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In high-throughput crystallography, it is possible to accumulate over 1000

powder diffraction patterns on a series of related compounds, often polymorphs.

A method is presented that can analyse such data, automatically sort the

patterns into related clusters or classes, characterize each cluster and identify

any unusual samples containing, for example, unknown or unexpected

polymorphs. Mixtures may be analysed quantitatively if a database of pure

phases is available. A key component of the method is a set of visualization tools

based on dendrograms, cluster analysis, pie charts, principal-component-based

score plots and metric multidimensional scaling. Applications to pharmaceutical

data and inorganic compounds are presented. The procedures have been

incorporated into the PolySNAP commercial computer software.

1. Introduction

In recent years, high-throughput powder diffraction has

become a reality. Experimentally, the laboratory system

consists of a preparation robot in which samples are prepared

using different solvents, rates of evaporation, cooling rates etc.,

which are then evaporated and ®ltered onto a multi-well plate.

Typically there are 8 � 12 = 96 wells. An X-ray source focuses

on each sample in turn; an XYZ stage is used to centre the

sample in the beam. Data are collected in transmission or

re¯ection mode using a two-dimensional detector. The ring

intensities are integrated to give the standard one-dimensional

powder diffraction pattern. Data collection times are short:

typically 1±2 min, and can be less than this. It is, of course,

possible to perform multiple experiments and so accumulate a

series of several hundreds or even thousands of powder

patterns.

Such data has the following features.

(i) Poor signal-to-noise ratio.

(ii) Broad peaks with variable shapes.

(iii) Strong backgrounds.

(iv) Problems with amorphous samples.

(v) Inherent preferred orientation effects.

Despite this, it is required to sort the patterns into related

clusters, characterize each cluster and identify any unusual

samples containing, for example, an unknown or unexpected

polymorph. This is a non-trivial problem which requires a raft

of techniques. In the preceding paper [Gilmore et al., 2004;

subsequently referred to as (I)] we have shown how full-

pro®le patterns can be matched using a combination of

parametric and non-parametric statistical techniques; we now

extend the method to high-throughput crystallography with

the application of cluster methods and multivariate data

analysis. This is then linked to data visualization methods.

2. The method

In this section we describe the techniques required for high-

throughput crystallography. In x3 these are assembled into a

cohesive method of data analysis.

2.1. Generation of the correlation and distance matrices

As discussed in (I), it is possible to generate a correlation

matrix in which the full pro®le of every powder diffraction

pattern in a set of n patterns is matched with every other to

give an n � n correlation matrix q using a weighted mean of

the Spearman and Pearson correlation coef®cients and with

the optional inclusion of the Kolmogorov±Smirnov and

Pearson peak correlation tests. The matrix q can be converted

to a Euclidean distance matrix, d, of the same dimensions via

d � 0:5�1:0ÿ q� �1�
or a distance-squared matrix, D

D � 0:25�1ÿ q�2; �2�
for each entry i,j in d, 0.0 � dij � 1.0. A correlation coef®cient

of 1.0 translates to a distance of 0.0, a coef®cient ofÿ1.0 to 1.0,

and zero to 0.5. There are other methods of generating a

distance matrix from q (see, for example, Gordon, 1981), but

we have found this to be as effective as any other.

For some purposes we also need a dissimilarity matrix S, the

elements of which are de®ned via

sij � 1ÿ dij=d max; �3�
where d max is the maximum distance in matrix d.

2.2. Cluster analysis

Using d, we can now carry out agglomerative hierarchical

cluster analysis to put the patterns into classes as de®ned by



research papers

244 Barr, Dong and Gilmore � High-throughput powder diffraction. II. J. Appl. Cryst. (2004). 37, 243±252

their distances from each other. [Gordon (1981, 1999)

provides an excellent and detailed introduction to the subject;

