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Abstract 

A generalized form of a symmetry operator has been derived by 
vector and matrix formalism in contrast to the tensor or dyadic 
notation most often used in the literature. The final equation is 
based on relations between real and reciprocal space familiar to 
crystallographers. Typical applications of  the formula are also 
provided. 

I. Introduction 

an attempt has been made to derive the matrix R as a function 
of I, ~ and the metric matrix G by vector calculations and 
familiar relations between real and reciprocal space without loss 
of  generality. 

2. Derivation 

Let a coordinate system be described by the metric matrix G. In 
this system, a point x is mapped to the point x' by the 
anticlockwise rotation through the angle ~ about the vector I 

Space groups as special groups of  isometries are subgroups of  (see Fig..1)" . A. right-handed orthonormal coordinate system 
the Euclidean group (the group of all affine mappings that e~, e 2, e 3 lntnnslc to that transformation is chosen (Schultz- 

preserve distances). Each isometric mapping can be obtained by 
superposition of translation, rotation and inversion. In its 
representation denoted as (R, t), the linear or matrix part R is 
responsible for the space rotation of rotoinversion. A transfor- 
mation restricted to a linear part leaves the origin invariant. In a 
three-dimensional rectilinear system al, a 2, a3, it is given by 

R2 R3t(x ) 
)(2 = / R21 R22 R23 x2 ' 
3(3 kR31 R32 R33 x3 

(1) 

where x i and ~1 denote coordinates of  a point before and after 
transformation, respectively. The matrix R can be equivalently 
described in geometric terms as a triplet I, 0c, i (where the vector 
I defines the axis of  rotation and its sense, ~ is the angle of  
rotation and i holds the information about presence of  
inversion). 

All rotation matrices needed for a conventional description of 
space groups together with the orientation of  corresponding 
symmetry elements are summarized in Tables 11.2 and 11.3 in 
International Tables for Crystallography (1983). However, 
sometimes symmetry manipulation must be carried out with 
nonconventional cells (Le Page, 1987). Other problems like 
coexistence of symmetry elements with the lattice or error 
analysis in experimental symmetry-related data will be 
simplified if the matrix R is calculated in any rectilinear 
system. For computational purposes, the coordinate systems 
would be rather characterized by the metric tensor 

F ( a , . a , )  (a 1.a2) (a l -a3)  q 
G =  / (a2 a,) (a 2 • a2) (a 2 • a3) J L(a3 al) (a3. a2) (a3-a3) 

than by unit-cell parameters al, a2, a3, ~, fl and y. 
A generalized form of a symmetry operator is derived and 

expressed mainly in a tensor notation (Sands, 1982; Schultz- 
Piszachich, 1979) or a dyadic notation [for references to 
Zachariasen and Patterson, see Sands (1982)]. The explicit 
expression in the matrix formalism is often restricted to the case 
of  orthogonal bases (e.g. Giacovazzo, 1992) and is not very 
convenient for computer implementation. In the work presented, 

Piszachich, 1979): 

e l  = e = I / I I I ,  

e2 = r/Irl ,  (2) 

e3 = el x e2- 

With respect to the new basis, the vector x' can be decomposed 
as 

x' = (x. ~l)~n + Irl c o s ~  2 + Irl sin0c~3, 

from which, after the reduction of the vector r, 

x' = (1 - cos00(e, x)e  + cosTx + sin0c(e x x), (3) 

where the symbol e replaces el- 
Vector equation (3) is independent of  coordinate system and 

in order to put it into the form of (1) the vectors must be 
replaced by their coordinate matrices in the al, a z, a 3 system. 
From the relations between the real and inverse space, the scalar 

Fig. 1. The orthonormal coordinate system for a rotation matrix 
derivation. 
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product (c. x) is 

( e .  x) = ( e  I e 2 

= (e;  

(x,) 
e 3 ) G  x2 

X 3 

e 2 e 3) x 2 , (4) 

X3 

where e i and e* denote the coordinates of  the unit vector e in the 
real a I , a 2, a 3 and the reciprocal a T, a~, a; systems, respectively. 

A vector product based on vectors expressed in real space is 
described in reciprocal space: 

a3) a; a~ a] (e x x) = (a I X a 2 • e I e 2 e 3 

X 1 X2 X3 

= [a~  [det(G)] 1/2 

\a; 

x (e2x 3 - e3x 2 e3x 1 - e lx  3 e lx  2 - e2x I ) 

and must be recalculated to real space 

( e2x3 -- e3x2 ~ 
( e x x ) = ( a ,  a 2 a 3 ) v o l C * l e 3 x  , .  e , x 3 l ,  (5) 

\ e l x 2  e2xl ] 

where vol = [det(G)] u2 is the volume of the unit cell and 
G* = G-I is the metric matrix in reciprocal space. 

Replacement of  vectors in (3) by their coordinate matrices 
with the help of  (4) and (5) leads to the form (1). An explicit 
expression for elements of  the rotation matrix in the general 
rectilinear system may be written as 

R O. =eie~(1 - cos~) + 6/j cos~ 

+ vol (Gi*(y+l)e(j+2) -- Gi*(j+2)e(j+l)) sin ~, (6) 

where the indices in parentheses must be decremented by 3 if 
their value is greater than 3 and the Kronecker delta 6 o. = 1 if 
i = j  and 0 if i # j .  The above equation is equivalent to the 
tensor form of the rotation matrix described by Sands (1982). 

3. A p p l i c a t i o n  

The formula (6) plays an essential role in the matrix 
presentation of symmetry operations described in conventional 
or nonconventional crystal cells and in the derivation of some 
properties of such presentations. 

(i) The symmetry axis is parallel to the direction [uvw]. Here 
! = ual + va2 + wa3 and ~ = 360/n, where n is the order of  the 
symmetry axis. 

(ii) The symmetry axis is perpendicular to the plane (hkl). 
The vector I * =  ha~ + ka~ + la~ is described in reciprocal 
space and its coordinates must be transformed to real space by 
the equation (hkl)G* = [uvw]. 

Thus, all matrices contained in the previously mentioned 
tables in Internat ional  Tables can be obtained and the algorithm 
for derivation of so-called 'coordinate triplets' from the 
geometric description of symmetry operations can be extended 
to nonconventional crystal systems. 

(iii) The symmetry axis is parallel to a reciprocal base vector 
a*. The matrix G* holds the components of  the reciprocal base 
vectors referred to real space, so the factors beside sin 0~ in (6) 
can be expressed as components of  the vector products a~ x e, 
i.e. R O. = eief(1 - cos0 0 + 6ijcosct + (a~ x e)j sin 0c. This form 
is convenient to express the obvious property that the ith 
coordinate of  vector x will be invariant if the rotation axis is 
parallel to the reciprocal vector ai*. For example, if the vector ! is 

* =  l / e  I # 0 ,  * * = 0  parallel to the base vector a~, then e I e 2 = e 3 
and (a~ x e ) - - 0 .  Thus, Ril = 1, Ri2 =R13 = 0  and the 
coordinate x 1 of  the vector x will be unchanged on the 
transformation. 

(iv) The trace of  the rotation matrix. From (6) it is easy to 
show that Tr(R), defined as the sum of diagonal elements 
Rll +R22 + R33 is equal to ! + 2 c o s ~  and is independent of  
the coordinate system. 
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