin �1=p1 ’ �c:
ð7Þ

Using similar arguments, we find that �c ’ L1 sin �1=p1 and

�m;effective ¼ �c whenever the finite angular acceptance of the

collimating mirror limits the natural divergence of the source

�m;effective.

5. Additional contributions to the IRF

In order approximately to take small isotropic sample effects

into account in our equation (5), we considered the classical

Scherrer (1918) equation for the size and the Bragg law

differentiation for the strain as additional terms to be added

quadratically to the IRF:

FWHMð2�Þ2 ¼ �ð2�Þ2 þ�ð2�Þ2sample grain size þ�ð2�Þ2strain: ð8Þ

In addition to the sample grain size and strain contributions,

mirror manufacturing slope errors could modify the ideal

parabolic mirror profiles. The expressions ��p and ��f;effective

describing the FWHM of the angular distribution of the beam

after reflection onto the first and second mirrors would then

have a more general expression:

��2
p ! ��2

p þ�2
se�1;

��2
f;effective ! ��2

f;effective þ�2
se�2;

ð9Þ

where the terms �2
se�i take into account the mirror manu-

facturing slope errors for the first and the second mirror,

respectively. Usually a good estimate of this contribution

should be provided by the mirror’s manufacturing company

(typically of the order of few microradians).

Note that in the bent–bent case, the correction (9) is

negligible since ��2
f;effective is, in this case, of the order of the

source angular divergence.

6. Theoretical simulations and discussion

Computations using equation (5) were performed at three

photon energies (10, 13 and 25 keV) using the SLS Materials

Science beamline powder station experimental parameters

(Patterson et al., 2005). Fig. 3 shows the prediction of our

model when the theoretical values for the mirror angular

divergences obtained in x3, for c1 = c1,optimum and c2 = c2,optimum
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Figure 3
Computation of the IRF for c1 = c1,optimum (equal to 0.8, 0.73 and 0.5 for 10, 13 and 25 keV) and c2 = c2,optimum ffi 1 in the bent–bent case (a), and for c1 =
c1,optimum, c2 = 0.25 in the bent–flat case (b) at 10, 13 and 25 keV, assuming that both sample and thermal expansion effects are negligible.



in the bent–bent case (Fig. 3a) and for c1 = c1,optimum, c2 = 0.25

in the bent–flat case (Fig. 3b), are employed in equation (5).

Sample grain size and thermal deformation corrections were

neglected. Note that the IRF curves at different photon

energies have, in the bent–flat case, an opposite dependence

on the energy with respect to the bent–bent case.

Small sample grain size and strain contributions, approxi-

mately taken into account using the correction (8), can be

appreciated in Fig. 4 at 13 keV. An average linear size D of the

powder crystallites of 2 mm (dashed curves) and a strain

contribution of 5 � 10�5 (dashed–dotted curves) have been

simulated, and the continuous curves are the theoretical

simulations of Fig. 3 included for reference. The size leads to a

shift of the curve towards higher FWHMs, whereas the strain

influences the curve’s slope.

For the three photon energies, Fig. 5 simulates IRF curves in

the bent–flat case with a size effect of D = 2 mm. Note that a

grain size of only 2 mm eliminates the overlapping of the

curves at low 2� values and reverses the dependence as a

function of the energy.

Fig. 6 shows the effects of different bendings on the IRF

FWHMs. In particular, we have plotted the theoretical simu-

lations of the IRF at 13 keV in the bent–bent case for (c1, c2) =

(1, 1) (continuous black curve), (c1, c2) = (0.75, 1) (dashed

green curve), (c1, c2) = (1.25, 1) (dashed–dotted green curve),

(c1, c2) = (1, 0.75) (dashed red curve) and (c1, c2) = (1, 1.25)

(dashed–dotted red curve), assuming that both sample grain

size and thermal deformation effects are negligible. We

observe that an underbending (overbending) of the first

collimating mirror with respect to c1 = 1 decreases (increases)

the IRF curvature, thus causing the FWHM values to become

smaller (larger) at large 2� angles. On the other hand, an

underbending (overbending) of the second refocusing mirror

with respect to c2 = 1 almost rigidly shifts the IRFs downwards

(upwards). The effect of lowering the FWHM values at larger

2� angles when decreasing c1 below 1 only occurs until the

optimal underbending of the first mirror is reached (corre-

sponding to c1 = c1,optimum), which compensates as much as

possible for gravity and aberrations. Further lowering c1 below

this optimal values causes an increment of the IRF FWHM of

up to 4% of its value at c1 = c1,optimum.

