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Abstract 

Many elementary concepts of crystallography can be presented 
in two dimensions, where they are relatively easy to visualize. 
A computer simulation program for two-dimensional crystal- 
lography has been developed for use in teaching at an 
introductory level. The program will generate and display 
direct and reciprocal lattices, based on arbitrary user input, and 
is able to apply the symmetry operations of any of the 17 two- 
dimensional plane groups to a user-defined motif. Examples 
using the program are presented and discussed. 

1. Introduction 

Using two-dimensional crystallography, it is possible to illus- 
trate a variety of concepts relating to crystal symmetry, and to 
the relationship between crystal structure and the reciprocal 
lattice (diffraction pattern). Working in two dimensions avoids 
the difficulty of visualizing three-dimensional structures, 
making two-dimensional crystallography attractive for 
teaching at an introductory level. 

The purpose of this article is to illustrate how a simple 
computer program can be used to enhance introductory 
lessons in crystallography. A number of examples are 
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presented below using a simulation program developed for 
teaching. As far as we know, a similar teaching aid is not 
currently available. We therefore wish to draw attention to the 
utility of such a program and make it available to any who wish 
to try it. 

2. Simple exercises 

The interactive aspect of a computer program provides a direct 
way for students to hone their understanding of the simple 
relationships that exist between the direct and reciprocal 
lattices. For example, a change of scale, or a rotation, are 
represented on the screen immediately, reinforcing an intuition 
for these simple transformations. 

Another  elementary exercise we find useful is for students to 
investigate the relationship between real and reciprocal 
lattices starting with a square lattice, then rectangular and 
finally hexagonal. Again, the exercise aims at building intuition 
for the reciprocal lattice in general. In going from square to 
rectangular, the effect of a change of scale in only one 
dimension is shown; then the hexagonal lattice provides a 
lattice in which the basis vectors are not orthogonal and hence 
the reciprocal vectors are not in the same directions as the 
direct lattice vectors. Most students, in our experience, find 
their intuition challenged in working through these lattices, 
especially the hexagonal case. The exercise allows us to focus 
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Fig. 1. Two simple crystal structures based on the square lattice, but having distinctly different symmetries: crystal I has p4 symmetry and crystal II 
has plml symmetry. Both structures were generated in the program from a two-atom motif to which the symmetry operations of the particular 
space groups were then applied. 
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students' attention on the association of reciprocal-lattice 
vectors with periodicity in real space. 

3. Lattice and crystal symmetry 

The point symmetry of a lattice and a crystal structure, whose 
spatial periodicity is defined by that lattice, are not necessarily 
the same. Symmetry in the crystal may be reduced by 
decorating the lattice with a pattern of atoms of lower 
symmetry. This is shown for a square lattice in Fig. 1. The 
structure on the left (crystal I) has the symmetry of the p4 
plane group. The fourfold axes at the center of the square and 
at the lattice nodes, and the twofold axes midway along the cell 

edges, are point-symmetry elements that also apply to the 
square lattice. However, in the figure on the right (crystal II) 
these elements of symmetry disappear. Here, the plane group 
is plml.  The crystal structure now has only axes of mirror 
symmetry running horizontally along the cell edges and 
through the center of the cell: although the underlying lattice 
remains square, the structure is now rectangular. 

Both figures in this example were generated from the same 
two-atom motif by applying the appropriate plane-group 
symmetries to generate the remaining atomic positions. Our 
program includes the plane-group symmetries, described in the 
International Tables for Crystallography (Vol. A, 1983), and 
therefore can be used to develop familiarity with the presen- 
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Fig. 2. The upper left panel shows crystal I, a rectangular centered crystal structure, and the panel to the right is the corresponding diffraction 
pattern. Dark disks in the diffraction pattern represent diffracted intensity (the diameter is proportional to intensity) and lines represent 
reciprocal-lattice vectors A systematic absence is indicated by the complete absence of a disk at the intersection of two reciprocal-lattice lines. 
The two lower panels refer to a structure similar to crystal I, but with different atoms (different form factors) at the center and origin of the unit 
cell. This changes the cell from centered to primitive, eliminating systematic absences. 
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tation of crystallographic data in these tables, as well as to 
explore the relationships between lattices, point groups and 
plane groups (Giacovazzo, 1992a). For more advanced 
students, simple examples of group, subgroup and supergroup 
relationships can also be developed (Giacovazzo, 1992b; 
International Tables for Crystallography, 1983). 

4. Conventional and primitive unit cells 

In two dimensions, the only example of a nonprimitive unit cell 
occurs in the centered rectangular lattice. In this example it is 

used to illustrate the occurrence of systematic absences in the 
diffraction pattern. 

