
teaching and education in crystallography

832 doi:10.1107/S0021889804016048 J. Appl. Cryst. (2004). 37, 832±835

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 28 April 2004

Accepted 30 June 2004

# 2004 International Union of Crystallography

Printed in Great Britain ± all rights reserved

HELIX: a helical diffraction simulation program

Carlo Knuppa,b* and John M. Squirea

aBiological Structure and Function Section, Biomedical Sciences Division, Imperial College

London, London SW7 2AZ, UK, and bStructural Biophysics Group, School of Optometry and Vision

Sciences, Redwood Building, Cardiff University, Cardiff CF10 3NB, UK. Correspondence e-mail:

knuppc@cf.ac.uk

The program HELIX has been devised as a simple aid to understanding the

origin and appearance of ®bre diffraction patterns from helical structures.

Helices are common as preferred conformations in both natural and synthetic

macromolecules (e.g. DNA, �-helices, polysaccharides, synthetic polymers), and

occur frequently in extended macromolecular aggregates (e.g. actin ®laments,

myosin ®laments, microtubules, amyloid ®laments etc.). For this reason, a simple

way of visualizing the kinds of diffraction patterns that these structures can give

should have educational value and should also be useful as a quick means of

testing possible symmetries in structural investigations before embarking on full

helical diffraction analysis. Despite its simplicity, there is no other public

program that provides these possibilities. The HELIX program, running under

Microsoft Windows, is freely available from the CCP13 website (http://

www.ccp13.ac.uk).

1. Introduction

The technique of ®bre diffraction and the theory of helical

diffraction were early developments in 20th century molecular

structural studies and can be said to have formed a central part

in the elucidation of the double-helical structure of DNA,

which is probably the single greatest discovery in biology in

recent times. The determination of the structures of the

�-helix, the �-sheet, the triple helical structure of collagen and

the double helix of DNA were all based on or con®rmed by

®bre diffraction analysis. The theory of helical diffraction was

developed in parallel in the early 1950s by Cochran et al.

(1952) and Stokes (unpublished), and since then these

theories have been fully developed and described in numerous

reports (Holmes & Blow, 1965; Harford & Squire, 1997;

Squire, 2000; Chandrasekaran & Stubbs, 2001). However,

understanding the relationship between a polymer structure

and the diffraction pattern generated from it is not a trivial

task, especially for those who are not diffractionists, and there

are many who wish to use ®bre diffraction methods as tools in

their research (e.g. in probing muscle structure) without

carrying out complete modelling studies. In addition, there are

others who seek to analyse ®bre diffraction data and who have

structural models in mind, but do not have the programs

available for quick tests of their ideas.

In previous publications we have sought to illustrate helical

diffraction in a non-mathematical way by means of optical

diffraction analogues (Squire, 1981, 2000; Harford & Squire,

1997). For the same kind of reason, we have now developed

the HELIX program, described here, as a teaching aid to

illustrate the nature of helical diffraction patterns and how

these patterns change as a function of the different parameters

which de®ne the symmetry and size of the structure. However,

it is apparent that HELIX will also be useful for those wishing

to carry out preliminary tests of possible interpretations of

their data in terms of alternative molecular models prior to a

full analysis. The HELIX program is freely available from the

CCP13 website (http://www.ccp13.ac.uk), is easy to use, and,

we hope, will be highly educational. However, it is not

intended to provide a means to determine fully the corrected

diffracted intensities for a completely described molecular

model. This can be achieved with other more research-

oriented diffraction programs [e.g. the CCP13 programs

MOVIE (AL-Khayat et al., 2004) and LALS (Arnott &

Wonacott, 1966; Okada et al., 2003)].

2. Description of the HELIX program

HELIX is a didactic program designed for students and

researchers who want to improve their understanding of the

relationship between structural models of helical molecules or

®laments and their diffraction patterns. It runs under Micro-

soft Windows 98 or XP and was developed with Microsoft

Visual Basic 6.0. HELIX allows the construction of simple

models through the input of a series of structural parameters

via a user-friendly graphical user interface and it produces a

display of the model so that the structure can be visualized and

checked. It then calculates the cylindrically averaged diffrac-

tion pattern to a chosen resolution (q range) for visual

inspection. It also allows the chosen model parameters to be

saved as a parameter ®le, which can be re-input at a later time

if required, it can save the full coordinates of the model

structure that is generated, and it can save the calculated

simulated diffraction pattern as an image. If desired, the

output coordinate data can be used in other CCP13 programs



(e.g. FibreTrans; see http://www.ccp13.ac.uk) to generate a

more complete description of the diffraction pattern.

In addition to its pedagogic value, the HELIX program can

be extremely useful when recording experimentally a

diffraction pattern from a novel polymer for which relatively

little information is available. In particular, the program

allows rapid qualitative testing of different possible helical

structures for comparison with the recorded diffraction

patterns. The information obtained from HELIX can itself be

re®ned to mimic more closely the observed data, and the

parameter information can then be used as input to other

more sophisticated programs to improve and re®ne the model.

