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A technique that allows the spatial distribution of crystallographic phases in the

interior of an object to be reconstructed from neutron time-of-flight (TOF)

diffraction is described. To this end, the shift of the Bragg peaks due to the so-

called ‘geometrical aberration’ is exploited. A collimated incident white beam is

used to perform a translational or rotational scan of the object whilst collecting a

TOF data set for each sample position or orientation. Depending on the location

of any scattering material along the line of the incident beam path through the

object, the measured d-spacings of the corresponding Bragg peaks are shifted

with respect to their nominal values, which are attained only at the geometrical

centre of the instrument. Using a formula that is usually employed to correct for

sample offset, the phase distribution along the incident beamline can be directly

reconstructed, without the need to perform a tomographic reconstruction.

Results are shown from a demonstration experiment carried out on a cylindrical

Al container enclosing an arrangement of Cu and Fe rods. On the basis of this

formalism, an optimized experimental geometry is described and the potential

and limits of this technique are explored, as are its applicability to X-ray and

constant-wavelength neutron diffraction.

1. Introduction

Techniques for non-destructive testing of materials using

X-ray and neutron radiation find widespread application in

those fields of natural sciences where sampling is often

restricted or impractical, such as engineering, geology and

archaeology. Neutrons and X-rays are, to a large extent,

complementary with respect to scattering contrast and pene-

tration depth. While X-rays are more sensitive to heavier than

to lighter elements, there is no such general tendency for

neutrons. Unless they are extremely energetic, X-rays are

absorbed within the first millimetre of the material and are

therefore ideal for surface studies. Neutrons on the other hand

are often an indispensable probe for obtaining information

from the interior of a centimetre-thick engineering piece or a

unique museum object.

Non-destructive techniques are of particular interest for

mapping a given physical or structural parameter, for instance,

the elemental composition or the strain field. For example,

micro-focus X-ray fluorescence and diffraction imaging with

synchrotron radiation provide information on surface

elements and phases, respectively. Neutron diffraction is

capable of measuring elastic strains in the bulk of extended

engineering components (Allen et al., 1985; Dann et al., 2003).

Conventional X-ray and neutron radiographic and tomo-

graphic imaging, which exploits the attenuation contrast in

materials, find widespread use in engineering and archae-

ometry (Schillinger et al., 2000; Deschler-Erb et al., 2004).

More recent tomographic techniques include the use of phase

contrast techniques using scattered X-rays (Chapman et al.,

1997) and neutrons (Allman et al., 2000). Measurements of the

refractive index distribution and, simultaneously, of the

attenuation coefficient reveal detailed images of the interior of

objects where the traditional tomographies fail (Treimer et al.,

2003).

X-ray and neutron imaging methodologies and experi-

mental capabilities are rapidly developing, with the advent of

new intense synchrotron and neutron sources. Among the

conventional X-ray radiography and tomography techniques,

and the closely related techniques employing neutron beams,

methods that produce element- or phase-selective three-

dimensional maps are particularly interesting. There are

essentially three approaches to achieve this, depending on the

signal used to reconstruct the phase or compositional maps;

this signal can be extracted from the direct beam (transmis-

sion), from the scattered beam (diffraction) or from some

form of beam-induced radiation (emission). Transmission

techniques, essentially modifications of conventional radio-

graphy/tomography, are fast, since the full object can be

simultaneously illuminated. Therefore, each exposure

contains a two-dimensional encoding of the sample. The

disadvantage of transmission techniques is the poor sensitivity

to minority phases/elements. For example, an image can be

reconstructed by comparing the on-resonance and off-reso-
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nance epithermal-neutron absorption of individual isotopes

(Kamiyama et al., 2005). Likewise, maps of crystallographic

phase distribution can be obtained in transmission mode by

employing Bragg edges as an imaging signal (Santisteban et al.,

2001). With a suitable two-dimensional detector and a parallel

neutron beam, complete isotope- or phase-resolved radio-

graphies can be obtained with a single exposure, and images

taken at various sample orientations can be combined to form

a three-dimensional tomogram of an object.