note that the two editions of this monograph are quite

different, yet complementary; the ®rst edition is especially

recommended as an introductory text.] We begin with a

situation in which each pattern is considered to be in a sepa-

rate class. We then search for the two patterns with the

shortest distance between them, and join them into a single

cluster. This continues in a stepwise fashion until all the

patterns form a single cluster. When two classes (Ci and Cj) are

merged, there is the problem of de®ning the distance between

the newly formed class Ci [ Cj and any other class Ck. There

are a number of different ways of doing this, and each one

gives rise to a different clustering of the patterns, although

often the difference can be quite small. A general algorithm

has been proposed by Lance & Williams (1967) and is

summarized in a simpli®ed form by Gordon (1981), as is

shown in Table 1. The distance between the new class formed

by merging Ci and Cj, and any other class Ck is given by

d Ci [ Cj; Ck

ÿ � � �id Ci;Ck� � � �jd Cj;Ck

ÿ �� �d Ci;Cj

ÿ �
�  d Ci;Ck� � ÿ d Cj;Ck

ÿ ��� ��: �4�
There are a considerable number of possible clustering

methods. Table 1 de®nes six clustering methods that we have

found useful, de®ned in terms of the parameters �, � and .

All these methods can be used with powder data, although, in

general, we have found the group average link or single-link

formalism to be the most effective.

The results of cluster analysis are usually displayed as a

dendrogram, a typical example of which is shown in Fig. 1(a)

where a set of 21 powder patterns is analysed using the

complete-link method. Each pattern begins at the bottom of

the plot as a separate class, and these amalgamate in stepwise

fashion, linked by horizontal tie bars. The height of the tie bar

represents a similarity measure as measured by the relevant

distance. As an indication of the differences that can be

expected in the various algorithms used for dendrogram

generation, Fig. 1(b) shows the same data analysed using the

single-link method: the resulting clusterings are slightly

different, there is one less cluster and the similarity measures

are larger, and, as a consequence, the tie bars are lower on the

graph.

2.3. Principal-component analysis

We can also carry out principal-component analysis (PCA)

on the correlation matrix. The eigenvalues of the correlation

matrix can be used to estimate the number of clusters present

via a scree plot (see x2.5), and the eigenvectors can be used to

generate a score plot which can be used as a visualization tool

to indicate which patterns belong to which class. Score plots

traditionally use two components with the data thus projected

onto a plane (see, for example, MINITAB, 2003); we use

three-dimensional plots in which three components are

represented. Visualization in this way is discussed further in

x3.

2.4. Metric multidimensional scaling

Given an n � n distance matrix dobs, metric multi-

dimensional scaling (MMS) seeks to de®ne a set of p under-

lying dimensions that yield a Euclidean distance matrix, dcalc,

the elements of which are equivalent to, or closely approx-

imate the elements of dobs. It is very much like solving a

Patterson map, where we have a set of vectors generating a

distance matrix, and we are trying to extract a set of under-

lying atomic coordinates before the application of rotation

and translation functions (in this case p = 3).

The method works as follows (Gower, 1966).

The matrix dobs has zero diagonal elements, and so is not

positive semide®nite. A positive de®nite matrix, A(n � n), can

be constructed, however, by computing

A � ÿ1

2
In ÿ

1

n
ini0n

� �
D In ÿ

1

n
ini0n

� �
; �5�

Table 1
A general algorithm as proposed by Lance & Williams (1967) and
summarized in a simpli®ed form by Gordon (1981).

The distance between the new class formed by merging clusters Ci and Cj, and
any other class Ck is given by d(Ci [ Cj, Ck) = �id(Ci, Ck) + �id(Cj, Ck) + �d(Ci,
Cj) + |d(Ci, Ck) ÿ d(Cj, Ck)| and the table classi®es the methods according to
the coef®cients �i, � and . nj is the number of members in cluster j, etc.

Method �i � 

Single link 1
2 0 ÿ1

2

Complete link 1
2 0 1

2

Average link ni/(ni + nj) 0 0
Weighted average link 1

2 0 0
Centroid ni/(ni + nj) ÿninj/(ni + nj)

2 0
Sum of squares (ni + nk)/(ni + nj + nk) ÿnk/(ni + nj + nk) 0

Figure 1
A typical dendrogram for a set of 21 powder diffraction patterns (a) using
the complete-link method and (b) the single-link method on the same
data.



where In is an (n � n) identity matrix, in is an (n � 1) vector of

unities, and D is de®ned in equation (2). The matrix

�In ÿ 1
n ini 0n� is called a centering matrix since A has been

derived from D by centering the rows and columns.