3. Parameters of a helix

The symmetry of a helical structure can be de®ned in terms of

a number of parameters, as illustrated in Fig. 1(a). These

include the subunit axial translation (h), the pitch of the helix

(P), the repeat of the helix (C) if the number of subunits in a

pitch is not an integer, and the radius of the helix (r). The

number of subunits in one pitch is clearly N = P/h, and since

the helix turns through 360� around the helix axis in a

complete pitch, the amount turned from one subunit to the

next is ' = 360�/N, an angle which we term the azimuthal

rotation angle between subunits. As an example, the structure

of the B form of DNA has exactly ten sugar-phosphate-base

subunits along one strand in a complete pitch length.

This might be written as a 10/1 or 101 helix. The subunit

axial translation is 3.4 AÊ , the pitch is 10 � 3.4 AÊ , and the

azimuthal rotation angle between subunits is 360/10 = 36�.
Because there is a whole number of subunits in one pitch, in

this case the repeat C is the same as the pitch P.

The form of the helical diffraction pattern (Fig. 1b) is a

series of layers of intensity, so-called layer-lines, perpendicular

to the helix axis. The line in the diffraction pattern (by

convention taken to be vertical) that is parallel to the helix

axis and passes through the middle of the pattern (i.e. through

the undiffracted beam direction) is termed the meridian and

diffraction peaks on it are called meridional re¯ections. The

horizontal line through the pattern centre is called the equator

and this has equatorial re¯ections. The equator is part of the

series of horizontal layer-lines. It is not appropriate here to

give details of ®bre diffraction theory, which is dealt with very

well elsewhere (Holmes & Blow, 1965; Harford & Squire,

1997; Squire, 2000). Suf®ce it to say that, bearing in mind the

reciprocal relationship between normal (real) space and

diffraction (reciprocal) space, the positions of the layer-lines

are related to successive orders of the repeat C of the helix.

This means that, starting from the equator, they are at

spacings related to 0/C (the equator), 1/C (the ®rst layer-line),

2/C (the second layer-line) and so on. All of these layer-lines

have intensity each side of the meridian, but not on the

meridian, except for the layer-lines which correspond in

spacing to orders of the subunit axial translation (h). These

meridional intensities occur at axial positions related to m/h,

where m is an integer, positive, negative or zero.

As a good rule of thumb, if one is dealing with a helix with S

subunits in T turns of the helix, then the diffraction pattern

can be drawn by counting out to the Sth layer-line at S/C from

the equator and placing a meridional re¯ection there (see

Fig. 1b), and then counting out to the Tth layer-line at T/C

from the equator and putting re¯ections each side of the

meridian there. One can also count T layer-lines up and down

from the meridional re¯ection on the Sth layer-line and put

other off-meridional peaks there at the same radial positions

as on the layer-line at T/C from the equator.

Finally, another important parameter of a helix is its radius

(r). Because features in the diffraction pattern are at distances

which are reciprocal to distances in the object, helices with a

small radius will give off-meridional peaks at large reciprocal

radii (R) along the layer-lines (they will be a long way from the

meridian) and helices with a large radius will give peaks close

to the meridian. Putting this the other way around, the radial

position (R) of the peaks in the diffraction pattern can be used

to determine the radius (r) of the helix.

4. Description of the HELIX interface

Fig. 2 shows that the HELIX graphical user interface has

several areas with speci®c roles. On the left-hand side and

along the bottom are boxes where various parameter values

can be inserted (input boxes). On the right is a box where the

structure generated by these parameters will be displayed (it is

one of two picture boxes, namely the Structure Picture Box).

At the top left are two command buttons. One is called

Display Structure, which when activated will use the para-

meters that have been input to generate a structure that is

displayed in the Structure Picture Box. This image can be

adjusted by changing the scale and by changing the position of

the image in the window. When the model structure has been

checked, the second command button, Calculate Fourier

Transform, can be activated and the diffraction pattern of the

object structure will be calculated to the chosen resolution and
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Figure 1
(a) Parameters of a helical structure (in this case a 5/2 or 52 helix, i.e. S = 5
and T = 2) and (b) the sort of distribution of diffracted intensities that is
obtained from the helix in (a). The ®rst meridional peak (m = 1) is on the
®fth layer-line (i.e. S = 5) and the strongest peaks close to the meridian
are on the second layer-line (i.e. T = 2) and related positions (layer-lines
at m � 2).



displayed in the central picture box, namely the Transform

Picture Box. Depending on the number of objects included in

the chosen structure, the transform calculation may take a few

seconds or sometimes much longer. The cursor will display the

busy sign while this is happening. Once calculated, the trans-

form will appear in the Transform Picture Box. The intensity

range in this transform can be adjusted at will by adjusting the

FT Image Greyscale Parameters and then clicking on Refresh

Image.