By contrast, diffraction and emission techniques are slower,

since they employ a ‘pencil’ beam (zero-dimensional

encoding), but are, in principle, more sensitive to minority

components. For example, it is in principle possible to

construct an isotope-resolved radiographic map by scanning a

pencil beam and monitoring the prompt gamma emission

(thermal neutrons) or the gamma emission following neutron

resonant capture (epithermal neutrons).

It would be highly desirable to combine crystallographic

phase analysis, as distinct from chemical composition analysis,

with imaging. Phase identification and determination of the

spatial distribution of phases would be of value, for example,

in bulk rock of unknown mineral composition and for unique

archaeological materials for which any sampling is unac-

ceptable. Neutrons combine the non-destructive nature of the

analysis technique with the possibility to study bulky extended

samples. In principle, maps of crystallographic phase distri-

bution can be obtained by conventional diffraction, which has

intrinsically zero-dimensional encoding and requires a ‘pencil’

beam. Direct point-by-point phase maps can be obtained by

employing tight radial collimation of the scattered beam, in

analogy with what is routinely done to measure residual

strains. For example, the phase composition of bulky samples

can be derived from high-energy energy-dispersive X-ray

scans with a narrow beam, achieving a submillimetre spatial

resolution (Colston et al., 2000). Owing to the inherently high

intensity, X-ray measurement times can be kept short, of the

order of a few minutes per scan. Energy-dispersive TOF

diffraction was used to produce a one-dimensional scan of a

diffracting volume of 2 � 2 � 2 mm through the thickness of

an archaeological bronze object (Siano et al., 2006). However,

detailed three-dimensional maps from point-by-point neutron

diffraction are unlikely to be produced on a regular basis

owing to flux limitations. In the absence of secondary beam

collimation, two-dimensional maps are produced, in which the

phase distribution along the beam direction is averaged, with

an appropriate weight due to absorption. Combining many

scans illuminating the sample from different angles can be

used to reconstruct three-dimensional images carrying infor-

mation on the phase composition.

We propose here a new diffraction imaging technique,

based on TOF neutron diffraction, with intrinsic one-dimen-

sional encoding, which is more than an order of magnitude

faster than existing diffraction-based techniques. The position

of the scattering centres along the line of the beam is encoded

in the shape and position of the Bragg peaks, through what is

normally known as the geometrical aberration effect. We

derive the master equations describing this technique, and on

this basis, we define the optimal instrument geometry. The

feasibility of the technique on existing instrumentation is

demonstrated by producing the image of an Al cylinder with

Cu and steel rods inside. Finally, we explore how this tech-

nique could be extended to steady-state neutron and high-

energy X-ray diffraction.

The paper is organized as follows. The theory underpinning

image reconstruction from peak shape and position, including

the real-space resolution, is developed in xx2–4. x5 describes

the sample and setup used in the experiment. The results are

shown in x6. In xx7 and 8, we discuss a data analysis strategy

and an extension of the method to high-energy X-rays and

steady-state neutron sources; this is followed by a discussion

and an overall summary.

2. Effect of sample displacement in a TOF neutron
powder diffractometer

TOF neutron powder diffractometers at spallation neutron

sources such as GEM at ISIS (Day et al., 2004) employ large

detector arrays for efficient data collection. The detectors are

usually grouped into banks and the data focused in d-spacing

to a nominal scattering angle for each bank. The resulting one-

dimensional diffraction patterns are then typically used as

independent data sets in a multi-bank refinement. In this

‘open’ geometry, the scattering angle 2� is defined by two lines

connecting the ‘scattering centre’ of the sample with the

middle of the source and with the detector, and naturally

depends on the sample position. The ‘effective’ detector

positions are calibrated with a crystalline standard, which also

defines the ‘ideal’ sample position. A displacement of the

sample from this ideal position will result in an aberration,

whereby different lattice parameters are measured in different

banks, unless this is corrected for during the structural

refinement. The correction can be calculated in terms of the

two components of the sample displacement, along the inci-

dent beam and perpendicular to the beam. This process has

been discussed in some detail by Wang et al. (2002) in the

approximation of small sample displacements.