The eigenvectors v1, v2, . . . vn and the corresponding

eigenvalues �1, �2, . . . �n are then obtained. A total of p

eigenvalues of A are positive and the remaining (nÿ p) will be

zero. For the p non-zero eigenvalues, a set of coordinates can

be de®ned via the matrix X(n � p)

X � VK1=2; �6�
where K is the vector of eigenvalues.

If we now set p = 3, then we are working in three dimensions

and the X matrix can be used to plot each pattern as a single

point in a three-dimensional graph. This assumes that we can

reduce the dimensionality of the problem in this way and still

retain the essential features of the data. As a check, we can

compute a distance matrix dcalc from X(n � 3) and compare it

with the observed matrix dobs using both the Pearson and

Spearman correlation coef®cients. In general, the MMS works

well and correlation coef®cients >0.95 are common. For large

data sets this can reduce to ca 0.6, which is still suf®ciently high

to suggest the viability of the procedure. There are occasions

when the underlying dimensionality of the data is 1 or 2, and in

these circumstances the data project onto a plane or a line in

an obvious way without any problems.

2.5. Estimating the number of clusters

Estimating the number of clusters is an unsolved problem in

classi®cation methods. We use two approaches: (a) eigenvalue

analysis of matrices q and A, and (b) those based on cluster

analysis.

Eigenvalue analysis is well understood: the eigenvalues of

the relevant matrix are sorted in descending order and when a

®xed percentage (we typically use 95%) of the data variability

has been accounted for, the number of eigenvalues is selected.

We carry out eigenvalue analysis on the following.

(i) Matrix q as described in x2.3.

(ii) Matrix A as described in x2.4.

(iii) A transformed form of q in which q is standardized to

give qs in which the rows and columns have zero mean and unit

variance. The matrix �s�
t
s is then computed and subjected to

eigenanalysis. This procedure is used, for example, in the

MINITAB statistics software (MINITAB, 2003). It tends to

give a lower estimate of cluster numbers.

Methods based on clustering are less well known in crys-

tallography. What is sought here is a stopping rule where we

seek to de®ne the number of clusters in the data set. In terms

of the dendrogram, this is equivalent to `cutting the dendro-

gram', i.e. the placement of a horizontal line across the

dendrogram such that all the clusters as de®ned by tie lines

above this line remain independent and unlinked. The most

detailed study is that of Milligan & Cooper (1985), summar-

ized by Gordon (1999), and from this we have selected three

tests as follows, which seem to operate effectively with powder

data.

(iv) The Calinski & Harabasz (1974) (CH) test:

CH�c� � �B=�cÿ 1��=�W=�nÿ c��: �7�
A centroid is de®ned for each cluster. W denotes the total

within-cluster sum of squared distances about the cluster

centroids, and B is the total between-cluster sum of squared

distances. Parameter c is the number of clusters chosen to

maximize equation (7).

(v) A variant of Goodman & Kruskal's  test (1954) as

described by Gordon (1999). The dissimilarity matrix as

de®ned in equation (3) is used. A comparison is made between

all the within-cluster dissimilarities and all the between-cluster

dissimilarities. Such a comparison is marked as concordant if

the within-cluster dissimilarity is less than the between-cluster

dissimilarity, and discrepant otherwise. Equalities, which are

unusual, are disregarded. If S+ is the number of concordant

comparisons and Sÿ the number of discrepant comparisons,

then

�c� � �S� ÿ Sÿ�=�S� � Sÿ�: �8�
A maximum in  is sought by an appropriate choice of cluster

numbers.

(vi) The C test (Milligan & Cooper, 1985). We choose the

value of c that minimizes

C�c� � �D�c� ÿDmin�=�Dmax ÿDmin�: �9�
D(c) is the sum of all the within-cluster dissimilarities. If the

partition has a total of r such dissimilarities, then Dmin is the

sum of the r smallest dissimilarities and Dmax the sum of the r

largest.