7. Experimental tests

7.1. Beamline and diffractometer optics

All experimental data presented here were collected at the

SLS-MS beamline powder diffraction station described in

Fig. 1. This station is situated 36 m from the source and is one

research papers

352 Fabia Gozzo et al. � Instrumental resolution function J. Appl. Cryst. (2006). 39, 347–357

Figure 4
Computed size (D = 2 mm, dashed curves) and strain (5� 10�5, dashed–
dotted curves) effects for the bent–bent and bent–flat cases at 13 keV.
The continuous curves are the computations of Fig. 3, included for
reference.

Figure 5
Computed size effect (D = 2 mm, dashed curves) at 10, 13 and 25 keV for
the bent–flat case, compared with the computations (continuous curves)
of Fig. 3.

Figure 6
Computations at 13 keV in the bent–bent case for (c1, c2) = (1, 1)
(continuous black curve), (c1, c2) = (0.75, 1) (dashed green curve), (c1, c2) =
(1.25, 1) (dashed–dotted green curve), (c1, c2) = (1, 0.75) (dashed red
curve) and (c1, c2) = (1, 1.25) (dashed–dotted red curve), assuming that
both sample and thermal deformation effects are negligible.



of the three stations served by the beamline optics (Patterson

et al., 2005). The other two stations are the tomographic

microscopy (Stampanoni et al., 2002) and the surface diffrac-

tion (Willmott et al., 2005) stations at 31 and 41 m from the

source.

The powder diffractometer is a two-plus-one axis diffract-

ometer; an ! axis hosts the sample and two 2� axes host two

independent detection systems, viz. a multicrystal analyzer

detector for high angular resolution measurements and a fast-

read-out solid-state microstrip detector that collects 60� in 2�
at once as described by Schmitt et al. (2004, and references

therein). In the present article, we only discuss the powder

diffractometer in relation to its high-resolution setting (Cernik

et al., 1990; Fitch, 2004; Gozzo et al., 2004; Knapp et al., 2004;

Toraya et al., 1996). The multicrystal analyzer detector consists

of five Si(111) crystals mounted at a nominal angular offset of

2� on a �a–2�a two-circle goniometer. The �a-axis goniometer

plate positions the five crystals at the correct Bragg angle for a

given photon energy, while the 2�a-axis goniometer plate

positions, as a unit, the corresponding five NaI(Ti) scintillator/

photomultiplier detectors at the right 2�a value for the

selected photon energy (Hodeau et al., 1998). Diffraction

patterns are collected either in step-by-step or on-the-fly

mode. The former positions the 2� arm motor at each 2� step,

whereas the latter continuously runs the 2� arm while the

intensity signal is read at variable frequency (up to 50 Hz).

Data from the five analyzer crystals are then rebinned at the

appropriate �2� step size and merged after carefully

correcting the crystal offsets. Full-pattern acquisition times

typically range from 15 min to several hours depending on the

selected photon energy, mirror setting, sample scattering

powder and requested counting statistics.

7.2. Line broadening reference sample

Full diffraction patterns were collected at three different

photon energies (10, 13 and 25 keV) using the fluoride

Na2Ca3Al2F14 (Courbion & Ferey, 1988), denoted NAC

hereafter, and the Si(111) multicrystal analyzer detector. To

our knowledge, NAC is the sample with the smallest intrinsic

line width presently available and, therefore, the most

appropriate for studying the instrumental contribution to the

diffraction peak broadening, in particular in the case of high-

resolution instruments. However, NAC is not available as a

NIST standard reference material and, therefore, there are no

certified values for lattice parameters, average grain size and

residual strain. The NAC lattice parameters and structure

were taken from the literature (Courbion & Ferey, 1988).

