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Analytic expressions are presented for calculating translations of high-order

three-dimensional expansions of orthonormal real spherical harmonic and

Gaussian-type or exponential-type radial basis functions. When used with real

spherical harmonic rotation matrices, the resulting translation matrices provide

a fully analytic method of calculating six-dimensional real-space rotational–

translational correlations. The correlation algorithm is demonstrated by using an

exhaustive search to superpose the steric density functions of a pair of similar

globular proteins in a matter of seconds on a contemporary personal computer.

It is proposed that the techniques described could be used to accelerate the

calculation of e.g. real-space electron density correlations in molecular

replacement, docking proteins into electron microscopy density maps, and

searching the Protein Data Bank for structural homologues.

1. Introduction

Solving protein crystal structures by molecular replacement

(MR) (Rossmann, 1990, 2001), fitting protein structures into

electron microscopy (EM) density maps (Roseman, 2000;

Rossmann, 2000; Frank, 2002), and predicting the docking

mode of a pair of proteins (Katchalski-Katzir et al., 1992;

Ritchie & Kemp, 2000) are three examples of tasks which

typically involve searching for the coordinate transformation

that maximizes a six-dimensional correlation. Often, such

correlations can be expressed as the overlap between one or

more pairs of three-dimensional scalar functions, such as

electron densities, and it is primarily this type of correlation

that is considered here. For example, if some phase informa-

tion is available from multiple anomalous dispersion (MAD)

or multipe isomorphous replacement (MIR) data, or from a

partial model, the phased translation function may be used to

correlate a low-resolution electron density map with the

density from a model structure to help locate the model in the

crystal unit cell (Read & Schierbeek, 1988). This type of

translational correlation may be accelerated using a three-

dimensional fast Fourier transform (FFT). However, the

correct solution can sometimes be missed if the rotational

solution is in error. This can often be corrected by varying the

rotational orientations (Fujinaga & Read, 1987) or by trans-

lating multiple rotational peaks (Navaza, 2001), but both these

techniques entail additional computational cost. Hence a more

thorough but economical method of correlating electron

densities could be beneficial. We note that combined six-

dimensional rotational-translational Patterson correlation

(PC) approaches have recently been successful in solving

difficult MR cases without using phase information (Chang &

Lewis, 1997; Sheriff et al., 1999). However, these approaches

are based on point-wise evaluations of the PC in reciprocal

space (Chang & Lewis, 1997; Kissinger et al., 1999; Jamrog &

Zhang, 2003) and hence appear not to be amenable to the type

of correlation discussed here. Correlating electron densities

may also be used to locate secondary structure fragments in

density maps (Cowtan, 1998), and has been proposed as a

novel way to search the Protein Data Bank (PDB) (Sussman et

al., 1998) for candidate molecular replacement models

(Cowtan, 2001). Similarly, protein–protein docking algorithms

often use a three-dimensional translational FFT to search for

good docking orientations (Katchalski-Katzir et al., 1992;

Vakser, 1995). However, in each of these examples the

translational FFTs must be repeated for a large number of

rotational orientations in order to cover the remaining three

degrees of freedom. Hence, more efficient correlation tech-

niques would be useful in these areas as well.

The FFT may also be used to accelerate rotational searches.

For example, the MR fast rotation function represents a

Patterson map of self-vectors as an expansion of spherical

Bessel and spherical harmonic functions and uses a two-

dimensional FFT to orient a search model with respect to the

observed diffraction data (Navaza, 1987). Vagin & Isupov

(2001) adapted the fast rotation function to implement a

phased rotation function (rotational density correlation)

which allows a spherically averaged search model to be

located in the unit cell using the phased translation function

before solving its rotational orientation. However, this

approach still requires rotational and translational correla-

tions to be treated separately. More recently, Kovacs et al.

(2003) employed an elegant Euler angle factorization in order

to fit proteins into EM density maps using a five-dimensional



rotational FFT. However, their approach entails calculating

certain residual overlap integrals which must be computed

numerically.

In our own areas of interest, namely protein docking and

shape comparison, we developed a six-dimensional spherical

polar Fourier (SPF) correlation approach (Ritchie & Kemp,

2000) to try to address the limitations of the Cartesian FFT

docking methods. In the SPF representation, each three-

dimensional scalar property of interest is written as an

expansion of real spherical harmonic plus orthonormal radial

basis functions. This allows the correlation between a pair of

proteins to be expressed naturally as a search over one

translational and five rotational degrees of freedom. Because

the rotational properties of the spherical harmonics have been

described extensively elsewhere (see e.g. Rose, 1957;

Biedenharn & Louck, 1981a), this article focuses on calcu-

lating translations for SPF expansions. Formerly, we calculated

translations by numerical integration in the (r, �) plane

(Ritchie & Kemp, 2000). Here, we give analytic expressions

for efficiently calculating high-order translation matrix

elements for both harmonic oscillator (HO) and orthogonal

Coulomb-type radial basis functions using spherical Bessel

transforms. The HO functions, sometimes referred to as

Gaussian-type orbitals (GTOs), have long been used in

molecular orbital calculations because of the ease of calcu-

lating overlap integrals between pairs of such functions (Boys,

1950). The Coulomb-type functions, sometimes referred to as

exponential-type orbitals (ETOs) (Guseinov, 2001, 2002),

have an exponential factor in place of the Gaussian and

correspond to orthogonalized Slater-type atomic orbitals

(STOs) (Barnett & Coulson, 1951) and B-functions (Filter &

Steinborn, 1978), or equivalently Bessel-type orbitals (BTOs)

(Ozdogan et al., 2005).

In what follows, the abbreviations GTO and ETO will be

used to refer to the radial functions used here for consistency

with the recent quantum mechanics literature. Despite much

prior work, there is still considerable interest in developing

efficient and stable methods of calculating integrals over

GTOs (Arakane & Matsuoka, 1999; Chiu & Moharerrzadeh,

1999), and especially STOs (Filter & Steinborn, 1980; Weniger

& Steinborn, 1983; Hierse & Oppeneer, 1994; Ozdogan et al.,

2005; Rico et al., 2005). Nonetheless, to our knowledge, the

analytic expressions presented here to translate ETO basis

functions and to relate ETOs to BTOs are novel. We also

describe non-orthogonal expansions of GTOs and ETOs

which give at least a twofold speed-up compared with calcu-

lating translations in the orthogonal bases.

Our expressions have been tested for numerical accuracy up

to order N = 32, which is sufficient for high-resolution protein–

protein docking correlations (Ritchie, 2003). We find it is

necessary to use an extended-precision arithmetic library to

calculate high-order translation matrix elements analytically,

although all subsequent calculations may be performed in

ordinary double-precision arithmetic. However, because much

of our docking algorithm has been described previously

(Ritchie & Kemp, 2000), the calculations are illustrated here

by superposing a pair of similar superantigen proteins. In

contrast to multi-dimensional FFT approaches, our correlation

is calculated as a combinatorial search over pairs of rotated

and translated coefficient vectors. With low-order polynomial

expansions there is no advantage in using an FFT, although for

high-order correlations our algorithm can be accelerated using

a one-dimensional real fast Hartley transform (FHT)

(Bracewell, 1999). In the example given, a good superposition

is achieved using low-order expansions to N = 6, with a total

calculation time of under 8 s for an exhaustive six-dimensional

search on a 2 GHz Pentium Xeon processor. This corresponds

to evaluating approximately 6� 106 trial orientations s�1. This

demonstrates that the SPF correlation technique offers a

novel and powerful approach for problems that involve

calculating real-space six-dimensional rotational–translational

correlations.

