
CIF Applications

J. Appl. Cryst. (1993). 26, 469--473

CIF Applications. I. QUASAR: for Extracting Data from a CIF*

BY SYDNEY R. HALL

Crystallography Centre, University of Western Australia, Nedlands 6009, Australia

AND ROLF SILVERS

Institut fiir Anorganische Chemie der Universitiit, Gerhard-Domagk-Strasse, Bonn, Germany

(Received 12 December 1992; accepted 15 January 1993)

469

Abstract

The program QUASAR performs two basic functions. It
extracts specific data items from an input CIF and places
them into an output CIF format and it tests the input CIF
for logical integrity (i.e. that the file conforms to the STAR
File syntax). QUASAR is written in Fortran77 and has been
implemented on a wide range of computers. It is available
as public-domain software.

Introduction

The Crystallographic Information File (CIF: Hall, Allen
& Brown, 1991) has been recommended by the IUCr
Commissions on Crystallographic Data and on Journals
for electronic data exchange and archiving. From January
1992, the CIF is the preferred method for submitting
machine-readable manuscripts to Acta Crystallographica
(Allen, Bugg & Maslen, 1991). Considerable effort has
gone into the preparation of computer software aimed at
facilitating these objectives. Despite the relatively wide
distribution of these programs, some users and developers
are unaware of their availability.

This is the first of a series of papers describing computer
programs written specifically for reading, writing, manipu-
lating and validating CIFs. The description of QUASAR
starts this series because it is the first program developed
specifically to manipulate CIF data. Preliminary reports on
QUASAR have appeared in the introductory STAR and CIF
papers (Hall, 1991; Hall, Allen & Brown, 1991). The ear-
liest version of QUASAR (July 1987) was used to test the
feasibility of the STAR File process as a suitable universal
at-chive and exchange format. It was the success of these
trials that led to the decision by the IUCr Working Party on
Crystallographic Information to develop a crystallographic
application of the STAR File; namely the CIF. QUASAR
was, therefore, the prototype CIF-processing software and
today it remains the conformance standard for testing a

* This paper is one of a series of papers on CIF applications. Offprints
are available from The Technical Editor, 5 Abbey Square, Chester CHI
2HU, England. See text of paper for availability of program(s) by email.

0021-8898/93/030469-05506.00

CIF; i.e. if QUASAR cannot read data from a given file,
then that file is not a properly constructed CIF? Currently,
QUASAR is the principal interface to the ciftex publica-
tion system (McMahon, 1993), which is used to process
manuscripts submitted as CIFs to Acta Co'stallographica
Section C.

Although the functions and facilities provided by
QUASAR have evolved considerably since 1987, the ver-
sion described in this paper is effectively unchanged since
the publication of the CIF Core Dictionary (Hall et al.,
1991).

Other computer programs to be described in this se-
ries are CIFIO, an Xtal (Hall & Stewart, 1990) routine
for generating and reading two different types of CIFs;
CYCLOPS, which is for validating CIF data names in any
ASCII file against a standard CIF dictionary file; ClFtbx,
which is a tool box of routines for reading and writing a
CIF; and CIFER (Allen & Edgington, 1993), which is for
updating a CIF with missing standard items. Details of the
program DIFRAC for converting diffractometer data to a
CIF have already been reported (Flack, 1992). A number
of other CIF-processing programs are under development
and it is anticipated that these will also be published in
this series.

Functions and features

The basic function of QUASAR is to extract specified data
items from an existing CIF and place them into a new
CIF. The order of data in the new CIF is determined by
the order that data items are requested, not by the order of
data in the original CIF. QUASAR may be used therefore
to reorder as well as to filter data.

The basic features of QUASAR are as follows:
(a) Each data item is requested by data name. These

names form a list which is input to QUASAR as a file
referred to as the request file. Table l(a) shows a simple
example of a request file and Table 2 shows the CIF file
to which it is applied.