7.3. Data acquisition details

The NAC powder was mounted in 0.5 mm Lindemann

capillaries and the capillaries were spun at approximately

5 Hz. During the beamline optical setup, the rocking curve of

the second monochromator crystal and the crystal analyzer

rocking curve in the attenuated (1, �1, 1, �1, �1) config-

uration (no sample) were collected as part of a routine

procedure that we perform to adjust the compensation to the

monochromator thermal load (mono-RC) and the beam

profile (analyzer-RC), which varies over a wide range

depending on the refocusing mirror curvature setting. The

zero offset of the 2� scale was also adjusted under the same

conditions of the analyzer-RC collection. The analyzer-RCs,

reflecting the pure angle-independent instrumental profile

(Masson et al., 2003), are at the SLS-MS beamline typically

Gaussian curves, like that shown in Fig. 7 corresponding to the

13 keV bent–bent configuration. However, a poor compen-

sation of the thermal load can produce longer tails in the

mono-RC, whereas a substantial focusing or an over-focusing

of the second mirror often introduces aberration in the

analyzer-RC. The small shoulder that appears to be present on

the left-hand side of Fig. 7 disappears when the second mirror

bending is relaxed, but it can also become more severe under

different focusing conditions and/or at different energies. We

note that ‘super-Lorentzian’ profiles were observed by Masson

et al. (2003) at the BM16 powder diffraction at the European

Synchrotron Radiation Facility (ESRF) in Ge(111) analyzer

rocking curves; the authors attributed these profiles to the

presence of surface defects and strain or to low-angle asym-

metry of the Si(111) analyzer profile, which was attributed by

the same authors to curvature effects during the crystal

mounting procedure. Such profiles were never observed at the

SLS-MS beamline powder station, making the Gaussian

approximation of our model reasonably applicable to the

experimental data collected at this station. The beam size on

the sample was shaped using a set of slits mounted very close

to the sample and its value was kept at approximately 0.45

(vertical) � 5.5 (horizontal) mm for all photon energies. The

beam size at the sample was measured using a home-made

X-ray eye (XRE) imaged onto a CCD camera. For all photon

energies, full diffraction patterns of NAC were collected in

bent–bent and bent–flat optical configurations and on-the-fly

data acquisition mode, observing an intensity reduction of

approximately one order of magnitude when flattening the
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Figure 7
Si(111) analyzer rocking curve in the dispersive (1, �1, 1, �1, �1) setting
collected at 13 keV in the bent–bent configuration. The experimental
points (dots) were fitted to a pure Gaussian profile (line).



refocusing mirror. The beam intensity (photons per second)

variation at the SLS-MS beamline as a function of the photon

energy is described in detail by Patterson et al. (2005). Data

were rebinned at �2� ¼ 0:0008� for all energies using only the

signal from the central crystal, except at 25 keV for which the

signal from the three central crystals was merged to improve

the counting statistics. Acquisition times ranged between 3

and 6 h. The full diffraction patterns in bent–bent and bent–

flat configurations were collected keeping all beamline and

diffractometer optical elements, other than the second mirror,

strictly identical. Moving from the bent–bent to the bent–flat

optical configuration only required a slight correction of the 2�
zero value.

7.4. Data analysis strategy and experimental results

In order to verify experimentally the validity of equation

(5), a number of isolated peaks (around 15) were selected

from all experimental full patterns to perform a single-peak

least-squares fit and determine their FWHMs. In spite of the

Gaussian character of the instrumental profile, the line shape

of the NAC diffracted peaks was well described by a pseudo-

Voigt profile convoluted with the Finger–Cox–Jephcoat (FCJ)

asymmetric function (Finger et al., 1994) to correct the low-

angle peak asymmetry due to axial divergence. For each peak,

a linear background was adopted, and the coefficients were

refined together with the FWHM, the Gaussian and the

Lorentzian fractions of the pseudo-Voigt profile shape func-

tion, and the peak position. The FCJ function’s parameters

were measured experimentally; their values were only slightly

refined around the initial values for the lowest 2�-angle peaks

and were then kept fixed during the single-peak refinement.

The single-peak fits were performed using routines from the

Quanto program (Altomare et al., 2001), suitably modified to

execute Finger’s (1998) routines, implementing the FCJ

algorithm discussed above. The values found for the mixing

parameter � were approximately 0.35 (0.45), 0.4 (0.5) and 0.25

(0.35) for the bent (flat) refocusing mirror at 10, 13 and

25 keV, respectively.

The experimental FWHMs were compared with equation

(5) predictions starting first with theoretical �a, �m, ��p and

��f;effective values and then trying to adjust the ��p and

��f;effective parameters (or equivalently c1 and c2) within

reasonable values. A slope error contribution of 2 mrad, as

quoted by the mirror manufacturing company, was also taken

into account. The comparison clearly confirmed the presence

of a non-negligible size effect already qualitatively observed

when comparing the pure instrumental and the sample powder

profiles. Equation (5) was then corrected as in equation (8) to

include an approximate size effect, and all curves were fitted

simultaneously to determine the best estimates of ��p and

��f;effective under this hypothesis. An estimate of 1.45 mm grain

size simultaneously satisfied all six data sets.