2. Methods

2.1. Polar Fourier expansions

In the SPF approach, each scalar property of interest, A(r),

is represented as an infinite expansion, truncated to order N as

AðrÞ ¼
XN

n¼1

Xn�1

l¼0

Xl

m¼�l

anlmRnlðrÞylmð�; �Þ; ð1Þ

where anlm are the expansion coefficients, ylmð�; �Þ =

#ljmjð�Þ’mð�Þ are real normalized spherical harmonics, and

Rnl(r) are orthonormal GTO or ETO radial basis functions.

Generally, we use GTOs to represent steric shape and the

more diffuse ETOs to represent electrostatic properties. We

follow the quantum chemistry convention in which the radial

index n, or principal quantum number, counts from unity.

Hence the highest harmonic order and highest polynomial

power in any individual coordinate is L = N� 1. An expansion

to order N involves N(N + 1)(2N + 1)/6 coefficients. These are

calculated just once for each property as described previously

(Ritchie & Kemp, 2000).

2.2. Overlap Integrals as translation matrix elements

First, we consider the correlation between a fixed ‘body’ A,

or scalar function A(r), and a moving body B, or function B(r),

under an active translation of B by T = (R, 0, 0) along the

positive z axis:

CðTÞ ¼

Z
AðrÞBðT�1rÞ dV: ð2Þ

Substituting the expansions of A(r) and B(r) gives

CðTÞ ¼
X
nlm

X
n0 l0m0

anlmbn0l0m0

�

Z
RnlðrÞylmð�; �ÞRn0 l0 ðr

0Þyl0m0 ð�
0; �0Þ dV; ð3Þ

where the shorthand notation
P

nlm etc. is used to indicate

summation over the subscript ranges given in equation (1),

and where r = ðr; �; �Þ and r0 = r� T = ðr0; �0; �0Þ. In this case, �
and �0 remain coincident, so the circular functions, ’mð�Þ, may

be integrated out and equation (3) reduces to a sum over two-
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dimensional integrals in the ðr; �Þ plane. Because these inte-

grals clearly depend only on the distance R, we write

CðRÞ ¼
X
nlm

X
n0l0m0

anlmbn0 l0m0T
ðjmjÞ
nl;n0l0 ðRÞ�mm0 ð4Þ

and interpret each T
ðjmjÞ
nl;n0l0 ðRÞ as a matrix element of the

translation operator. For example, from equation (4) it can be

seen that the two sums

bR
nlm ¼

X
n0 l0

T
ðjmjÞ
nl;n0l0 ðRÞbn0l0m ð5Þ

and (after re-labeling the subscripts)

aR
nlm ¼

X
n0 l0

T
ðjmjÞ
n0 l0;nlðRÞan0 l0m ð6Þ

represent a positive translation of the body B, or equivalently

a negative translation of the body A, respectively. The trans-

lation matrices are obviously five-dimensional quantities.

However, because they do not depend on the sign of m (see

below), it is useful to consider each matrix as being composed

of
PN�1

m¼0 = N two-dimensional arrays, each indexed by
P

nl =

N(N + 1)/2 possible values for each pair of nl subscripts. The

matrix elements vanish trivially where |m| > l. The notation

used here is intended to be consistent with the usual

convention for the complex and real spherical harmonic

rotation matrix elements, D
ðlÞ
m0mð�; �; �Þ and R

ðlÞ
m0mð�; �; �Þ,

respectively, in the sense that a positive z translation of the

basis functions is expressed as

Rnlðr
0Þylmð�

0; �Þ ¼
X1
n0¼1

Xn0�1

l0¼0

T
ðjmjÞ
n0l0;nlðRÞRn0 l0 ðrÞyl0mð�; �Þ: ð7Þ

2.3. Spherical Bessel transform method of calculation

If the spherical Bessel transform of RnlðrÞ is defined as

~RRnlð�Þ ¼ ð2=�Þ
1=2

Z1

0

RnlðrÞjlð�rÞr2 dr; ð8Þ

where jlðzÞ is the spherical Bessel function, then the inverse

transform is given by (Hochstadt, 1971):

RnlðrÞ ¼ ð2=�Þ
1=2

Z1

0

~RRnlð�Þjlð�rÞ�2 d�: ð9Þ

It is shown in Appendix A that the translation matrix elements

for SPF basis functions may be calculated as a sum over one-

dimensional inverse Bessel transforms

T
ðjmjÞ
n0 l0;nlðRÞ ¼

Xlþl0

k¼jl�l0 j

A
ðll0 jmjÞ
k

Z1

0

~RRn0l0 ð�Þ ~RRnlð�Þjkð�RÞ�2 d�; ð10Þ

where the coefficients A
ðll0jmjÞ
k are given by

A
ðll0 jmjÞ
k ¼ ð�1Þðkþl0�lÞ=2þm

ð2kþ 1Þ
�
ð2l þ 1Þð2l0 þ 1Þ

�1=2

�

�
l l0 k

0 0 0

��
l l0 k

m m 0

�
: ð11Þ

From the permutational symmetries of the second 3–j symbol,

the right-hand side is independent of the sign of m, hence

justifying the use of |m| to label the matrix elements. Because

the first 3–j symbol vanishes whenever l + l0 + k is odd, it can be

seen that the non-vanishing coefficients are always real and

that the summation in equation (10) need only be calculated

for even increments: k = |l� l0|, |l� l0| + 2, . . . , l + l0. By similar

arguments (see Appendix A), it can also be shown that

T
ðjmjÞ
nl;n0 l0 ðRÞ ¼ T

ðjmjÞ
n0l0;nlð�RÞ ¼ ð�1Þl

0�l
T
ðjmjÞ
n0 l0;nlðRÞ: ð12Þ

Consequently, nearly half of all matrix elements can be found

by symmetry. Given that the original basis functions form a

complete orthonormal set, it is straightforward to show that

the translation matrices are also orthonormal in the sense that

X1
n0¼1

Xn0�1

l0¼0

T
ðjmjÞ
n0 l0;nlðRÞT

ðjmjÞ
n0 l0;n00 l00 ðRÞ ¼ �nn00�ll00 : ð13Þ

Evaluating this equation provides a convenient way to verify

the following calculations.

2.4. GTO translation matrix elements

The normalized GTO radial functions are given by

(Biedenharn & Louck, 1981b)

RnlðrÞ ¼

�
2

�3=2�1=2

ðn� l � 1Þ!