(b) The list of requested data names in the request file
must be preceded by a data-block statement. This specifies

© 1993 International Union of Crystallography

470 CIF APPLICATIONS. I

Table 1. Example request files

(a) An example request file to be used with q t e s t . ¢ i f (see Table 2)

star_arc_qtest.cif
s6ar_out_qtest.out

data_

_atom_site_fract_
_atom_site_label
_atom_site_aniso_LABEL
rubbish_to_see_what_happens

_atom_site_aniso_U_ll

data_P6122

(b) An alternate request file to test q t e s t , c i f (see Table 2) for logical integrity

star_arc_qtest.cif

star_log

#<< wild card block name -- accepts first

#<< this requests all fractional coord items

#<< capitals to test case insensitivity
#<< request something that isn't in the CIF

#<< this requests all data in this block

Table 2. Example inputfile named q t e s t , c i f

data_P6122

loop_

_atom_type_symbol

_atom_type_oxidation_number

_atom_type_number_in_cell

_atom_type_scat_dispersion_REAL

_atom_type_scat_dispersion_imag

atom_typescat_source

S 0 6

O 0 6

C 0 20

RU 0 1

.319 .557

.047 .032

.017 .009

-.105 3.296

#<< capitals to test case insensitivity

'Int Tab Vol III p202 Tab. 3.3.1A'

'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'

'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'

'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'

loop_

_atom_site_label

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_thermal_displace_type

_atom_site_calc_flag

_atom_site_calc_attached_atom
_atom_site_type_symbol

s .20200 .79800

o .49800 .49800

cl .48800 .09600

.91667 .030(3) Uij ? ? s

.66667 .02520 Uiso ? ? o

.03800 .03170 Uiso ? ? c

lOOp__

_atom_site_aniso_label

_atom_site_aniso_U_ll

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso U 12

_atom_site_aniso_Ul3

_atom_site_aniso_U_23

_atom_site_anisotype_symbol

s .035(4) .025(3) • 025(3) .013 (i) . 0 0 0 0 0 . 0 0 0 0 0 s

the data block from which the items are extracted. More
than one data block may be specified in the same request
file. See the example in Table l(a).

(c) The extraction process is insensitive to the character
case (upper or lower) of the data names in the request file
or the input CIF. The case of the output data names is

consistent with the case of the requested data names. See
Tables 1, 2 and 3.

(d) A wild-card option is available for requested data
names and data-block names. A trailing underline char-
acter (_) signals a request for all names that match the
preceding character string. For example, the request for

SYDNEY R. HALL AND ROLF SIEVERS 471

Table 3. The CIF output from QUASAR after entering the request file in Table l (a)

data_P6122

loop_
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_label

.20200 .79800 .91667 s
.49800 .49800 .66667 o
.48800 .09600 .03800 cl

loop_
_atom_site_aniso_label
_rubbish to see_what_happens
_atom_site_aniso_U_ll

s ? .035(4)

data_P6122

loop_
_atom_type_symbol
_atom_type_oxidation_number
_atom_type_number in cell
_atom_type_scat_dispersion_REAL
_atom_type_scat_dispersion_imag
_atom_type_scat_source

S 0 6 .319
O 0 6 .047
C 0 20 .017
RU 0 1 -.105

loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_thermal_displace_type
_atom_site_calc_flag

_atom_site_calc_attached_atom
_atom_site_type_symbol

s .20200 .79800 .91667
o .49800 .49800 .66667
cl .48800 .09600 .03800

loop_
_atom_site_aniso_label
_atom_site_aniso_U_ll
_atom_site_aniso U 22
_atom_site_aniso U 33
_atom_siteaniso U 12
_atom_site_aniso_U_13
_atom_site_aniso U 23
_atom_site_aniso_type_symbol

s .035(4) .025(3) .025(3)

requested item not present

..... end-of-data-block

.557

.032

.009
3.296

'Int Tab Vol III p202 Tab. 3.3.1A'
'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'
'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'
'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'

.030(3) Uij ? ? s

.02520 Uiso ? ? o

.03170 Uiso ? ? c

.013(1) .00000 .00000 s

..... end-of-data-block

'_atom_site_' will extract all data items whose name
starts with the string _ a t o m _ s i t e _ . A request for ' '
will extract all data items in the designated data block.
The entry 'daLa_' signals that data requests are from the
next-encountered data block. See Table l(a).