In order to check the robustness of our results against the

crude Gaussian approximation for the small, but still not

negligible, sample size contribution [equation (8)] and the

correlation between mirror bending and sample size effects on

the peak broadening (see x6), we also addressed the problem

within a full-pattern Rietveld refinement approach (Rietveld,

1969). All NAC diffraction patterns were least-squares fitted

using the FullProf program (Rodriguez-Carvajal, 1993) and a

modified pseudo-Voigt profile (Thompson et al., 1987)

convoluted with the FCJ asymmetry function, according to the

previous single-peak fit indications. Since the U, V and W

parameters of the modified pseudo-Voigt implemented in

FullProf reflect the pure Gaussian contribution to the peak

profile, whereas the X and Y parameters reflect the pure

Lorentzian contribution to the peak profile, under the

assumption that the sample intrinsic effects are only repre-

sented by a Lorentzian contribution (not strictly correct), U, V

and W parameters were derived according to equation (5)

using the ��p and ��f;effective values from the previous fit.

These were then fixed (or slightly refined) during the FullProf

refinements, while the X and Y parameters were left free to

vary. A summary of the full-pattern FullProf fitting parameter

values has been deposited as supplementary information. The

2� zero and the background were also refined, the latter

starting from a user-supplied table of background points. The

goodness-of-fit (GoF) indicator (McCusker et al., 1999,

equation 12) of the fits ranged from 1.3 to 1.6, except for the

13 keV data in the bent–bent configuration, for which it was

2.7. We observe that the FWHM values of the single-peak

approach were found to be in good agreement with the Full-

Prof results. Fig. 8 shows, as an example, the comparison

between the full-pattern refinement fits (FullProf, circles)

and the single-peak fits (modified-Quanto, stars) in the case

of 13 keV.

Using the Lorentzian component of the profile widths, as

given by the FullProf program, Williamson–Hall plots, like

that shown in Fig. 9, were constructed with data at 10 and

13 keV in the bent–flat optical configuration. Data at 25 keV

were excluded because they resulted from the merging of

three analyzer crystals. The estimated size effect using the two
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Figure 8
Comparison at 13 keV of the FWHM values obtained as a result of the
full-pattern FullProf refinement fits (circles) and single-peak Quanto
refinement fits (stars).



data sets was fairly consistent (1.3 mm at

13 keV and 1.5 mm at 10 keV) and a negli-

gible strain effect was found in both cases.

As a final check, the FullProf FWHMs

were then modeled to equation (8). A

particle size of 2.0 mm was necessary to

adjust the experimental FWHMs to the

model with ��p and ��f;effective values

acceptable and close to the values

previously estimated with the single-peak

fits. Figs. 10 and 11 show the experimental

curves (dots) and their fits to equation (8)

(lines) for 10, 13 and 25 keV photon ener-

gies in the bent–bent and bent–flat optical

configurations. In spite of the crude

approximation of a pure Gaussian-like size

effect, which the profiles clearly show to be

of Lorentzian character, the agreement

between the experimental data and the

model is reasonably good. Comparing all FWHM versus 2�
plots in a �q (Å�1) versus q�1 plot, we found that at a given

photon energy the bent–flat configurations are, as expected,

the most resolved ones and that 13 keV corresponds to the

highest angular resolution ranging from 0.000075 to

0.00018 Å�1.

Table 1 reports the results of the fits and their comparison

with the expected values. The values found for the bending

parameters c1 and c2 show that the first mirror was slightly

overbent for 13 keV, whereas a more significant overbending

was detected for both 10 and 25 keV, the former being more

severe. In the bent–bent case, the c2 value was very close to

c2;optimum ð’ 1Þ for 13 keV but larger for 10 keVand smaller for

25 keV, indicating overbending and underbending, respec-

tively. For the bent–flat configuration we found that the resi-

dual divergence of 23 mrad [c2 ¼ c2;optimum ð’ 0:25Þ], entirely

due to the fourth-order uncompensated gravity sag and slope

errors, is compatible with all experimental data without
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Figure 9
Williamson–Hall plot built using the Lorentzian integral breaths as
extracted from the full-pattern FullProf fits for 13 keV in bent–flat
configuration.