ð1=2Þn

�1=2

expð�	2=2Þ	lL
ðlþ1=2Þ
n�l�1 ð	

2
Þ;

ð14Þ

where 	2 = r2/� with scale factor �. For protein shape repre-

sentations we set � = 20. Throughout this article (x)n = x(x +

1) . . . (x + n� 1) = �(x + n)/�(x) denotes a rising factorial and

the substitution �(n + 1/2) = �1=2(1/2)n is frequently employed

for numerical accuracy. The generalized Laguerre poly-

nomials, L
ð�Þ
k ðxÞ, are defined by the binomial expansion

(Erdelyi et al., 1953a)

L
ð�Þ
k ðxÞ ¼

Xk

j¼0

kþ �

k� j

� �
ð�xÞ j

j!
: ð15Þ

High-order polynomials may be calculated efficiently using

the stable recursion

ðkþ 1ÞL
ð�Þ
kþ1ðxÞ ¼ ð2kþ �þ 1� xÞL

ð�Þ
k ðxÞ � ðkþ �ÞL

ð�Þ
k�1ðxÞ;

ð16Þ

along with the identities L
ð�Þ
0 ðxÞ = 1 and L

ð�Þ
1 ðxÞ = � + 1� x. The

GTO functions are eigenfunctions of the spherical Bessel

transform (derived from Erdelyi et al., 1953b, p. 42, equation 3

therein):

~RRnlð�Þ ¼ ð�1Þn�l�1 2�3=2

�1=2

ðn� l � 1Þ!

ð1=2Þn

� �1=2

� expð�x2=2ÞxlL
ðlþ1=2Þ
n�l�1 ðx

2Þ; ð17Þ
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where x2 = ��2. Here, it is convenient to use equation (15) to

expand equation (17) as a power series:

~RRnlð�Þ ¼

�
4�3=2

�1=2

�1=2 X
j

Xnlj expð�x2=2Þx2jþl ð18Þ

where
P

j serves as shorthand notation for
Pn�l�1

j¼0 and where

the coefficients Xnlj are given by

Xnlj ¼
ðn� l � 1Þ!ð1=2Þn

2

� �1=2
ð�1Þn�l�j�1

j!ðn� l � j� 1Þ!ð1=2Þlþjþ1

:

ð19Þ

Substituting equation (18) twice into equation (10) and

collecting coefficients of x2k using

C
ðnl;n0l0Þ
k ¼

X
j

X
j0

�k;jþj0XnljXn0 l0j0 ð20Þ

(where �kj is the Kronecker delta) gives for the GTO trans-

lation matrix elements:

T
ðjmjÞ
n0 l0;nlðRÞ ¼

Xlþl0

k¼jl�l0 j

A
ðll0jmjÞ
k

Xn�lþn0�l0�2

j¼0

C
ðnl;n0 l0Þ
j

�
4

�1=2

Z1

0

x2jþlþl0 jkðxR=�1=2
Þx2 dx: ð21Þ

Applying the relation (from Erdelyi et al., 1953b, p. 30,

equation 13 therein)

4

�1=2

Z1

0

expð�x2Þx2mþkjkðxyÞx2 dx

¼ m! expð�y2=4Þðy2=4Þk=2
Lðkþ1=2Þ

m ðy2=4Þ; ð22Þ

then gives the final analytic result

T
ðjmjÞ
n0 l0;nlðRÞ ¼

Xlþl0

k¼jl�l0 j

A
ðll0jmjÞ
k

Xn�lþn0�l0�2

j¼0

C
ðnl;n0l0Þ
j M!

� expð�R2=4�ÞðR2=4�Þk=2
L
ðkþ1=2Þ
M ðR2=4�Þ;

ð23Þ

where M = j + (l + l0 � k)/2.

2.5. ETO translation matrix elements

The normalized ETO radial functions are given by

(Biedenharn & Louck, 1981b)

SnlðrÞ ¼ ð2�Þ3
ðn� l � 1Þ!

ðnþ l þ 1Þ!

� �1=2

expð�	=2Þ	lL
ð2lþ2Þ
n�l�1ð	Þ; ð24Þ

where 	 = 2�r with scale factor �. We set � = 1/2 for protein–

protein electrostatic calculations (Ritchie & Kemp, 2000).

Using an argument based on orthogonality, Keister & Polyzou

(1997) recently proved that the spherical Bessel transform of

these functions may be written in terms of the Jacobi poly-

nomials, P
ð
;�Þ
k ðtÞ:

~SSnlð�Þ ¼
2

ð1=2Þn

ðn� l � 1Þ!ðnþ l þ 1Þ!

��3

� �1=2

�
sl

ðs2 þ 1Þlþ2
P
ðlþ3=2;lþ1=2Þ
n�l�1

�
s2 � 1

s2 þ 1

�
; ð25Þ

where s = �/�. Following a similar treatment to the GTO case,

the shifted series expansion (Keister & Polyzou, 1997)

P
ð
;�Þ
k ðtÞ

¼
Xk

j¼0

�ðkþ 
þ 1Þ

�ðkþ 
þ �þ 1Þ

ð�1Þj�ðkþ jþ 
þ �þ 1Þ

j!ðk� jÞ!�ðjþ 
þ 1Þ

1� t

2

� �j

ð26Þ

may be used to collect factors of 1/(s2 + 1) = (1 � t)/2 to write

equation (25) as a power series:

~SSnlð�Þ ¼
2

��3

� �1=2X
j

Ynlj

sl

ðs2 þ 1Þlþjþ2
; ð27Þ

where

Ynlj ¼
1

2

ðn� l � 1Þ!

ðnþ l þ 1Þ!

� �1=2
ð�1Þjð2nþ 1Þðnþ l þ jþ 1Þ!

j!ðn� l � j� 1Þ!ð1=2Þlþjþ2

: ð28Þ

Substituting equation (27) twice into equation (10) and

collecting coefficients of 1/(s2 + 1)k using

D
ðnl;n0 l0Þ
k ¼

X
j

X
j0

�k;jþj0YnljYn0 l0 j0 ; ð29Þ

gives for the ETO translation matrix elements:

U
ðjmjÞ
n0 l0;nlðRÞ ¼

Xlþl0

k¼jl�l0 j

A
ðll0jmjÞ
k

Xn�lþn0�l0�2

j¼0

D
ðnl;n0 l0Þ
j

�
2

�

Z1

0

s2Mþk

ðs2 þ 1ÞJþ2
jkðs�RÞs2 ds; ð30Þ

where M = (l + l0 � k)/2 and J = j + l + l0 + 2. It is shown in

Appendix B that the remaining integral may be calculated as

2

�

Z1

0

s2Mþk

ðs2 þ 1ÞJþ2
jkðs�RÞs2 ds

¼
XM

q¼0

M

q

� �
ð�1ÞMþq

2Jþ1�qðJ þ 1� qÞ!
ð�RÞkk̂kJ�k�qþ1=2ð�RÞ;

ð31Þ

where k̂k�ðzÞ is a reduced Bessel function of the second kind.