Tests (iv), (v) and (vi) depend on the clustering method that

is being used. To reduce the bias towards a given classi®cation

scheme, these tests are carried out on four different clustering

methods: the single-link, the group-average, the sum of

squares and the complete-link methods. Thus we have 12 semi-

independent estimates of the number of clusters from clus-

tering methods, and three from eigenanalysis, making 15 in all.

We use a composite algorithm to combine these estimates.

The maximum and minimum values of the number of clusters

(cmax and cmin, respectively) given by the eigenanalysis results

[(i)±(iii) above] de®ne the primary search range; tests (iv)±(vi)

are then used in the range max(cmin ÿ 3, 0) � c �
min(cmax + 3, n) to ®nd local maxima or minima as appro-

priate. The results are averaged, any outliers are removed, and

a weighted mean value of the remaining indicators is taken

and used as the ®nal estimate of the number of clusters.

A typical set of results is shown in Fig. 2 and Table 2. The

scree plot arising from the eigenanalysis of the correlation

matrix indicates that 95% of the variability can be accounted

for by ®ve components, and eigenvalues from other matrices

indicate that four clusters are appropriate. A search for local

optima in the CH,  and C tests is then initiated in the range of

2±8 possible clusters. Four different clustering methods are

tried, and the results indicate a range of 4±7 clusters. There are

no outliers, and the ®nal weighted mean value of ®ve is

calculated. As Fig. 2(a) shows, the optimum points for the C

and  tests are often quite weakly de®ned. Con®dence levels
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for c are de®ned by the estimates of the maximum and

minimum cluster numbers after any outliers have been

removed.

2.6. Choice of clustering method

It is possible to use the metric multidimensional scaling (or,

alternatively, PCA score plots) to assist in the choice of clus-

tering method, since the two methods operate independently.

The philosophy here is to choose a technique which results in

the tightest, most isolated clusters, as follows.

(i) MMS is used to derive a set of three-dimensional coor-

dinates stored in matrix X(n � 3)

Figure 2
Four different methods of estimating the number of clusters present in
the data: (a) the use of the C test [the C(c) coef®cients have been
multiplied by 100.0], the  test (coef®cients� 10.0), and the CH test; (b) a
scree plot from the eigenanalysis of the correlation matrix.

Table 2
Estimating the number of clusters present for the pharmaceutical data
used for Figs. 2 and 3.

NA implies that no optimum point could be found in the required range. The
maximum estimate of the number of clusters is 7; the minimum estimate is 4;
the median value is 5, and the combined weighted estimate of the number of
clusters is 6 with con®dence limits 4±7.

Method No. of clusters

Principal components analysis (non-transformed matrix) 5
Principal components analysis (transformed matrix) 4
Multidimensional metric scaling 4
Gamma statistic using single linkage 7
Calinski±Harabasz statistic using single linkage 7
C statistic using single linkage NA
Gamma statistic using group averages 7
Calinski±Harabasz statistic using group averages 5
C statistic using group averages NA
Gamma statistic using sum of squares NA
Calinski±Harabasz statistic using sum of squares 5
C statistic using sum of squares NA
Gamma statistic using complete linkage NA
Calinski±Harabasz statistic using complete linkage 5
C statistic using complete linkage NA

Figure 3
(a) The pie chart corresponding the dendrogram in Fig. 1(a); (b) the
corresponding three-dimensional MMS plot; (c) the PCA scores plot in
three dimensions.



(ii) The number of clusters, c, is estimated as in the previous

section.

(iii) Each of the six dendrogam methods is employed in

turn, stopping when c clusters have been generated. Each

entry in X can now be assigned to a cluster.

(iv) Draw a sphere around each point in X and calculate the

average between-cluster overlap of the spheres for each of the

N clusters C1 to CN. If the total number of overlaps is m, we

can write this as

S �
Xn

i�1

Xn

j�1;n
j6�i

Z
V

si2Ci
sj2Cj

ds

� �,
m: �10�

If the clusters are well de®ned then S should be a minimum.

Conversely, poorly de®ned clusters will tend to have large

values of S. In the algorithm we use, the sphere size depends

on the number of diffraction patterns.