Figure 11
Experimental IRFs (dots) and their fit to equation (8) to include a size
effect of 2.0 mm (lines) and negligible strain for 10, 13 and 25 keV photon
energies in the bent–flat optical configuration.

Figure 10
Experimental IRFs (circles) and their fit to equation (8) to include a size
effect of 2.0 mm (lines) and negligible strain for 10, 13 and 25 keV photon
energies in the bent–bent optical configuration.

Table 1
Results of the fits of the experimental peak widths versus 2� curves at 10, 13 and 25 keV to
equation (5) corrected as in equation (8) to include a size effect of 2.0 mm.

The theoretical values are also reported for comparison. For the bent–flat configuration the residual
divergence of 23 mrad corresponding to c2 = c2,optimum = 0.25 was found to be compatible with all
experimental data without introducing any fitting parameter, as discussed in the text.

Photon
energy
(keV)

�m

(mrad)
�m;effective

(mrad)

��theor
p (mrad) at c1;opt

��fit
p (mrad)

(ctheor
1 ; cfit

1 )
1st mirror bent

��theor
f;effective (mrad) at c2;opt

��fit
f;effective (mrad)

(ctheor
2 ; cfit

2 )
2nd mirror bent

��f;effective (mrad)
2nd mirror flat

10 0:23† 0:18 15 0:18 � 23‡
51� 10 0:24� 0:02
0:80; 1:60ð Þ 1; 1:31ð Þ

13 0:214 0:15 15 0:14 � 23
22� 5 0:15� 0:01
0:73; 0:98ð Þ 1; 0:92ð Þ

25 0:154 0:08 15 0:07 � 23
20� 2 0:15� 0:01
0:50; 0:87ð Þ 1; 0:72ð Þ

† Limited by a diaphragm. ‡ Values of residual divergences smaller than 23 mrad leave the curves unchanged.



the need to introduce any fitting parameter. Looking at

Table 1, we observe that in the bent–bent configuration

��f;effective ’ �m;effective for both 13 and 25 keV, which is what

we expect since the optics at the SLS Materials Science

beamline are one-to-one (magnification equal to one), but at

10 keV we have ��f;effective 6¼ �m;effective. We believe that this

effect is due to the fact that, at low energies, the angular

acceptance of the first mirror L1 sin �1=p1 (0.28 mrad at

10 keV) is larger than �m. Thus, at 10 keV, secondary

diffraction maxima are collected by the first mirror, and the

source would then be less suitably described by a Gaussian

function. On the other hand, at 13 keV, L1 sin �1=p1 ffi �m, and

at 25 keV, L1 sin �1=p1 <�m.

8. Concluding remarks

Our model offers a simple analytical approach to tackling the

problem of predicting the IRF behavior for synchrotron

radiation powder diffractometers with focusing optics. Since

our model is based on the Gaussian approximation, it requires

that the character of the instrumental broadening be mostly

Gaussian, as can be verified through the analysis of the

analyzer rocking-curve shape in the (1, �1, 1, �1, �1) setting

as suggested by Masson et al. (2003). Our experimental data

demonstrate that, with a careful beamline optical setup and in

the absence of systematic aberration effects, which are typi-

cally due to analyzer surface defects, strain and curvature

effects induced during the mounting of crystals, this is, indeed,

possible. High-resolution powder diffraction experiments for

microstructural analyses should, therefore, be performed, at

the SLS-MS beamline, under these experimental conditions.

With a Gaussian beamline optical setup, the availability of a

standard with negligible or at least small and well character-

ized intrinsic contributions to the peak profile would allow a

straightforward application of our model to determine the

pure instrumental resolution function of a synchrotron-

radiation-based powder diffractometer with focusing optics.

Equation (5) could then be plausibly implemented in a Riet-

veld refinement program.

The large discrepancy between the accurate NAC grain size

estimate of 3.6 mm by Masson et al. (2003) and our rough

estimate of 1.3–1.5 mm is above the inaccuracy expected from

correcting, as we did, equation (5) with a Gaussian term to

include the size effect, and seems, therefore, to indicate that

NAC is probably not always available with identical intrinsic

characteristics. We therefore plan to perform additional

measurements on several other standards with certified size

and strain characteristics.
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