For half-integral degree, these functions may be calculated

using the recurrence relations (Weniger & Steinborn, 1983):

k̂k1=2ðzÞ ¼ expð�zÞ; ð32Þ

k̂k3=2ðzÞ ¼ ð1þ zÞ expð�zÞ; ð33Þ

and

k̂knþ3=2ðzÞ ¼ ð2nþ 1Þk̂knþ1=2ðzÞ þ z2k̂kn�1=2ðzÞ: ð34Þ
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Thus, the ETO translation matrix elements may also be

calculated analytically, although compared with the GTO basis

an additional inner summation is necessary.

2.6. Non-orthogonal translation matrices

Translations of SPF expansions in both the GTO and ETO

bases can be computed more economically by eliminating the

inner summation on the subscript j in equations (23) and (30).

This is equivalent to calculating overlap integrals that corre-

spond to expansions of non-orthogonal radial basis functions.

For example, substituting equation (18) into equation (10) and

applying equation (22) directly gives the factorization

T
ðjmjÞ
n0 l0;nlðRÞ ¼

X
j0

X
j

Xn0l0 j0
�TTðjmjÞj0l0;jl ðRÞXnlj; ð35Þ

where each �TTðjmjÞj0 l0;jl ðRÞ is an overlap integral in a non-orthogonal

basis,

�TTðjmjÞj0 l0;jl ðRÞ ¼
Xlþl0

k¼jl�l0 j

A
ðll0 jmjÞ
k M! expð�R2=4�Þ

� ðR2=4�Þk=2
L
ðkþ1=2Þ
M ðR2=4�Þ; ð36Þ

now with M = j + j0 + (l + l0 � k)/2. This corresponds to

expanding RnlðrÞ as a sum of non-orthogonal functions, �RRnlðrÞ:

RnlðrÞ ¼ ð�1Þn�l�1
X

j

Xnlj
�RRjlðrÞ: ð37Þ

It can be shown that these functions correspond to the non-

orthogonal Laguerre–Gaussian basis proposed by Chiu &

Moharerrzadeh (1999). With this factorization, translated

expansion coefficients, aR
nlm, in the original orthogonal basis

may be calculated using the sequence

�aajlm ¼
X

n

Xnljanlm; ð38Þ

�aaR
jlm ¼

X
j0 l0

�TT
ðjmjÞ

jl;j0 l0 ðRÞ �aaj0 l0m; ð39Þ

�aaR
nlm ¼

X
j

Xnlj �aa
R
jlm: ð40Þ

In a similar manner, ETO translations may be calculated in

a non-orthogonal basis by substituting equation (27) into

equation (10) and collecting powers of 1/(s2 + 1) directly to

give

U
ðjmjÞ
n0 l0;nlðRÞ ¼

X
j0

X
j

Yn0 l0 j0
�UUðjmjÞj0 l0;jl ðRÞYnlj; ð41Þ

where the non-orthogonal matrix elements, �UUðjmjÞj0 l0;jl ðRÞ, are

given by

�UU
ðjmjÞ

j0l0;jl ðRÞ ¼
Xlþl0

k¼jl�l0 j

A
ðll0jmjÞ
k

XM

q¼0

M

q

� �
ð�1ÞMþq

2Jþ1�qðJ þ 1� qÞ!

� ð�RÞ
k
k̂kJ�k�qþ1=2ð�RÞ ð42Þ

with M = (l + l0 - k)/2 and now J = j + j0 + l + l0 + 2.

Finally, using equation (31) with M = 0 and J = l + j, it is

straightforward to apply the inverse Bessel transform to

equation (27) to give

SnlðrÞ ¼�3=2
X

j

Ynlj

1

2lþjþ1ðl þ jþ 1Þ!
ð�rÞlk̂kjþ1=2ð�rÞ

¼�3=2
X

j

YnljBjlð�rÞ; ð43Þ

where the Bjlð�rÞ are the well known B-functions, or BTOs

(Filter & Steinborn, 1978). In other words, equation (43)

shows that ETOs correspond to orthogonalized BTOs.

2.7. Correlation algorithm and complexity analysis

To illustrate an application of our approach, we demon-

strate the superposition of a pair of similar proteins, A and B,

with each protein initially centred at the origin and repre-

sented as a single three-dimensional function [equation (1)],

e.g. steric density or electrostatic charge. Letting AðrÞ and BðrÞ

represent the pair of properties to be correlated, it is then

convenient to express the correlation as

Cð�1; �1;R; �2; �2; �2Þ ¼

Z
½T̂Tzð�RÞR̂Rð0; �1; �1ÞAðrÞ�

� ½R̂Rð�2; �2; �2ÞBðrÞ� dV; ð44Þ

where R̂Rð�; �; �Þ represents an Euler rotation operator,

R̂Rð�; �; �Þ � R̂Rzð�ÞR̂Ryð�ÞR̂Rzð�Þ, and where T̂Tzð�RÞ translates

the rotated AðrÞ by R along the negative z axis. We could have

chosen instead to translate the rotated BðrÞ along the positive

z axis. We use an icosahedral tessellation of the sphere to

generate near-regular ð�; �Þ rotational samples for each

molecule (Ritchie & Kemp, 1999). If the proteins are similar,

the translational part of the search will normally be small. In

any case, we seek to find the maximum of the expansion

Cð�1; �1;R; �2; �2; �2Þ ¼
X

nln0 l0mm0m00

T
ðjm0jÞ
n0 l0;nlðRÞR

ðl0Þ
mm0 ð0; �1; �1Þ

� an0 l0m0R
ðlÞ
mm00 ð�2; �2; �2Þbnlm00 : ð45Þ

The real rotation matrix elements, R
ðlÞ
mm0 ð�; �; �Þ, may be

calculated efficiently using recursion formulae (Navaza, 1990;

Ritchie & Kemp, 1999). However, the cost of computing

equation (45) as it stands scales in the order of O(N7)

operations for each trial orientation. A much more efficient

strategy is to compute the sum in stages using precalculated

rotation and translation matrix elements. For example, vectors

of coefficients representing different three-dimensional

ð�1; �1;RÞ orientations of molecule A may be calculated in

O(N3) � [O(N) + O(N2)] = O(N5) operations per vector

(orientation) using

a
�1�1
nlm ¼

X
m0

R
ðlÞ
mm0 ð0; �1; �1Þanlm0 ð46Þ

and

a
R�1�1

nlm ¼
X
n0 l0

T
ðjmjÞ
nl;n0 l0 ð�RÞa

�1�1

n0 l0m: ð47Þ
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Similarly, vectors of rotated instances of molecule B may be