In our case, only the displacement of the sample along the

incident ‘pencil’ beam is relevant, but dealing with bulky

extended samples, we will develop the second-order correc-

tion to the small sample displacement formula. Fig. 1 illus-

trates the geometry for longitudinal sample displacements.
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Figure 1
Geometry for a sample displacement along the incident beam.



The modified scattering angle �0 can be expressed in terms

of sample displacement, x, primary and secondary flight paths

L1 and L2, respectively, and ideal scattering angle � as follows:

sin �0 ¼ sin � þ
1

2
arcsin

r sinð2�Þ

1þ r2 � 2r cosð2�Þ½ �
1=2

� �� �
: ð1Þ

Here, r = x/L2. Similarly, the modified total flight path is

obtained as

L0tot ¼ L2 rþ 1þ r2
� 2r cosð2�Þ

� �1=2
n o

þ L1: ð2Þ

The nominal time-of-flight in microseconds of a neutron of a

given wavelength for a sample at the ideal position (x = 0) is

derived from Braggs law:

t0 ¼ 505:5dðL1 þ L2Þ sin �; ð3Þ

where d is the d-spacing in ångströms and the flight paths are

in metres. An analogous expression is obtained for the shifted

TOF t 0. Equations (1)–(3) are exact; after collecting all the

terms in (1)–(3) and performing a Taylor series expansion

around the ideal sample position, i.e. r = 0, the relative shift in

TOF defined by �t/t = (t 0 � t0)/t0 is obtained as

�t

t
¼ x=L2ð Þ

L2 1� cos 2�ð Þ½ �

L1 þ L2

þ cos2 �

� �
þ x=L2ð Þ

2

�
1

2

cos2 �

L1 þ L2

� �
3 L2 � L1ð Þ sin2 � þ 2 L2 þ L1 cos2 �

� �� �

þO x=L2ð Þ
3

� �
: ð4Þ

The above formula can generally be used to correct for the

effect of sample displacement along the incident beam leading

to consistent lattice parameters for all banks. This correction is

usually made only up to the linear term in x since higher-order

terms are negligible. Note that the term linear in x/L2 is

identical to equation (6) of Wang et al. (2002):

�t

t
¼ x�;

� ¼
1� cos 2�ð Þ½ �

L1 þ L2

þ
cos2 �

L2

:
ð5Þ

Equations (4) and (5) can be easily inverted to solve for the

sample displacement, x, given all the other quantities. Note

that the information about the sample position is encoded in

the Bragg peaks and is therefore phase-dependent. Let us now

consider the experimental geometry described in Fig. 1, and

let us first assume that each of the constituent phases of the

extended object occurs in a ‘lump’, which is small with respect

to the overall size of the object. An example of this would be

that of small crystalline inclusions in an amorphous matrix. In

this case, each of the lumps, once hit by the beam, will produce

a set of distinct Bragg peaks, and their displacements from the

‘ideal’ d-spacing will measure the displacement of the lump

along the direction of the pencil beam. By scanning the object

vertically and laterally across the beam, one can build a full

three-dimensional map of the position of the inclusions within

the object. A slightly more complex case is that of crystalline

phases extending over a large part of the sample. In this case,

the peak shape will reflect the distribution of each phase: for

example, an extended phase with a hole in it will produce a

‘top-hat’ peak with a dip corresponding to the position of the

hole.