(v) The individuality of each cluster is also estimated by

computing the mean within-cluster distance. This should also

be a minimum for well de®ned, tight clusters.

(vi) We also compute the mean within-cluster distance from

the centroid of the cluster.

(vii) Steps (iv)±(vi) are repeated using coordinates derived

from PCA three-dimensional score plots.

(viii) Tests (iv)±(vii) are combined in a weighted, suitably

scaled mean to give an overall ®gure of merit (FOM); the

minimum is used to select the dendrogram method to be

employed.

The same formalism can be used to decide which of the

MMS- or PCA-based three-dimensional plots is likely to

represent the data best. The ®nal FOM is computed for both

the PCA and MMS methods; the lowest is used as the indi-

cator.

Table 3 shows the methodology at work. Table 3(a) uses

equation (10) on the MMS- and PCA-derived matrices X. At

this stage, the single-link method is preferred for clustering,

and the PCA formalism for presenting the data in three

dimensions. Table 3(b) is based on mean intra-cluster

distances and again the single-link method is the choice for

clustering, but the MMS method is preferred for data

presentation. Table 3(c) repeats the calculations of 3(b) with

the same outcome. All these results are combined in Table

3(d). As a result the PolySNAP program selects the single-link

method as the optimum clustering method for generating

dendrograms for these data. In addition, MMS is predicted to

give the best three-dimensional plots.

2.7. The most representative sample

Similar techniques can be used to identify the most repre-

sentative sample in a cluster. We take this to be that sample

which has the minimum mean distance from every other

sample in the clusters, i.e. for cluster J containing m patterns,

the most representative sample, i, is de®ned as that which

gives

min
Xm

j�1
i;j2J

d i; j� �=m

264
375: �11�

The most representative sample is useful in visualization (x3)

and generating a database of known phases (x5.2).

2.8. Mixtures

In paper (I) we have shown how mixtures may be subjected

to quantitative analysis using a least-squares algorithm based

on the use of singular value decomposition in the matrix

inversion procedures. The same formalism is valid here. If

quantitative analysis is required, a database of known pure
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Table 3
Establishing the best clustering method: (a) calculations using MMS and
PCA based on cluster overlap; (b) calculations based on mean intra-
cluster distances; (c) calculations based on centroid±cluster distances; (d)
combination of (a)±(c).

The ®gure of merit is the mean of the MMS and PCA entries. The PolySNAP
program selects the single-link method as the optimum clustering method for
generating dendrograms for this data. In addition, MMS is predicted to give
the best three-dimensional plots.

(a)

Clustering strategy MMS PCA

Single link 4.072 3.417
Complete link 6.108 5.126
Average link 8.144 6.834
Weighted average link 6.108 5.126
Centroid method 8.144 6.834
Group average link 6.108 5.126

(b)

Clustering strategy MMS PCA

Single link 2.771 7.349
Complete link 2.914 3.892
Average link 3.998 3.639
Weighted average link 2.914 3.892
Centroid 3.998 3.639
Group average link 2.914 3.892

(c)

Clustering strategy MMS PCA

Single link 1.661 5.323
Complete link 2.684 5.029
Average link 3.123 4.510
Weighted average link 2.684 5.029
Centroid 3.123 4.510
Group average link 2.684 5.029

(d)

Clustering strategy Figure of merit MMS PCA

Single link 4.098 2.835 5.363
Complete link 4.292 3.902 4.682
Average link 5.041 5.088 4.994
Weighted average link 4.292 3.902 4.682
Centroid 5.041 5.088 4.994
Group average link 4.292 3.902 4.682
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phases is created and input into the procedure. Every sample

is checked against the reference database. If signi®cant

correlations are not found, a mixture is suspected and a

quantitative analysis is carried out as in x5 of paper I. The

quality of data that result from high-throughput crystal-

lography makes it unlikely that an accuracy better than 5±10%

can be achieved, but nonetheless, the identi®cation of

mixtures is an important and necessary part of high-

throughput experiments, and this procedure can provide

useful indications, as shown in xx5.2 and 5.4.