calculated in O(N3) � O(N) = O(N4) operations per orien-

tation using

b
�2�2
nlm ¼

X
m0

R
ðlÞ
mm0 ð0; �2; �2Þbnlm0 : ð48Þ

The final degree of freedom is a twist rotation about the z axis,

which could be applied to molecule B as

b
�2�2�2
nlm ¼

X
m0

R
ðlÞ
mm0 ð�2; 0; 0Þb

�2�2

nlm0 ð49Þ

¼
X

m0

b
�2�2

nlm0 cos m0�2 þ b
�2�2

nl �mm0
sin �mm0�2: ð50Þ

However, it is more efficient to complete the correlation by

iterating combinatorially over all pairs of the above-calculated

A and B orientations in O(N) � O(N2) = O(N3) operations

per iteration using

P�1�1R�2�2
m ¼

X
nl

a
R�1�1

nlm b
�2�2

nlm ð51Þ

and

Q�1�1R�2�2
m ¼

X
nl

a
R�1�1

nlm b
�2�2

nlm ; ð52Þ

followed by an inner iteration over �2 using

Cð�1; �1;R; �2; �2; �2Þ ¼
X

m

P�1�1R�2�2
m cos m�2

þQ�1�1R�2�2
m sin �mm�2; ð53Þ

which clearly scales as O(N) per trial orientation. The calcu-

lation of equation (53) for multiple angular samples, M, where

M � N, may be performed in OðM log MÞ operations by using

a one-dimensional FFT. However, because all quantities here

are real, when N � 16, we use a single real FHT instead of the

complex FFT to obtain around a 10% speed-up. Otherwise, it

is faster to compute equation (53) explicitly for each value of

�2 in O(MN) time. Thus, despite the relatively high cost of

rotating [O(N4)] and translating [O(N5)] individual three-

dimensional coefficient vectors, it can be seen that the above

scheme reduces the cost of the combinatorial part of a six-

dimensional correlation to just two inexpensive nested itera-

tions, with the inner cycle costing only O(N) operations or less

per trial orientation.

3. Results

3.1. Verification and numerical precision of expressions

In order to verify our implementation, numerical results

from the analytic translation matrix element expressions were

compared with those from a two-dimensional numerical

integration of equation (3) and a one-dimensional integration

of equation (10). The two-dimensional integration was calcu-

lated over a regular 200 � 200 grid in the ½r; cosð�Þ� plane with

r ranging from 0 to 50 Å. The one-dimensional integration

used 200 steps in � in a log-numerical scheme using

Z1

0

~RRnlð�Þ ~RRn0 l0 ð�Þjkð�RÞ�2 d�

’
X�200¼5�108

�1¼10�4

~RRnlð�iÞ
~RRn0 l0 ð�iÞjkð�iRÞ�

2
i expð�iÞ��i ð54Þ

with �i = ln�i and ��i = �i � �i�1. In both cases, increasing the

number of integration steps or integration range gave a

negligible effect on the numerical results. When calculating

the angular coefficients A
ðll0 jmjÞ
k [equation (11)] for the one-

dimensional integration, we found it became essential to use

extended-precision arithmetic for N � 16 due to the many

large factorials in Wigner’s formula for the 3–j symbols

(Biedenharn & Louck, 1981a). Hence an array of coefficients

was precalculated using 256-bit arithmetic using the GMP

arbitrary precision math library (http://www.swox.com/gmp/).

We note that Tuzan et al. (1998) describe a procedure for

calculating 3–j symbols using only single-precision arithmetic,

but this requires significantly more programming than our

current approach. Nonetheless, the remaining calculations do

not require such high-precision arithmetic. For example, when

using 128-bit arithmetic, the analytic calculations agreed with

the numerical integration results to within three decimal digits

or more for all matrix elements up to N = 32 for all translations

up to R = 9 Å in the GTO basis, and up to R = 90 Å in the ETO

basis. As an additional check, the orthonormality of both the

GTO and ETO translation matrices was verified by evaluating

the orthogonality formula equation (13) at a reduced distance

of 	 = 0.1. This gave zero or unity, as appropriate, to within at

least eight decimal digits up to N = 20, and to within at least

two decimal digits for all translation matrices up to N = 32.

Hence we are confident that our formulae and implementation

are correct.

However, the above tests indicate that numerical precision

can fall off significantly at high order. Table 1 presents further

details on the overall computational cost and numerical

precision for calculating GTO translations. Table 2 gives the

corresponding results for the ETO basis. These tables show

that log-numerical integration is the fastest method and that

this gives better numerical precision than using 64-bit (i.e.

Fortran or C ‘double precision’) arithmetic to evaluate the

analytic expressions for high-order expansions. The tables also

show that the numerical accuracy of the analytic calculations

falls off markedly with high-order expansions unless high-

precision arithmetic is used. This is presumably due to

summing many terms of very different magnitudes. Overall, it

can be seen that the ETO basis gives somewhat longer

calculation times and slightly larger rounding errors than the

corresponding GTO functions. The final columns of each table

show that the non-orthogonal expansion method is at least

twice as fast as using the orthogonal analytic formulae and

gives equal or better precision. To achieve double-precision

programming accuracy for calculations to N = 32, Tables 1 and

2 indicate that translation matrix elements should be calcu-

lated using 160-bit and 192-bit arithmetic for the GTO and

ETO bases, respectively. Our correlation algorithm has the
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option to use either non-orthogonal expansions for ‘on the fly’

translations or to calculate and store orthogonal translation

matrices. In the latter case, the matrix elements may be stored

and subsequently used in ordinary double-precision arith-

metic.

3.2. Protein superposition correlation example

Fig. 1(A) shows some GTO steric density representations of

a pair of globular protein domains, namely the superantigens

Streptococcal pyrogenic exotoxin A1 (PDB code 1B1Z)

(Papageorgiou et al., 1995) and the Staphylococcus aureus

exotoxin SEC3 (PDB code 1 JCK) (Fields et al., 1996). These

globular proteins have a relatively low sequence identity of

46%, but share a highly similar fold. Hence they may be

superposed well by conventional least-squares fitting of

conserved C� coordinates. However, in this illustration the

superposition was performed by maximizing the overlap

between the respective GTO steric density expansions using

correlations to N = 6. A near-identical superposition (not

shown) was also achieved by correlating electrostatic charge

densities in the ETO basis. Fig. 1(B) shows the corresponding

backbone traces in the calculated superposition, along with

the molecular surfaces from which the GTO expansions were

derived. It can be seen that the high-order expansions capture

the detailed shape of each protein remarkably well, although

the low-order expansions still encode sufficient steric infor-

mation to allow a very good global superposition to be

calculated. The superposition shown was calculated by

searching over some 21 � 106 trial orientations generated

from 162 ð�; �Þ icosahedral angular samples for each protein,

128 twist samples in �2, and 40 distance steps of 0.25 Å. After

each cycle over the twist angle, the best overlap score was

saved along with the corresponding coordinate values in a

block of memory sufficient to store around 106 orientations.

As the search progressed, this memory block was periodically

sorted and culled. Hence there is essentially no practical limit

on the number of trial orientations that may be evaluated and

subsequently stored. In this example, the total memory usage

never exceeded 15 Mbyte and the overall correlation time was

under 8 s on a 2 GHz Pentium Xeon processor. This corre-

sponds to a rate of 6 � 106 trial orientations s�1, or just a few

hundred arithmetic operations per orientation.