(e) The user need not know whether a data item is
in a repeated list or not. QUASAR automatically extracts
the data in the construction of the input CIF. However,
if the output data items are to be retained in the same
l o o p _ structure as the input CIF, these data items must
be requested consecutively (i.e. they may be reordered but
not separated). See Tables 1, 2 and 3.

(f) The file name of the input CIF is speci-
fied as the first line of the request file. Its for-
mat is _ztar_arc_<filename>. For example, if the
input filename is T O Z . c i f , the first line will read
_star_arc_TOg. cif. See Table l(a).

(g) The file name of the output CIF, if required, is
specified as the second line of the request file. Its format
is _star_out_<filename>. For example, if the output
filename is to be TOZ.new, the second line would read
_star_out_TOg. new.

(h) If the input CIF is to be tested only for logical
integrity, an output file name is not specified in the request

472 C I F A P P L I C A T I O N S . I

Table 4. Description of major storage variables in the QUASAR common block

C >>>>>>> QUASAR common: description of the array variables. <<<<<<<<

For i=1,2500 in the order of data items in the archive file.

REQU(n,i)

RCNT(i)
TYPE(i)

Contains request sequence number for each (n) request.
Contains the number of requests for this item.

Data type code 'numb', 'char' or 'text' for all items.

For j= 1,200 in the order of items on the request file.

NAME(j)

ITEM(j)

LOOP(j)
CLEN(j)

SCRI(j)

SCR2(j)

Data name of the requested item.

Sequence number of this item in the archive file.

The loop number of looped items, otherwise 0.
Nchr of non-LOOP items; max char length of LOOP items.

Scratch record number for non-LOOP items;

first scratch record number for LOOP items.
First char position in scratch record for non-LOOP items;

order of items in scratch file LOOP items.

For k=l,50 in order of the current LOOP items in scratch file.

LREC(k)

LPOS(k)

LLEN(k)

Record number on the scratch file for non-text item.
first record number on the scratch file for text item.

Char pointer to the scratch record for a non-text item.
last record number on the scratch file for text item.

Length of string on the scratch record for non-text item.

-1 for text item.

For 1=1,10 in order of wild-card data names in the request file.

WNAM(1,n) For up to 100 data names per wild-card request.

NTYP = 1 for a data name; = 3 for number data;

= 4 for char data; = 5 for text data

file. Instead, the line _ s t a r _ l o g is entered. All lines
following this line in the request file will be ignored. See
Table l(b).

Program algorithm
The program algorithm and modules are discussed to pro-
vide insight into a typical CIF parsing process. It is possi-
ble that some of the QUASAR modules are directly adapt-
able to other CIF software. Programmers are encouraged
to adapt QUASAR for this purpose. It is anticipated, how-
ever, that the CIFtbx routines (Hall, 1993) will be more
convenient for local adaptations.

The basic algorithmic steps used in QUASAR are as
follows:

1. Read the request file and store the list of data
names for the next specified data block. See the variables
NAME(), ITEM() etc. in Table 4.

2. Expand the stored request list if 'wild-card' names
are specified by reading the input CIF and extracting all
data names that match the 'wild-card' entries.

3. Read the input CIF again and store all data items
that are requested on a direct-access file. The direct-access

record numbers and the line positions are saved in the
request-list variables shown in Table 4. Only one pass of
the input sequential CIF is necessary.

4. The items are extracted from the direct-access file
in the order of the request list. The stored pointers enable
data items to be transferred directly from the scratch file
to the CIF output buffer.