3. Instrument geometry and its effect on spatial
resolution

Having established the general principles of this technique,

the next step is to define the parameters controlling its real-

space resolution. The transverse resolution (i.e. perpendicular

to the beam) is straightforwardly related to the size and

divergence of the beam itself and can be optimized in a

manner similar to that routinely performed for residual strain

measurements. Deriving the longitudinal resolution (i.e. along

the beam), is somewhat less straightforward, and we will

discuss this process in some detail. As we have seen, the

position and spatial extent of each crystalline phase is encoded

in the shape and position of the Bragg peaks; therefore, all

other sources of peak broadening, such as intrinsic instrument

resolution and strain, define the minimum extent of the

imaged features in the longitudinal direction. The various

components of the longitudinal resolution (‘blurring’) due to

TOF pulse shape, detector pixel size and beam divergence can

be easily estimated in the linear approximation using equation

(5) and the usual TOF instrument resolution formulae (Willis,

1994):

Bpulse ’
1

�

�t

t

� �
pulse

; ð6Þ

Bpixel ¼
1

�
cot �

wpix

2L2

� �
; ð7Þ

Bdiv ’
1

�
cot �

wmod

2L1

� �
: ð8Þ

wpix and wmod are the width of a detector pixel and the

moderator, respectively. The total real-space blurring can be

well modelled by adding equations (6)–(8) in quadrature.

From equation (7), one deduces that the pixel width sets a

lower limit to the longitudinal resolution. Bpulse and Bdiv are

proportional to L2, so a short secondary flight-path appears to

be an advantage. However, a very short L2 would widely

separate Bragg peaks generated at opposite ends of the

sample, making the diffraction pattern completely unrecog-

nizable, and would make the linear approximation invalid [this

effect can be quantitatively assessed with equation (4)]. A

good compromise is for L2 to be 4–5 times larger than the

typical sample diameter.

The parameters for the instrument used in the demonstra-

tion experiment (see below) are (�t/t)pulse = 0.005, wpix =

3 mm, wmod = 0.1 m, L1 = 8.3 m and L2 = 0.27 m.

For these parameters, the various contributions are shown

in Fig. 2. The best longitudinal resolution is obtained for a

scattering angle close to 2� = 90� and amounts to slightly less

than 5 mm. Also, the quadratic correction in equation (4)
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amounts to only 4% of the linear term, so that the linear

approximation is justified. We remark in passing that, for an

instrument with a long primary but short secondary flight path,

the term involving L1 may be neglected near 90�. This omis-

sion leads to a particularly simple expression for the relative

shift in TOF and sample displacement:

�t=t ’ x cos2 �=L2ð�Þ: ð9Þ

The largest contributions to the longitudinal ‘blurring’ are

from the pixel size and beam divergence and are about equal

in our case. With smaller pixels, a less divergent beam and a

somewhat longer primary flight path [to reduce further the

pulse term of equation (6)], a resolution of 1–2 mm can be

easily obtained, albeit at the expense of flux.

4. Optimization of the detector locus

A cursory consideration of possible data analysis strategies for

this technique outlines a further issue to be resolved. In

conventional TOF powder diffractometry, data from indivi-

dual detectors are ‘focused’ over a large angular range, by

adding together data bins with the same d-spacings. However,

from equation (5) one easily deduces that this method is not

adequate. In fact, for a generic detector locus (for example, at

constant L2), the conversion factor � between peak shift and

sample displacement is angle dependent, and adding together

data from different angles would result in further real-space

broadening. In principle, data could be added together in

small angular domains and the resulting multiple histograms

processed separately. This strategy was adopted in our test

experiment, but this fine subdivision is at the expense of the

single-pattern statistics, which ultimately limits the speed of

the data collection. Alternatively, the d-spacing ranges around

given Bragg peaks could be rescaled according to equation (5)

before focusing, but this is only possible for well separated

peaks. Therefore, it would be extremely desirable to define a

detector locus over which � does not vary. The condition to

define the detector locus is then given by � = constant and

results from inverting equation (5):

L2ð�Þ ¼ � 1=ð2�Þ
�

cos2 � � 2þ �L1 � ðcos4 � � 4 cos2 �

þ 6 �L1 cos2 � þ 4� 4 �L1 þ �
2L2

1Þ
1=2
�
; ð10Þ

where only the solution leading to a positive L2 is admissible.