4. Discussion

Conceptually, our approach follows in the spirit of Crowther’s

original spherical harmonic plus spherical Bessel method of

correlating Patterson maps (Crowther, 1972). However, by

replacing the Bessel functions with a set of orthonormal radial

basis functions which are eigenfunctions of the spherical

Bessel transform, our SPF approach extends this rotation-

centric representation in a way which also allows the effect of

research papers

814 David W. Ritchie � Polar Fourier translation matrices J. Appl. Cryst. (2005). 38, 808–818

Table 2
ETO basis vector translation times and accuracy.

This table lists the computation times in s and gives in brackets the number of digits of precision for calculating and using ETO translation matrices to order N, as
described in the legend for Table 1. For the final two columns, higher precision arithmetic was used than in Table 1.

N Integrals 2D64 1D64 A64 A128 N128 A192 N192

6 504 0.3 (3) 0.01 (7) 0.03 (14) 0.04 (16) 0.01 (16) 0.04 (16) 0.01 (16)
9 2871 1.4 (3) 0.02 (6) 0.07 (11) 0.08 (16) 0.03 (16) 0.08 (16) 0.04 (16)

12 10374 4.3 (2) 0.05 (6) 0.17 (6) 0.21 (16) 0.10 (16) 0.24 (16) 0.12 (16)
16 38760 14.8 (3) 0.17 (5) 0.61 (1) 0.79 (16) 0.41 (16) 0.98 (16) 0.47 (16)
20 109802 45.1 (2) 0.46 (5) 1.85 (0) 2.47 (14) 1.29 (14) 3.23 (16) 1.50 (16)
25 315315 123.3 (2) 1.40 (5) 6.23 (0) 8.43 (7) 4.20 (7) 10.87 (16) 4.92 (16)
30 752928 287.5 (2) 3.89 (5) 17.17 (0) 22.80 (0) 11.24 (0) 30.35 (16) 13.42 (16)
32 1026256 391.6 (1) 5.89 (4) 24.62 (0) 33.11 (0) 16.12 (0) 44.27 (15) 19.00 (15)

Table 1
GTO basis vector translation times and accuracy.

This table lists the total number of distinct non-trivial matrix elements (integrals) for GTO translation matrices to order N, along with the time to calculate each
matrix and translate a unit coefficient vector by 1 Å along the positive z axis. The remaining columns are labeled as 2D64: matrix elements calculated by two-
dimensional numerical integration of equation (3) using a 200 � 200 grid in the ðr; �Þ plane, working in 64-bit arithmetic; 1D64: one-dimensional log-numerical
integration of equation (54) using 200 steps in ln� and 64-bit arithmetic; A64: analytic integration [equation (23)] using 64-bit arithmetic, etc; N128: non-
orthogonal analytic integration [equaions (36) and (38)–(40)] in 128-bit arithmetic, etc. All times are in CPU s on a 2 GHz Pentium Xeon processor. Numbers in
brackets give a measure of the overall precision of the result. For example, an entry of (16) means that the root mean squared (RMS) error in the translated vector
is no more than O(10�16). This is derived from the RMS deviation between a vector translated by a matrix calculated using the given number of bits of arithmetic
and one for which 512-bit (effectively infinite precision) arithmetic was used.

N Integrals 2D64 1D64 A64 A128 N128 A160 N160

6 504 0.3 (4) 0.00 (12) 0.03 (16) 0.03 (16) 0.01 (16) 0.03 (16) 0.01 (16)
9 2871 1.2 (3) 0.01 (12) 0.07 (12) 0.10 (16) 0.02 (16) 0.07 (16) 0.03 (16)

12 10374 3.6 (3) 0.04 (12) 0.21 (12) 0.19 (16) 0.10 (16) 0.20 (16) 0.09 (16)
16 38760 12.2 (3) 0.15 (11) 0.58 (9) 0.77 (16) 0.38 (16) 0.82 (16) 0.39 (16)
20 109802 37.2 (2) 0.45 (8) 1.90 (5) 2.54 (16) 1.19 (16) 2.73 (16) 1.26 (16)
25 315315 102.4 (2) 1.36 (5) 6.13 (1) 8.47 (16) 3.97 (16) 9.30 (16) 4.24 (16)
30 752928 233.1 (2) 3.65 (3) 17.41 (0) 23.38 (15) 10.83 (15) 25.78 (16) 11.72 (16)
32 1026256 315.1 (2) 5.39 (2) 24.49 (0) 33.49 (13) 15.57 (14) 36.82 (16) 16.74 (16)



translations to be calculated analytically. We have presented

efficient spherical Bessel transform methods of calculating

translation matrix elements for both GTO and ETO radial

basis functions. Although it is well known that the Laguerre–

Gaussian functions are eigenfunctions of the spherical Bessel

transform, we believe the methods of calculation and the

expressions presented here, especially for the ETO basis, are

straightforward yet novel. However, it is necessary to call

upon a significant body of special function theory to derive

analytic forms for the SPF translation matrices, and the

resulting expressions require considerably more programming

to implement than the FFT. Nonetheless, the computational

‘pay-off’ that follows is that once an initial transform into the

SPF basis has been calculated for each molecular property of

interest, a full six-dimensional correlation search may be

performed using only the initial expansion coefficients.

Because all subsequent expressions are entirely real, no

inverse transform is required. On the other hand, computing

high-order matrix elements is relatively expensive. However,

this overhead can be alleviated by calculating non-orthogonal

expansions or by precalculating and storing orthogonal

translation matrices for subsequent use.

There are also close parallels between our technique and

the complex five-dimensional FFT-based EM density fitting

approach of Kovacs et al. (2003). However, their approach is

currently limited to relatively low-order (L = 16) spherical

harmonic expansions in order to stay within the memory limits

of contemporary 32-bit computers, and their use of discrete

radial envelope functions requires the translational compo-

nent of the correlation to be computed by two-dimensional

numerical integration (Kovacs et al.,

2003). Unlike the translation matrix

elements used here, these integrals

cannot be pre-computed as a one-off

cost because they depend intrinsically

on the shapes to be compared.

In general, FFT-based correlation

algorithms use a power of two for both

the polynomial order of the repre-

sentation and the number of search

increments in each degree of freedom in

the correlation. For example, for

angular searches, a rotational FFT step

size of at least 64 is desirable in order to

give reasonably small search increments

(e.g. 360�/64 ’ 5.6�). Similarly, Carte-

sian FFT docking algorithms often use

grids of 643 or 1283 elements in order to

accommodate all possible translations

of one protein about the other with a

sub-Å step size (Katchalski-Katzir et al.,

1992). Hence, unless a truncation tech-

nique is employed (Segal & Eisenstein,

2005), most FFT docking algorithms

implicitly use a very high-order poly-

nomial representation for each protein.

In contrast, in the SPF approach the

polynomial order and search step size may easily be varied

independently. In fact, because our polynomial order, N, is

generally significantly less than the corresponding FFT order

(say M) for any given coordinate, we typically have O(MN)<�
O(M ln M). Thus, in practice, it is not a disadvantage that our

correlation algorithm uses an FFT (actually a real FHT) in at

most just one of the search coordinates. Indeed, by calculating

and reusing vectors of rotated and translated expansion

coefficients, the complexity analysis given above shows that

the inner iteration of the combinatorial part of a six-dimen-

sional search scales as O(N) or better per trial orientation.