2.9. Amorphous samples

Amorphous samples are an inevitable consequence of high-

throughput experiments and need to be handled correctly if

they are not to induce erroneous clustering indications. In our

procedures, we estimate the total background for each pattern

and integrate its intensity; we also calculate the integrated

intensity of the non-background signal. This is independent of

background removal. If the ratio falls below a pre-set limit

(usually 5%, but this may vary with the type of sample under

study) the sample is treated as amorphous. The distance

matrix is then modi®ed so that each amorphous sample is

given a distance and dissimilarity of 1.0 from every other

sample, and a correlation coef®cient of zero. This auto-

matically excludes the samples from the clustering until the

last amalgamation steps, and also limits their effect on the

eigenanalysis and hence the estimation of the number of

clusters.

3. Data visualization

It is important when dealing with large data sets to have

suitable visualization tools. This methodology provides four

such aids.

(a) The dendrogram gives the clusters, the degree of asso-

ciation within the clusters and the differential between a given

cluster and its neighbours. Different colours are used to

distinguish each cluster. The cut line is also drawn, along with

the con®dence levels.

(b) The MMS method reproduces the data as a three-

dimensional plot in which each point represents a single

powder pattern. The colour for each point is taken from the

dendrogram. The most representative sample for each cluster

is marked with a cross.

(c) Similarly, the eigenvalues from principal-component

analysis can be used to generate a three-dimensional score

plot in which each point also represents a powder pattern. Just

as in the MMS formalism, the colour for each point is taken

from the dendrogram and the most representative sample is

marked.

(d) Finally, a well chart is produced for each sample,

corresponding to the sample wells if relevant, in which each

well is given a colour as de®ned by the dendrogram. If

mixtures of known phases are detected, the pie charts give the

relative proportions of the pure samples as estimated by

quantitative analysis.

Features (a)±(d) give an easy to manipulate graphical view

of the data, which are semi-independent, and thus can be used

to check consistency and discrepancies.

4. The procedure

We can now de®ne the full analysis procedure.

(i) The data are imported. As described in paper (I), each

pattern is interpolated or extrapolated to give 0.02� incre-

ments in 2�. Data are normalized, backgrounds are optionally

removed; wavelets are optionally used to smooth the data, and

the peaks identi®ed. (It is worth remembering that this latter

step, in general, is not required unless peak-speci®c statistics

are to be employed.)

(ii) A correlation matrix is generated in which the full

pro®le of every pattern in a set of n patterns is matched with

every other to give an n � n correlation matrix q using a

weighted mean of the Spearman and Pearson correlation

coef®cients with the optional inclusion of the Kolmogorov±

Smirnov and Pearson peak correlation tests. The latter two

tests require peak positions. An optimal shift in 2� between

patterns is often required, arising from equipment settings,

especially the sample height, and data collection protocols. In

paper (I), we use the form

��2�� � a0 � a1 sin �; �12�
where a0 and a1 are constants adjusted to maximize pattern

correlation.

(iii) The correlation matrix is examined for stability in

eigenanalysis and cluster analysis using singular value

decomposition.

(iv) Amorphous samples are identi®ed and isolated from

the calculations, although not wholly excluded.

(v) If a database of pure phases is present, quantitative

analysis may be carried out on each sample if the correlation is

not suf®ciently large.

(vi) Eigenanalysis is carried out to give the principal indi-

cators of the number of clusters. This is followed by a search

for local optima in the CH,  and C tests. Outliers are removed

and a weighted mean estimate with con®dence limits is

de®ned.

(vii) The optimal clustering method is established as

outlined in x2.6 and a dendrogram generated.

(viii) The most representative sample of each cluster is

identi®ed.

(ix) Visualization as described in section x3 is carried out.

All these steps are performed in a program called Poly-

SNAP (Barr et al., 2003) which runs on a PC under Windows

2000 or XP. Contained within this software is the SNAP-1D

program (Barr et al., 2003). Although the calculation is

elaborate, the total time taken on a 2.4 GHz PC varies

between <1 min for 100 samples and ca 1 h for 1000. The rate-

determining step in the computations is the use of clustering

methods to determine the number of clusters: some of the

methods used are of order n3 in time and so become very

signi®cant with large samples. Computing times are consider-

ably increased if optimal shifts [equation (12)] are estimated.