In Fig. 2, the upper  left panel shows a centered rectangular 
crystal structure (left), with atoms at the center  and corners of 
the unit cell. The corresponding diffraction pattern (Fig. 2, 
right) shows an absence of scattering intensity at every second 
node of the reciprocal lattice. The important  feature of the 
diffraction pattern, the regular extinction of intensity, arises 
from the conventional  (rectangular) choice of lattice vectors. 
The same crystal structure could be generated with different 
(rhombic) primitive lattice vectors and no symmetry applied 
(i.e. pl ) .  In that case, the associated reciprocal-lattice vectors 
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Fig. 3. An example of glide symmetry and its effect on the diffraction pattern. Crystal I is based on a square lattice with plane group plgl (one of 
the atomic positions in the unit cell is obtained by applying a horizontal glide transformation to the other). The resulting diffraction pattern 
(diffraction I) shows systematic absences along the horizontal axis only. The second crystal structure is included to illustrate the sensitivity of 
the diffraction pattern to small changes in the atomic coordinates in this structure: the second atomic position is misplaced by about 1/20 of the 
lattice parameter, breaking the glide symmetry. 
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would be such that nodes in the lattice occurred only at those 
points showing intense scattering in Fig. 2. 

To illustrate the role of the atomic basis in determining 
crystal symmetry and the intensity in the associated diffraction 
pattern, one of the atoms can be changed to a different type. 
This is shown in the lower two panels of Fig. 2. In this case, of 
course, systematic absences will no longer occur: the rectan- 
gular cell is now primitive, so some diffracted intensity will be 
observed at each node of a rectangular reciprocal lattice. 

The program used in this work has evolved over recent years 
while teaching elementary crystallography to undergraduate 
students of Condensed Matter Physics and Materials Science. 
It has proved both useful and stimulating for students to use. 
Depending on class level, different degrees of sophistication 
are employed: from illustrating fundamental concepts like 
crystal lattices, spatial periodicity and the reciprocal lattice, 
through to the more advanced concepts presented in this 
article. 

5. Glide symmetry 

Systematic absences will also arise because of glide symmetry, 
as shown in Fig. 3. The upper two panels in this figure show a 
plgl  structure and its diffraction plattern. The glide axis is 
oriented in the horizontal direction and gives rise to the 
systematic absences seen only along the horizontal axis of the 
diffraction pattern. 

To show the sensitivity of the diffraction pattern to the 
atomic positions, one of the atoms has been displaced by about 
1/20 of the lattice constant along the horizontal direction 
(lower panels in Fig. 3). This lifts the systematic absence 
conditions of the glide and causes quite noticeable changes to 
the diffraction pattern, although the changes to the structure 
are barely visible. 

These structures also provide an illustration of Friedel's law. 
Neither crystal possesses a center of inversion symmetry; 
however, the diffraction patterns certainly do. For this reason, 
in the upper right of Fig. 3, one cannot determine whether the 
crystal plane group is plgl  or p2mg by inspecting the diffrac- 
tion pattern. In the same way, the plane group in the lower 
figure might be p l  or p2, based on the diffraction data alone. 

6. Discussion 

Two-dimensional crystallography is pedagogically valuable for 
introducing a range of concepts. The fact that structures can be 
represented completely (i.e. without projection) on a screen, or 
paper, makes it much easier to grasp the nature of the rela- 
tionships being presented. The use of computer simulation 
gives an immediate display of user-defined structures which 
reinforces an understanding and intuition for relationships 
between direct and reciprocal space. It also provides 
immediate feedback which can usefully challenge any 
misconceptions that may arise. 

To motivate study in two dimensions and to provide a link 
with real three-dimensional structures, exercises based on 
electron diffraction analysis of structure can be used. Because 
of the small curvature of the Ewald sphere, electron diffraction 
patterns are essentially plane sections passing through the 
origin in reciprocal space (Vainshtein, 1994): the observed 
diffraction pattern can be associated, in real space, with a two- 
dimensional structure obtained by projection of the crystal 
structure along the viewing axis (Cowley, 1984). 

Exercises can easily be developed along these lines. For 
example, one can provide students with a (physical) three- 
dimensional model of a crystal structure and a two-dimen- 
sional diffraction pattern and ask what the orientation of the 
crystal was when the diffraction pattern was taken. Alter- 
natively, one can provide several two-dimensional diffraction 
patterns, together with the relative orientations, and ask what 
models of structure could give rise to these observations. 

A P P E N D I X  A 
A 1. Program overview 

The program is written in the cT programming language 
(Sherwood & Andersen, 1993). (Information about the cT 
programming language can also be found on the www at http:// 
cil.andrew.cmu.edu/ct.html.) This choice was a convenient one 
because of the cross-platform compatibility of this program- 
ming language. 

Program design has focused on developing an interactive 
tool for investigation of the real-space/reciprocal-space rela- 
tionships for an arbitrary crystal structure. It is therefore a 
specialized calculation and display tool, not a guided tutorial 
program. It is easy to use and help screens are available 
throughout to provide background information and guidance. 

A2. User input 

The program requires a crystal structure to be defined in 
real space. Lattice vectors are entered in polar coordinates and 
the atomic basis is then described using fractional coordinates 
of the lattice vectors. A relative form factor can be specified for 
distinct atom types. Any of the 17 plane groups can be selected 
which applies symmetry operations, generating further atomic 
positions. 

A3. Program displays 

A variety of display modes are available for inspection of 
real and reciprocal space. In each case, a PostScript file can be 
produced for hard copy. Zooming is provided, with indepen- 
dent scale factors for the real and reciprocal displays. A screen 
buffer may be used to store a display allowing quick compar- 
ison between structures. 

A4. Program availability 

A copy of the program can be obtained from the authors 
without charge. Two versions exist: one for Macintosh and one 
for Windows. A PostScript-compatible printer is required for 
hard copy. 
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