5. Go back to 1 and process the next requested data
block.

The principal source modules which perform these
functions are as follows:

QUASAR (main program which cycles steps 1 to 5)
Calls REQIN, ADDREQ, GETDAT, REQOUT

REQIN (performs step 1)
Calls GETSTR, ERR

ADDREQ (performs step 2)
Calls GETSTR, ERR

GETDAT (performs step 3)
Calls GETSTR, PUTSCR, ERR

REQOUT (performs step 4)
Calls GETSCR, PUTOUT, ERR

GETSTR (get a character string from the request
file or input CIF)

SYDNEY R. HALL AND ROLF SIEVERS 473

PUTSCR (put a character string in the direct-
access file)
GETSCR (get a character string from the direct-
access scratch file)
PUTOUT (put a character string into the output
CIF)
ERR (print an error message and either exit if
fatal or return).

CIF error detection

An important function of QUASAR is to test the logical
integrity of the input CIF. An indication of the types
of checks is evident from the error messages output by
QUASAR. Here is a summary of these messages, with the
likely causes of error.

No data requests? Check request file

The request file is empty, not available or miscon-
structed.

Request dataname > 32 chars <data name>
The requested data name is too long

Request count > 200

The current limit to requested items in QUASAR is 200
per data block (see Table 4). This can easily be increased
by the user.

Wild card count > i0

The current limit to requested items with wild-card
options in QUASAR is 10 per data block (see Table 4).
This can easily be increased by the user in ADDREQ.

Wild card name expansion > i00

The number of data names that can be matched to
the wild-card request is 100 per data block. This can be
increased by modifying ADDREQ. See also Table 4.

No items in data block <data block name>
There are no requests for data in this block or there is

no data-block request.

Archive data mis-count in loop_ <loop number>
The count of data items in a list of repeated data is not

a multiple of the number of data names in the designated
l o o p _ structure. The input CIF is corrupted.

Archive data name > 32 chars <data name>

The specified data name in the input CIF exceeds the
32-character limit.

Data structure error before <data name>
There is a logical error in the construction of the input

CIF prior to this name.

Data item count > 2500

The number of data items in the input CIF exceeds
2500. See Table 4.

Requests for same item > 5

The same data items may only be requested five times
in a data block. See Table 4.

Data structure error at data item <data name>

A logical data structure error is detected when transfer-
ring data from the scratch file.

Terminating ; missing from text near <line
string>

Text data has not been terminated correctly. The semi-
colon character is missing from the first character of the
last text line.

Warning: string starts with ; on line <line
string>

A character string starts with a semicolon. This warns
of a possible text error.

Quoted string in archive not closed <line
string>

Unmatched quotes have been detected on this line.

Distribution

The QUASAR software is distributed as the file quasar
containing the Fortran source, the common file and some
small test files. These test files are shown as Tables 1, 2
and 3. The file q u a s a r may be obtained free of charge
in several different ways. The simplest and fastest ap-
proach is to use anonymous FFP to get the file from
the directory cif on the host 130.95.232.12. Alternatively,
send an email containing the line s e n d q u a s a r to
sendcif@crystal.uwa.edu.au or containing the line send
q u a s a r , s r c to sendcif@iucr.ac.uk. As a last resort, air-
mail a floppy disk to the first-named author stating the
mode of copy required.

References

ALLEN, F. H., BUGG, C. E. & MASLEN, E. N. (1991). Acta Cr>'st.
B47, 821-823.

ALLEN, F. H. & EDGINGTON, P. R. (1991). CIFER: a Program
for CIF Generation. Crystallographic Data Centre, Cambridge,
England.

RACK, H. D. (1992). J. Appl. Cryst. 25, 455--459.
HALL, S. R. (1991). J. Chem. Inf. Comput. Sci. 31, 326-333.
HALL, S. R. (1993). J. Appl. Cryst. 26, 482-494.
HAl,L, S. R., ALLEN, F. H. & BROWN, I. D. (1991). Acta Cryst.

A47, 655-685.
HALL, S. R. & STEWART, J. M. (1990). Editors. Xtal3.0 Users

Manual. Univs. of Western Australia, Australia, and Maryland,
USA.

MCMAHON, B. (1993). Acta Co'st. C49, 418-423.