Given the modest memory overhead of under 15 Mbyte of

our low-order N = 6 superposition calculation (even our most

exhaustive high-order N = 32 docking correlations use under

200 Mbyte), and considering that our superposition correla-

tion time compares very favourably with the timings in Table I

of Kovacs et al. (2003), it would seem that the SPF approach

could offer significant computational advantages to both EM

and MR applications. The straightforward analytic method of

calculating ETO translation matrix elements presented here

could also provide a useful new alternative to using BTO

expansions to calculate STO overlap integrals in quantum

mechanics. In principle, GTO and ETO expansions should

give comparable results if suitable scale factors are chosen and

if a sufficient number of terms are used. However, in practice,

the ETOs decay much more gradually with distance than the

GTOs. In our experience, the GTO basis works well for both

superposing and docking globular protein domains, whereas

the ETO basis is more appropriate for rapidly calculating

electrostatic interactions (Ritchie & Kemp, 2000). However,

research papers

J. Appl. Cryst. (2005). 38, 808–818 David W. Ritchie � Polar Fourier translation matrices 815

Figure 1
Illustration of the GTO shape representation and superposition of a pair of globular proteins, the
superantigens SpeA and SEC3. (A) From top left to bottom right: the steric density functions of
SpeA and SEC3 shown at expansion orders N = 6, 12, 16, 20, 25 and 30. Each pair is in the same
superposed orientation, separated horizontally for clarity, with SpeA on the left and SEC3 on the
right. For visualization, each surface shape was contoured from the three-dimensional density
function as described previously (Ritchie, 2003). Expansions to N = 32 are visually almost
indistinguishable from the N = 30 expansions, and are not shown here. (B) The corresponding
backbone traces of the superposition with SpeA in yellow and SEC3 in cyan (top), the separated
backbones with SpeA on the left and SEC3 on the right (centre), and the original molecular surfaces
from which the GTO density representations were derived (bottom).



ETOs might also be a good choice for correlating very large

low-resolution macromolecular structures. The results here

indicate that either type could be used to calculate e.g. real-

space electron density correlations. Although the example

presented here shows that SPF expansions have good

computational properties, it is not yet clear how the algorithm

might perform when the translational component is large or

when very high angular resolution is required. It would also be

interesting to test the algorithm on a wider range of examples.

Hence a more extensive study of the utility of the approach is

planned. Developing a fast and robust six-dimensional

correlation algorithm would be useful in several areas

including e.g. molecular replacement, docking proteins into

electron microscopy density maps, and searching the PDB for

structural homologues.

5. Conclusion

Spherical Bessel transform formulae have been given for the

analytic calculation of translation matrices for SPF expansions

using GTO and ETO radial basis functions. To our knowledge,

the formulae presented to translate ETO basis functions and

to relate ETOs to BTOs are novel. It has been shown that

translation matrices for both the GTO and ETO bases may be

calculated accurately up to N = 32 using an extended-precision

arithmetic library. The calculation may be accelerated by over

a factor of two by using non-orthogonal translation matrix

elements, which give equal or better precision. Although our

SPF correlation algorithm uses an FFT in only one of the

search coordinates, this is not a practical disadvantage for

relatively low-resolution superposition and docking correla-

tions. On the contrary, the SPF approach is very economical in

both CPU time and computer memory. By ordering the sub-

expressions according to computational cost, an exhaustive

six-dimensional superposition correlation of a pair of protein

shapes can be performed in a matter of seconds on a

contemporary personal computer. This demonstrates the

utility of the SPF approach. It is proposed that the techniques

described here, which have been implemented in the protein

docking and superposition program Hex (http://

www.csd.abdn.ac.uk/hex/), may be of value in other fields, such

as MR and EM, that need to calculate real-space six-dimen-

sional correlations.

APPENDIX A
Derivation of equation (10)

The two-coordinate systems r = ðr; �; �Þ and r0 = r � T =

ðr0; �0; �Þmay be related functionally by multiplying the vector

equation

r ¼ Tþ r0 ð55Þ

by an arbitrary complex vector ik and by exponentiating each

side to give

expðik 	 rÞ ¼ expðik 	 TÞ expðik 	 r0Þ: ð56Þ

Then, substituting k = ð�;�;�Þ, r = ðr; �; �Þ, r0 = ðr0; �0; �0Þ,
and T = ðR; �; �Þ into Raleigh’s plane wave equation

(Bransden & Joachain, 1997)

expðik 	 rÞ ¼ 4�
X1
l¼0

Xl

m¼�l

iljlð�rÞYlmð�;�Þ


Ylmð�; �Þ; ð57Þ

givesX
pq

ipjpð�rÞYpqð�;�Þ


Ypqð�; �Þ

¼ 4�
X

kj

X
st

ikþsjkð�RÞYkjð�;�Þ

Ykjð�; �Þjsð�r0Þ

� Ystð�;�Þ


Ystð�

0; �0Þ; ð58Þ

where Ypqð�; �Þ etc. are complex spherical harmonics. Here,

each summation has an infinite range, subject to jqj< p, etc.

Using the identity Ystð�;�Þ

 = ð�1ÞtYstð�;�Þ, multiplying

both sides by Ylmð�;�Þ, and integrating over ð�;�Þ gives

jlð�rÞYlmð�; �Þ

¼ 4�
X

kj

X
st

ikþs�l jkð�RÞYkjð�; �Þjsð�r0ÞYstð�
0; �0Þð�1Þt

�

Z
Ylmð�;�ÞYstð�;�ÞYkjð�;�Þ


 d�: ð59Þ

Substituting the standard formula for Gaunt’s integral on the

right gives

jlð�rÞYlmð�; �Þ

¼ 4�
X

kj

X
st

ikþs�l jkð�RÞYkjð�; �Þjsð�r0ÞYstð�
0; �0Þð�1Þtþj

�

�
ð2l þ 1Þð2sþ 1Þð2kþ 1Þ

4�

�1=2�
l s k

0 0 0

��
l s k

m t j

�
: ð60Þ

Now, the first 3–j symbol vanishes when l + s + k is odd, so the

phase factor for the surviving terms is always real. Further-

more, the second 3–j symbol vanishes unless m + t + j = 0.

Hence the expression may be reduced to a triple infinite sum

by substituting j = m � t:

jlð�rÞYlmð�; �Þ

¼ 4�
X

k

X
st

ð�1Þðkþs�lÞ=2jkð�RÞYk;m�tð�; �Þjsð�r0ÞYstð�
0; �0Þð�1Þm

�

�
ð2l þ 1Þð2sþ 1Þð2kþ 1Þ

4�

�1=2�
l s k

0 0 0

��
l s k

m t t �m

�
: ð61Þ

When the translation is only in the z direction, � = 0 and either

� = 0 or � = �, and �0 = �, which entails t = m. This allows the

summation over t to be eliminated, and the expression

becomes valid for real as well as complex spherical harmonics.