It is important to note that no one method is optimal in

these calculations, and that a combination of mathematical

and visualization techniques is required, which often needs

tuning for each individual application. x5.3 presents an

example of this.

5. Examples

Three test data sets are used in this paper to demonstrate

differing aspects of the methodology.

(a) A proprietary pharmaceutical compound using data on

®ve chosen polymorphs collected on a Bruker D8-GADDS

system.

(b) Commercial aspirin tablets for which thirteen samples of

aspirin tablets as supplied by pharmacies were used; data were

collected on a Bruker D8 diffractometer.

(c) A database of 19 patterns comprising a subset of the

ICDD database set 78 (ICDD, 2003). The peaks as listed were

used to generate a set of pro®le data assuming pseudo-Voigt

peak pro®le shapes. Synthetic mixtures of various components

of this database were used. Although these data are, in part,

arti®cial, they are useful in exploring the limits of cluster

analysis and mixture detection.

All the samples are relatively small, so that they can easily

be presented graphically and discussed. Examples of larger

data sets with over 1000 patterns will be published elsewhere.

5.1. Polymorphs

A data set comprising 21 pharmaceutical samples, as

described above, was collected on a Bruker D8-GADDS

system and examined. Five polymorphs were expected. The

dendrogram is shown in Fig. 1(a). The group single-link

method was used for generating this. The associated pie chart

is in Fig. 3(a), the MMS plot in Fig. 3(b), and the three-

dimensional PCA score plot in Fig. 3(c). It was estimated that

there were six clusters present.

In general, the data are consistent: the dendrogram forms

six distinct well differentiated clusters, and this is matched by

the MMS and three-dimensional score plots where the clusters

are also clearly de®ned. The well chart gives a useful summary

of well contents. Patterns 20 and 21 form singleton clusters in

the dendrogram. In the three-dimensional plot, pattern 21 is

quite isolated; pattern 20 is, however, quite close to another

cluster of seven patterns so that it is not quite clear whether it

is a single sample, or if it involves mixtures involving

components from the other ®ve clusters. Similarly, it would be

useful to know if pattern 21 is a pure phase. The application of

quantitative analysis can assist here.

5.2. Quantitative analysis of the polymorph data

The above data were reprocessed but, in this case, a refer-

ence database was generated by using the most representative

sample of each of the ®ve clusters that contained more than

one member. The results from PolySNAP are the same as in

x5.1 except the pie charts for samples 20 and 21 now identify

them as mixtures (Fig. 4). The remaining samples are still

identi®ed as pure phases. The ®ve expected polymorphs for

this data set have now been clearly identi®ed using less than

1 min of computing time.

5.3. Aspirin data

This example shows the method and the program used in a

slightly more sophisticated and less automatic way. The 13

powder data sets, after processing by PolySNAP, are shown in

Fig. 5 arranged into groups based on similarity. Because we are

dealing with such a small data set, this is easily done; it

becomes impossible with larger data sets. The samples were

input into PolySNAP in automatic mode. The resulting

dendrogram, pie chart, MMS and score plots are shown in Fig.

6. Four clusters have been identi®ed in the dendrogram and

these have been appropriately coloured. However, inspection

of the three-dimensional plots, where the dendrogram colours

are used, indicates that the samples represented in red would

appear to form two distinct classes, thus giving rise to ®ve

groups in total instead of four. A new cut point for the

dendrogram was selected to re¯ect this. The revised graphical

output is shown in Fig. 7. It can be seen that this partitioning of

the data now fully re¯ects the raw diffraction data.

This mode of use of PolySNAP is common. The dif®culties

of unambiguously determining the number of clusters means

that user inspection using appropriate visualization tools can

often be helpful.

As a demonstration of the handling of amorphous data, ®ve

amorphous patterns as shown in Fig. 8(a) were included in the

aspirin data and the clustering calculation repeated. The

results are shown in Fig. 8(b). Fig. 8(c) shows the corre-

sponding pie chart. It can be seen that the amorphous samples

are positioned as isolated clusters on the right-hand end of the

dendrogram. It could be argued that these samples should be

treated as a single ®ve-membered cluster rather than ®ve

individuals, but we have found that this confuses the clustering

algorithms and it is clearer to the user if the amorphous data

are presented as separate classes.

