Journal of

Applied

 CrystallographyISSN 0021-8898

Anisotropic diffraction peak broadening and dislocation substructure in hydrogencycled LaNi_{5} and substitutional derivatives. Erratum

R. Černý, ${ }^{\text {a* }}$ J.-M. Joubert, ${ }^{\text {b }}$ M. Latroche, ${ }^{\text {b }}$ A. Percheron- Guégan ${ }^{\text {b }}$ and K. Yvon ${ }^{\text {a }}$

${ }^{\text {a }}$ Laboratoire de Cristallographie, Université de Genève, 24 Quai E. Ansermet, 1211 Genève 4, Switzerland, and ${ }^{\text {b }}$ Laboratoire de Chimie Métallurgique des Terres Rares, CNRS, 2-8 rue Henri Dunant, 94320 Thiais CEDEX, France. Correspondence e-mail: radovan.cerny@cryst.unige.ch

An erroneous equation and some consequently underestimated values of dislocation densities in the paper by Černý et al. [J. Appl. Cryst. (2000), 33, 997-1005] are corrected.

In the paper by Cerný et al. (2000), equation (4) on page 998 was erroneously interpreted and used in the calculations. The correct equation is

$$
A=[1-\ln (\ln P) /(4 \ln P)]^{-1} .
$$

The only consequence of this error is that some values of the dislocation densities as given in Table 2 and Fig. 3 of that paper are slightly underestimated. Correct values of the dislocation densities

addenda and errata

Table 1
Corrected dislocation densities.

Compound	$\rho\left(10^{11} \mathrm{~cm}^{-2}\right)$
LaNi_{5}	$3.8(4)$
$\mathrm{LaNi}_{4.25} \mathrm{Co}_{0.75}$	$3.9(3)$
$\mathrm{LaNi}_{3} \mathrm{Co}_{2}$	$0.52(4)$
$\mathrm{LaNi}_{4.6} \mathrm{Mn}_{0.4}$	$2.7(3), P=3$
$\mathrm{LaNi}_{4} \mathrm{Mn}$	$3.8(3), P=3$
$\mathrm{LaNi}_{4.9} \mathrm{Al}_{0.1}$	$1.6(1)$
$\mathrm{LaNi}_{4.7} \mathrm{Al}_{0.3}$	$0.29(5), P=3$
$\mathrm{LaNi}_{3.55} \mathrm{Co}_{0.75} \mathrm{Mn}_{0.4}$	$0.62(9), P=3$
$\mathrm{LaNi}_{3.95} \mathrm{Co}_{0.75} \mathrm{Al}_{0.3}$	$0.045(7), P=3$
$\mathrm{LaNi}_{4.3} \mathrm{Mn}_{0.4} \mathrm{Al}_{0.3}$	$1.1(1), P=3$
$\mathrm{LaNi}_{3.4} \mathrm{Co}_{0.36} \mathrm{Mn}_{0.4} \mathrm{Al}_{0.3}$	$1.7(3), P=3$
$\mathrm{LaNi}_{3.5} \mathrm{Co}_{0.75} \mathrm{Mn}_{0.4} \mathrm{Al}_{0.3}$	$0.17(1), P=3$
$\mathrm{LaNi}_{4} \mathrm{Fe}^{2}$	$1.7(1)$
$\mathrm{LaNi}_{4} \mathrm{Cu}^{2}$	$0.35(4), P=3$
$\mathrm{LaNi}_{4.5} \mathrm{Sn}_{0.5}$	$0.06(1), P=3$
$\mathrm{La}_{0.5} \mathrm{Ce}_{0.5} \mathrm{Ni}_{5}$	$5.1(6)$
$\mathrm{LaNi}_{5.2}$	$3.0(1)$

for all studied compounds are given in Table 1 herein. The value for LaNi_{5} is, however, still lower by one order of magnitude than the value determined for the same compound by Wu et al. (1998).

References

Černý, R., Joubert, J.-M., Latroche, M., Percheron-Guégan, A. \& Yvon, K. (2000). J. Appl. Cryst. 33, 997-1005.

Wu, E., Kisi, E. H. \& Gray, E. MacA. (1998). J. Appl. Cryst. 31, 363-368.