The resulting detector locus is shown in Fig. 3 for the para-

meters indicated in the caption.

As we have seen, only scattering angles around 90� are of

interest, since they yield the best longitudinal resolution.

Therefore, a good approximation to the locus defined in

equation (10) could be a flat (or better, conical) detector

positioned at 90� with an appropriate inclination. The value of

the inclination is obtained by differentiation of equation (10):

x ¼ L2 �ð Þ cos 2�; y ¼ L2 �ð Þ sin 2�ð Þ;

dy=dx ¼
dy

d�

dx

d�

� ��1

:
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Figure 3
Detector locus corresponding to the negative sign of the square root term
in equation (10) for L1 = 8300 mm and � = 0.002. For backscattering (2� =
180�) L2 = 0 for constant �.

Figure 2
Expected spatial resolution for (�t/t)pulse = 0.005, wpix = 3 mm, wmod =
0.1 m, L1 = 8.3 m and L2 = 0.27 m. The blurring arising from the pixel
resolution and divergence are comparable in magnitude for this
parameter set and have the same angular dependence.

Figure 4
Detector inclination in degrees versus scattering angle using the same
parameters as for Fig. 3. An inclination angle of zero means that the
detector is parallel to the beam. A positive (negative) inclination
indicates that the detector is tilted toward the incident (transmitted)
beam. The strong variation near 120� corresponds to an inflection point in
the detector locus shown in Fig. 3 (at this point, the detector is normal to
the beam).



The resulting inclination as a function of scattering angle 2� is

shown in Fig. 4. Notably, for 2� = 90�, the detector should be

inclined at an angle close to 45�.

By inserting equation (1) into equations (7) and (8), one

finds a small variation of the real-space resolution as a func-

tion of the scattering angle. This is not in general a serious

problem, and could be compensated by adjusting the pixel size

wpix accordingly.

5. Test experiment

In order to verify these concepts, we performed a test

experiment, with the goal of imaging a thin cylindrical annular

sample made of Al with a diameter and height of 40 mm,

respectively, and a wall thickness of 1 mm, containing two

copper rods and two steel rods in a cross-shaped arrangement.

A bulk steel cylinder with four holes in a cross-shaped

arrangement was placed at the bottom of the Al cylinder to

support two copper and steel rods of 5 mm diameter each. For

support, the rods were inserted into steel holders below and

above the beam. This left a vertical gap of approximately

13 mm for the beam to go through. A photograph of the object

is shown in Fig. 5.

Measurements were performed on the SXD beamline at the

ISIS spallation neutron source at the Rutherford Appleton

Laboratory (UK). Although SXD is primarily used for single-

crystal diffraction, its short secondary flight path made it the

best choice for this experiment. An in vacuo translation stage

was not available at the time of this experiment, so the test

object was suspended on a rotation stage. The axis of the

cylinder was aligned with the ideal sample position of the

diffractometer.

As one would expect, the SXD detectors do not follow the

ideal detector locus described in x4 but are mounted at right

angles to the secondary beam. SXD uses pixellated flat area

detectors with 64 � 64 pixels per detector. Each pixel covers

an area of 3 � 3 mm. The incident flight path is 8.3 m and the

centre of each of the six equatorial plane detectors is 225 mm

away from the sample. Four out-of-plane detectors are situ-

ated 45� below the equatorial plane, their centres being at a

distance of 270 mm. A schematic detector layout is shown in

Fig. 5, along with the sample used. The size of the incident

beam was set to 2 � 2 mm. However, the SXD beam colli-

mation is not designed to produce a beam with perfectly

defined edges, and this resulted in significant transverse blur-

ring of the image (see below).

To simplify the analysis and owing to real-space resolution

considerations, only data from the banks at 90� were used.