For a positive z translation, the harmonic Yk;0(� = 0, 0)

reduces to

Yk;0ð0; 0Þ ¼

�
2kþ 1

4�

�1=2

: ð62Þ

Then, collecting the angular factors, relabelling s! l0, and

restricting the range of k according to the triangle rule for the

3–j symbols, gives the plane wave addition theorem:
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jlð�rÞYlmð�; �Þ ¼
X

l0

Xlþl0

k¼jl�l0 j

A
ðll0jmjÞ
k jkð�RÞjl0 ð�r0ÞYl0mð�

0; �Þ;

ð63Þ

where the angular coefficient A
ðll0 jmjÞ
k is given by

A
ðll0 jmjÞ
k ¼ ð�1Þðkþl0�lÞ=2þm

ð2kþ 1Þ
�
ð2l þ 1Þð2l0 þ 1Þ

�1=2

�

�
l l0 k

0 0 0

��
l l0 k

m m 0

�
: ð64Þ

For a negative translation, an additional factor of ð�1Þl�l0

appears in the above expression because Yk;0(� = �, 0) =

ð�1ÞkYk;0ð0; 0Þ and because kþ l0 � l is even.

Now, multiplying both sides of equation (63) by

ð2=�Þ1=2 ~RRnlð�Þ�
2 and integrating over � [i.e. applying the

inverse Bessel transform, equation (9)] gives

RnlðrÞYlmð�; �Þ ¼ ð2=�Þ
1=2
X

l0

Xlþl0

k¼jl�l0j

A
ðll0 jmjÞ
k

�

Z1

0

~RRnlð�Þjkð�RÞjl0 ð�r0Þ�2 d�Yl0mð�
0; �Þ:

ð65Þ

Then, multiplying each side by Rn0j0 ðr
0ÞYj0m0 ð�

0; �Þ and inte-

grating over all space in the corresponding variables gives

T
ðjmjÞ
n0 j0;nlðRÞ ¼ ð2=�Þ

1=2
X

l0

�j0 l0

Xlþl0

k¼jl�l0 j

A
ðll0 jmjÞ
k

�

Z1

0

Z1

0

Rn0 l0 ðr
0Þjl0 ð�r0Þ ~RRnlð�Þjkð�RÞ�2 d� r02 dr0:

ð66Þ

Finally, recognizing the integral in r0 as the spherical Bessel

transform of Rn0 l0 ðr
0Þ, the result reduces to

T
ðjmjÞ
n0 l0;nlðRÞ ¼

Xlþl0

k¼jl�l0 j

A
ðll0jmjÞ
k

Z1

0

~RRn0 l0 ð�Þ ~RRnlð�Þjkð�RÞ�2 d�: ð67Þ

This generalizes the expression given by Danos & Maximon

(1965) for translating multipole expansions to the more

general case for arbitrary orthonormal radial functions, RnlðrÞ.

APPENDIX B
Derivation of equation (31)

Following Weniger & Steinborn (1983), but correcting a

mistake in their working [here, equation (75) onwards], a

closed-form expression for the integral

I ¼

Z1

0

x2mþk

ðx2 þ 1Þnþ2
jkðxyÞx2 dx ð68Þ

may be obtained with the help of the basic relation (Erdelyi et

al., 1953b, p. 24, equation 20 therein):

Z1

0

x�þ1

ðx2 þ a2Þ

þ1

J�ðxyÞ dx ¼
a��
y


2
�ð
þ 1Þ
K��
ðayÞ; ð69Þ

where J�ðzÞ is a general Bessel function of the first kind, and

K�ðzÞ is a modified Bessel function of the second kind. When

the degree � is half-integral, which is the case here, K�ðzÞ has a

closed form:

Knþ1=2ðzÞ ¼ ð�=2zÞ1=2 expð�zÞ
Xn

m¼0

�
1

2z

�m
ðnþmÞ!

m!ðn�mÞ!
: ð70Þ

However, this function has a singularity at the origin, so it is

useful to use instead the reduced Bessel function

k̂knþ1=2ðzÞ ¼ ð2z=�Þ1=2
znKnþ1=2ðzÞ; ð71Þ

which is well behaved for all z. Equation (69) can then be cast

in the desired form using the standard relation (Hochstadt,

1971):

ð1=z @=@zÞmz�J�ðtzÞ ¼ tmz��mJ��mðtzÞ: ð72Þ

Hence putting � = � + m and applying ð1=y @=@yÞmy�þm to each

side of equation (69) gives

Z1

0

x�þ2mþ1

ðx2 þ a2Þ

þ1

J�ðxyÞ dx

¼
a�þm�


y�2
�ð
þ 1Þ
ð1=y @=@yÞmy�þmþ
K�þm�
ðayÞ;

ð73Þ

or in terms of the reduced Bessel function [equation (71)]

Z1

0

x�þ2mþ1

ðx2 þ a2Þ

þ1

J�ðxyÞ dx

¼ ð�=2Þ1=2 1

a2
y�2
�ð
þ 1Þ
ð1=y @=@yÞmðayÞ2
k̂k�þm�
ðayÞ:

ð74Þ

It can be shown (Weniger & Steinborn, 1983) that

ð1=z @=@zÞmz�k̂k�ðzÞ

¼ ð�1Þm
Xm

q¼0

�
m

q

�
2qð��=2Þqz��2qk̂k��mþqðzÞ: ð75Þ

Hence setting � = 2
 and substituting equation (75) into

equation (74) gives

Z1

0

x�þ2mþ1

ðx2 þ a2Þ

þ1

J�ðxyÞ dx

¼ ð�=2Þ1=2 a2m�2
ð�1Þm

2
�ð
þ 1Þ

Xm

q¼0

�
m

q

�
2qð�
Þqy2
�2q��k̂k��
þqðayÞ:

ð76Þ

Here, 
 is an integer so the rising factorial may be recast as

ð�
Þq ¼ ð�1Þq
!=ð
� qÞ!: ð77Þ
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We also have 
>� + 2m and so to keep the degree of the

Bessel function positive it is convenient to use the identity

k̂k��ðzÞ ¼ z�2�k̂k�ðzÞ: ð78Þ

Some further working then gives

Z1

0

x�þ2mþ1

ðx2 þ a2Þ

þ1

J�ðxyÞ dx

¼ ð�=2Þ1=2 a2�þ2m�2


2


Xm

q¼0

�
m

q

�
ð�1Þmþq2q

ð
� qÞ!
y�k̂k
���qðayÞ:

ð79Þ

Finally, putting 
 = n + 1, � = k + 1/2, a = 1, and replacing

Jkþ1=2ðxyÞ by the corresponding spherical Bessel function gives

Z1

0

x2mþk

ðx2 þ 1Þnþ2
jkðxyÞx2 dx

¼
�

2

Xm

q¼0

�
m

q

�
ð�1Þmþq

2nþ1�qðnþ 1� qÞ!
ykk̂kn�k�qþ1=2ðyÞ:

ð80Þ
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