5.4. Inorganic mixtures

A database of 19 patterns from set 78 of the ICDD database

for inorganic compounds (ICDD, 2003) was imported into the

program. To this was added some simulated mixture data

generated by adding the patterns for lanthanum strontium

copper oxide and caesium thiocyanate diffraction data in the

proportions 80/20, 60/40, 50/50, 40/60 and 20/80%, respec-

tively. Two calculations were performed: an analysis without

the pure-phase database and a second where the pure phases

of lanthanum strontium copper oxide and caesium thiocyanate

were present.

The results are shown in Fig. 9. In the MMS plot the green

spheres represent pure lanthanum strontium copper oxide,

while the yellow are pure caesium thiocyanate. The red

spheres represent mixtures of the two. The latter form an arc

between the green and yellow clusters. The distance of the

spheres representing mixtures from the lanthanum strontium

copper oxide and caesium thiocyanate spheres gives a semi-

quantitative representation of the mixture contents. Running
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the program in quantitative mode gives the pie charts also

shown in Fig. 8; they reproduce exactly the relative propor-

tions of the two components.

6. Conclusions

We have shown that the use of parametric and non-parametric

matching techniques can generate a correlation matrix which

can be converted to distance and dissimilarity forms, which

can then be input into cluster analysis, multivariate data

analysis and related visualization techniques to identify the

Figure 4
The pie chart corresponding to Fig. 3 but using a database of the most
representative samples as a reference. Patterns 20 and 21 can be seen to
correspond to mixtures.

Figure 5
The powder patterns for the 13 commercial aspirin samples partitioned
into ®ve sets. The patterns are in highly correlated sets: (a) comprises
patterns 1, 3, 5, 6, 9, 12, (b) comprises 10, 11, 13, (c) contains patterns 2
and 4, (d) contains sample 7, and (e) sample 8.

Figure 6
(a) The initial default dendrogram for 13 aspirin samples. The data are
partitioned into four clusters. (b) The corresponding MMS plot. The red
cluster has a natural break or partition in it.

Figure 7
(a) The dendrogram in Fig. 6 is now cut so that there are ®ve clusters
corresponding to the groups in Fig. 5. (b) The corresponding MMS plot.
The red cluster in Fig. 6(b) is now partitioned into two distinct clusters.



natural groupings of the patterns. The method is viable for at

least 1000 data sets. It can also provide an approximate esti-

mate of the components of quantitative mixtures when

reference patterns are present. These techniques are espe-

cially valuable in high-throughput situations (although, as we

shall show in other papers, they can be very useful with small

data sets as well). It is important to have available as wide a

range of techniques as possible for exploring such data,

because no single method is adequate for the task and the

methods need to be used together. The methods are incor-

porated in the commercial software PolySNAP, licensed to

Bruker-AXS.

Clustering and multivariate analysis are large subjects with

an extensive literature, and this paper has only touched upon a

few methods relevant to the problem of classifying powder

patterns. We are currently investigating other areas of data

analysis, including fuzzy clustering (Sato et al., 1997) and

silhouettes (Rousseeuw, 1987), which can both be used as

semi-independent methods for identifying samples which may

be mixtures of other clusters. We are also using minimum

spanning trees (see, for example, Graham & Hell, 1985) as an

interactive way of exploring the links between clusters and

their members. The results will be published at a later date.

Of course, this method should work with any one-dimen-

sional data set, although data with very sharp peaks pose

problems because correlations can rapidly fall to very small

values unless there is exact peak overlap. Techniques which

should be amenable to this approach include Raman, IR and

solid-state NMR spectroscopies, and DSC. Preliminary tests

on Raman and IR data have proved encouraging.
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supporting this project; the ICDD (especially John Faber) for

access to the ICDD database, and Arnt Kern and Stefan

Haaga at Bruker-AXS for the aspirin data; and ®nally Laura

Hamill for the calculations on the lanthanum strontium copper

oxide, caesium thiocyanate mixtures.
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