Vertical pixel columns with a total width of about �2� around

90� were summed and the TOF spectra were carefully aligned

to avoid additional line broadening of the diffraction lines.

Owing to counting statistics on the weak lines originating from

Al, four images were reconstructed corresponding to scat-

tering angles of 82, 86, 90 and 94�, with a width of 4� for each

scattering angle in the out-of-plane detectors labelled 7 and 9

in Fig. 5; these images were then combined to form the final

reconstructed image using equation (5).

6. Results

At the beginning of the measurement, the two Cu rods were

approximately aligned with the incident beam. Prior to

running the experiment, the first diffraction patterns were

inspected to assess the magnitude of the diffraction line shifts

in TOF and also to estimate the time required to obtain

sufficient statistics. We found 40 min

per scan to be adequate, and thus 31

scans in steps of 6� were collected

covering an angular range of 180�.

The resulting diffraction patterns

are shown in Fig. 6 as a contour plot.

The ideal reflection positions (in TOF)

of the Cu(200), Fe(110) and Al(111)

lines are marked with dotted vertical

lines. The lattice parameters for Cu, Fe

and Al were taken as a = 3.6149, 2.8665

and 4.0495 Å, respectively (http://

www.webelements.com/index.html). The

observed diffraction lines are clearly

shifted with respect to the calculated

Bragg peaks of the metal structures.

The shifts range between �50 ms and

�300 ms for the groups of peaks in the

analysed TOF range from 5000 to

8000 ms. It should be noted that the

observed TOF spectrum contains

many more peaks, available for phase

identification by means of structural

databases. In this test experiment, the
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Figure 5
Left: Object used in the test experiment. The steel rods appear grey; the other two rods are made of
Cu. The top steel cylinder used as a cover is not shown. Right: Schematic detector layout of the SXD
instrument. The square in the middle corresponds to the detector at the bottom of the instrument.
Four detectors are situated and inclined 45� below the equatorial plane and six in the equatorial
plane. Each detector spans approximately �23� vertically and horizontally around the detector
centre.



data were not corrected for the incident flux, and thus the

relative intensities are not suitable for phase identification.

The relative shifts, �t/t, are of the order of 10�2, i.e. much

larger than expected from strain effects which are typically of

the order 10�3 (Dann et al., 2003).

The shifted diffraction lines in Fig. 6 are assigned as follows:

Cu(200) from the two rods at about 5350 and 5700 ms, Fe(110)

from the two Fe rods at about 6050 and 6300 ms, and Al(111)

from the aluminium cylinder at about 6900 and 7400 ms. The

lines in the 6200–6500 ms range at 0� and 180� are from

Cu(111) and the lines in the 4000–4500 ms range around 90�

are from Fe(200). The lines corresponding to Cu and Fe vary

in intensity as a function of angle, as one expects, since the

metal rods are in the beam only in a restricted angular range.

The angular shift of the two rods may be ascribed to a lateral

sample offset of about 3 mm, which is reproduced in the image

reconstruction (see below).

For the reconstruction of the phase distribution, Gaussian

profiles were fitted to extract the positions and intensities of

the diffraction lines. From the positions of the Bragg lines and

their assignment to the elements Cu, Fe and Al, respectively,

the displacement, x, along the incident beam direction was

derived using equation (5). For each crystalline phase, �t/t was

calculated from (tobs � texp)/texp, where ‘obs’ and ‘exp’ refer to

observed and expected values, respectively. For the image

reconstruction the x displacements were directly transformed

into a polar plot of the scanning variable, i.e. the sample

rotation angle. The extension of a phase component along the

incident beam direction, i.e. the chord defined by the pencil

beam through each component, was determined using the

width of the Gaussian peaks. Once again, using equation (5),

the Gaussian profile was converted from TOF to linear

displacement, x, with a truncation at twice the Gaussian

variance. This procedure produced three separate images, one

of each component, which were assigned distinct colour

channels (red for Cu, blue for Al and green for Fe) and finally

combined. The colour brightness in the reconstructed image

does not reflect the phase amount in the sample, since images

for each phase were scaled separately to their respective

maxima. The resulting image is shown in Fig. 7, together with a

photograph of the object.