Once a useful image and diffraction

pattern have been achieved, the

parameters, structure image and

Fourier transform image can be saved,

as mentioned above, using the drop-

down menus at the top of the HELIX

window. There is also a space towards

the top of the window for comments to

be written. These comments will be

saved as part of the parameter ®le. In

addition, the complete HELIX

window can be saved by using Alt +

Print Screen on the computer

keyboard and then pasting the saved

window into a graphics program, as in

Figs. 2 and 3 here.

5. Setting up the simulated
structure and diffraction pattern
of B-DNA

Here we use the example of the

B-DNA structure to illustrate the

application of HELIX. HELIX can be

used to generate multi-stranded

helices since many structures (myosin

®laments, microtubules, troponin on

actin ®laments, etc.) consist of co-axial

helices. The number (n) of strands can

be input as a parameter in the HELIX

interface where it is assumed that the

strands are separated azimuthally by

equal angles 360�/n. Thus, an n-start

or n-stranded helix will have n-fold

rotational symmetry around the helix

axis. However, in the case of n = 2, a

special provision is included to allow

the two strands to be non-equivalent.

If 2 is put into the Number of Strands

input box, then extra parameter boxes

appear (Fig. 3), namely the azimuthal

offset of the second strand and the

axial shift of the second strand. In the

case of a structure with two equivalent

strands, then the azimuthal offset

angle is 180�.
In the case of structures like DNA,

the second strand in the double helix

is not equivalent to the ®rst. In fact, in

reality, the second strand is anti-

parallel to the ®rst, but since HELIX

does not allow the inclusion of
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Figure 3
Simulation of the symmetry and diffraction pattern from B-DNA.

Figure 2
The HELIX graphical user interface.



detailed asymmetric subunit structures, the simulation simply

requires a second strand at the same axial position as the ®rst

but offset by about 140±145� rather than 180�. The resulting

structure, shown in Fig. 3, is very like the basic symmetry of

the B-DNA double helix and the computed transform in Fig. 3

simulates quite well the general distribution of intensity on the

observed layer-lines in the observed X-ray diffraction pattern

of B-DNA, apart from the sampling along the layer-lines (see

Fig. 4).

6. Conclusion

It has been shown that the program HELIX can simulate the

diffraction pattern of a structure like B-DNA. Since it is easy

to use and since such parameters as helical radius, the

monomer size, the q range of the diffraction pattern, and so

on, can be altered at will, it is a very useful means of disco-

vering the effects that these parameters have on the observed

pattern. A much fuller description of the program is given in

the manual available at the CCP13 website. Apart from

simulating B-DNA diffraction, HELIX is equally good at

simulating the observed patterns from many other structures.

The parameter data appropriate for a few well known exam-

ples are shown in Table 1. Many of these structures are also

included as downloadable parameter ®les on the CCP13

website, where some other simulations are also illustrated.

We are indebted to the BBSRC, EPSRC and CLRC for

support of CCP13 (#28/B10368 and #28/B15281) and to the

Wellcome Trust (#061729) for a grant to JMS in support of CK
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Table 1
Parameter values for some well known helical structures for use in simulations generated by the HELIX program.

B-DNA 10/1 A-DNA 11/1 Collagen 10/3
Three-stranded 9/1
myosin ®lament 13/6 Actin ®lament 18/5 Alpha-HELIX

(A) Structure parameters
Axial separation (h) of subunits (AÊ ) 3.4 2.54 2.9 143 27.5 1.49
Rotation (') between subunits (�) 36 32.7 108 40 166.154 100
Monomer centre radial (r) position (AÊ ) 7 9 5 150 25 2.5
Monomer subunit size (AÊ ) 2 1.2 1.5 30 10 0.5
Hand of helix RH RH RH RH LH RH
No. of subunit levels 50 140 140 100 100 140
No. of strands 2 2 1 3 1 1
Azimuthal shift of strand 2 (�) 143 170 N/A N/A N/A N/A
Axial shift of strand 2 (AÊ ) 0 2 N/A N/A N/A N/A

(b) Display parameters
Scale factor 60 100 50 2 100 100
Offset along X (pixels) 240 230 255 250 275 255
Offset along Y (pixels) 645 685 690 680 695 690

(c) Transform parameters
No. of pixels 100 100 100 100 100 100
Maximum resolution (AÊ ) 2.5 2 2 40 20 1.3
Maximum intensity 25 25 10 15 25 25
Minimum intensity 0 0 0 0 0 0

Figure 4
Comparison of (left) the diffraction pattern of B-DNA simulated using
HELIX and the parameters discussed above and (right) a recorded X-ray
diffraction pattern from a ®bre tilted to bring the 3.4 AÊ meridional
re¯ection (m = 1) into the diffraction condition (unpublished pattern
recorded by JMS). This tilting explains why the diffraction features at the
top of the recorded pattern are so strong. The HELIX program, even with
a very simple structure, simulates quite well the relative strengths of the
different layer-lines. However, it does not show the observed sampling of
the layer-lines along vertical row-lines, since lattice sampling effects have
not been included. Here we are simulating the diffraction from a single
molecule which consists of unsampled layer-lines.