The reconstructed image clearly shows an outer blue ring,

representing the aluminium container, as well as four spots in

a cross-shaped arrangement originating from Cu and Fe. The

ring appears to exhibit striations in the vicinity of the rods.

This effect merely reflects the uncertainty in extracting a

reliable width and intensity when the beam was passing

through the rods before hitting the Al on the back. The overall
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Figure 6
Diffraction intensities versus sample rotation angle and TOF. The
expected positions of Cu(200), Fe(110) and Al(111) are drawn as vertical
dashed lines.

Figure 7
Test sample from top (left) and reconstructed image (right) displayed on approximately the same length scale.



dimensions of the reconstruction and of the sample agree very

well. The slight distortion of the Al ring may be attributed to

the intrinsic weakness of the corresponding diffraction lines

and the resulting uncertainty in the determination of the peak

parameters. As for the rods, the maximum intensity is well

concentrated within their 5 mm diameter and falls off rapidly

outside this radius. The relative orientation of the Cu and Fe

rods is consistent with a 90� angle, as for the sample. It should

be emphasized that the experimental radial resolution

matches closely the expected spatial resolution as discussed in

x3. Further inspection of the centroids of the Cu and Fe rods in

the reconstructed image also reveals a 3 mm lateral offset of

the cylindrical axis with respect to the beam centre, thus

explaining the relative angular shift of the corresponding

features in the diffraction patterns in Fig. 6. Within the

uncertainties of the measurement and of the analysis, a satis-

factory reconstruction of the object and its interior has thus

been obtained along with information on the phases contained

inside.

7. Data analysis strategies

The results obtained in our test experiment could be signifi-

cantly improved in a realistic situation by adopting an

appropriate data analysis strategy. First of all, it is clear that

the overall phase composition needs to be known in advance.

This information can be gathered very rapidly on the same

instrument used for tomography by measuring the diffraction

pattern with a full beam in back scattering, which is where the

effect of having an extended sample is minimized. Identifica-

tion of phases in an extended object could also be achieved

with an additional transmission detector recording the Bragg

edges of the constituent phases. In addition, it is useful to

know the overall shape of the object in advance, although this

is not strictly necessary. The focused patterns from the 90�

detector, or the single pattern if our ‘focusing’ geometry is

adopted, will then be analysed by a modified Rietveld

program, where the definition of the peak ‘profiles’ for each

crystallographic phase will contain the distribution of that

phase along the diffracting pencil. For this purpose, the

diffracting pencil (or, if the exact shape of the sample is not

known, an extended line containing it) will be subdivided into

a number of bins, smaller but approximately equal to the real-

space instrumental resolution. The full profile will be recon-

structed by convoluting the instrumental resolution with a

series of delta functions. The weights of these delta functions

represent the amount of each phase in a given bin, and are the

refineable parameters in the fit. A 50 mm sample at 2.5 mm

resolution containing three phases corresponds to 60 para-

meters, which is well within the capabilities of modern Riet-

veld codes. Codes that rely on numerical convolution to

reconstruct peak profiles should be able to implement this

method in a straightforward way. This analysis can be quan-

titative, provided that the data are corrected for absorption

and that texture is either absent or appropriately modelled. It

is noteworthy that texture will be significantly averaged by a

conical detector completely surrounding the sample.

8. Extension to steady-state neutron and X-ray sources

This technique can be straightforwardly extended to steady-

state neutron sources (Debye–Scherrer geometry), provided

that equation (5) is replaced by the well known correction

formula for longitudinal displacement, which, for small

displacements, is

�2� ¼ x�;

� ¼ sin 2�ð Þ=R;
ð11Þ

where R is the radius of the diffractometer, and corresponds to

L2. It is noteworthy that equation (11) can be easily derived

from equation (5) in the limit of large L1, as one would expect.

Likewise, the second-order correction can be derived from

equation (4) in the same limit. Because of the need to measure

near 90�, only a restricted d-spacing range would be available

for each wavelength, which may limit the applicability of this

method to simple metallic objects. Application to hard X-rays

is more problematic: only very high-energy X-rays

(> 100 keV) would be of interest here, since one needs

significant penetration to take advantage of the longitudinal

profiling. However, all scattering is concentrated at low angle,

where the geometric conversion is less favourable. For

example, from equation (7), it is easy to see that the Bpix is

approximately 20 times larger than the pixel width for the

Cu(200) reflections measured with 150 keV X-rays (2� = 2.8�).

This means that a 50 mm pixel resolution would be required to

obtain 1 mm spatial resolution. Further work would be

required to determine whether this methodology is applicable

in practice with high-energy X-rays.

9. Discussion

Our experimental results show that phase imaging based on

geometrical aberrations has a potential for obtaining phase

distributions and shape information of simple composite

objects. The technique may be applied, for instance, to a

homogeneous host material with inclusions, or an object

composed of several f.c.c. metal phases, as is the case for our

test sample. We note that most engineering samples belong to

the latter group, as do many archaeo-metallurgical materials.

Limitations with respect to achievable spatial resolution and

phase contrast, phase detection limits, and ability to measure

bulky samples with strongly absorbing constituents and in the

presence of texture will need to be investigated further.

The imaging technique presented here can be regarded, at

least, as complementary to the techniques mentioned in the

introduction, with its own advantages and disadvantages.

Whilst traditional imaging techniques acquire information

about the sample homogeneity in the transverse beam direc-

tion, and whilst tomography relies on a complete set of

absorption measurements and three-dimensional computed

reconstruction algorithms, our technique gives information

along the line of sight with respect to the incident beam. The

position and extent of objects along this diffracting pencil can

be directly reconstructed without the need for a complete set

of scans.
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The method, demonstrated here for a quasi-two-dimen-

sional object (see Fig. 7), can straightforwardly be extended to

three-dimensional tomography by adding a second scanning

variable, along the height of the sample. Mapping crystalline

phases on neutron strain scanners that use a secondary

diffracted beam collimator (zero-dimensional encoding, three

scanning dimensions) has advantages for phase identification

in multiphase systems and for determining continuous phase

distributions, but this technique is inefficient in terms of the

time required for mapping and pinpointing a localized phase

component. The peak aberration technique (one-dimensional

encoding, two scanning dimensions) presented here has

advantages for surveying an object with unknown internal

structure and it is considerably faster at locating the phase

component (e.g. an inclusion) in an otherwise homogeneous

matrix.

10. Summary and conclusions

We used geometrical aberration in TOF neutron powder

diffraction for mapping the phase composition in an extended

sample by a rotational scan in the neutron beam. The tech-

nique is based on a formula used to correct for off-centre

sample displacement. The feasibility of the method was

demonstrated on a simple test sample containing objects of

Cu, Fe and Al.

We presented a set of equations to derive the spatial reso-

lution for a given experimental setup, which were found to be

in good agreement with our experimental results. Based on

these equations, an instrument having a natural detector locus

with constant line shift in TOF is proposed. The TOF scale

would serve as a fixed ruler for any object size for which the

linear sample displacement formula is sufficiently accurate.

We believe that crystalline phase imaging will find

immediate application in areas of cultural heritage research

and of engineering, wherever non-destructive testing is

required. Phase and structural mapping can constructively

complement conventional attenuation contrast tomographies,

which provide only indirect information on the micro-

structural properties of materials. Applications may include

locating hidden repair parts inside valuable museum objects,

and detecting metal parts (e.g. uranium) embedded in non-

transparent materials, refuse or containers.
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