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Abstract. Loosely stated, the primitivity theorem says that 
a cell based on the three shortest noncoplanar translations 
of a lattice is primitive. No course on elementary crystal- 
lography can omit this basic property of three-dimensional 
lattices, with everyday applications for selection of cells 
and for cell reduction. Textbooks have treated this prop- 
erty as obvious for many years now and have not hinted at 
a proof. The complexity of several apparently little-known 
proofs published since 1831 and the fact that no similar 
theorem exists in four dimensions or more show that this 
property cannot be taken for granted. However, little more 
than a drawing schematizing the simple proof of Delaunay, 
Galiulin, Dolbilin, Zalgaller & Stogrin [Dokl. Akad. Nauk 
SSSR (1973), 209, 25-58] would be needed to clarify this 
important theorem for average undergraduate students. 

The primitivity theorem states that a cell based on the 
three shortest noncoplanar translations of a lattice, as 
defined below, is primitive. It is a basic property of three- 
dimensional lattices, with everyday applications for selec- 
tion of primitive cells and for cell reduction. Textbooks 
either state the above theorem with no proof, as if it was 
obvious, or refer to Bravais (1850) for the proof. In fact, 
although Bravais's work contains many proofs, there is 
none for his theorem 43 (which amounts to the primitivity 
theorem), which he gave sans ddrnonstration and with no 
reference. A check with a number of colleagues failed to 
produce published proofs or suggestions of a proof. Pub- 
lished proofs do in fact exist but, for various reasons, they 
do not seem to have been transferred through teaching or 
oral tradition. 
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Fig. 1. In one dimension, point M, selected between two nodes of P 
generated from the shortest repeat a of G, is at a distance not greater 
than a/2 from the closest node of P on the row, called O. Obviously, 
M cannot be a node of  G because a repeat OM shorter than a would 
then exist, in contradiction with the hypothesis that a is the shortest 
repeat of G. 
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The origin of the primitivity theorem can be traced to a 
book by Seeber (1831) on the reduction of ternary positive 
quadratic forms, with long analytical proofs. In an anony- 
mous and, on the whole, flattering analysis of this work, 
Gauss (1840) warned that many readers might be discour- 
aged by the length of Seeber's solution. A geometrical 
proof was contributed by Lejeune-Dirichlet (1850), who 
named Gauss as the reviewer of Seeber's work. Lejeune- 
Dirichlet's paper mostly concerns the selection of unique 
reduced cells in two and three dimensions. His proof of 
the primitivity theorem is quite simple but the parameters 
in the proof are the squares of the lengths of the shortest 
translations. His proof also makes use of a previous re- 
sult and no drawing is printed. Nevertheless, with some 
rewriting, a self-contained proof using modem concepts 
could be printed on a single page with a drawing and 
used for teaching. More than a century later, Belov (1951, 
1957), Guymont & Wu (1973, 1975), Delaunay, Galiulin, 
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Fig. 2. In two dimensions, the primitive net P built from the two shortest 
noncollinear translations a and b of a net G is considered. Point M 
outside the nodes of P projects orthogonally to M ~ on the closest row 
of P that is parallel to a. Such rows are spaced b sin 3, apart. The 
length MM' is therefore not longer than b/2. The node that is closest 
to M ~ on that row is called O. The distance OM' is not greater than 
a/2 and afortiori is not greater than b/2. From Pythagoras' theorem, 
OM = (OM ''z + M'M "z) 1/'z cannot therefore be larger than b 21/'z/2. 
If OM is not coilinear with a, OM cannot be a vector of G since it is 
shorter than b. If OM is collinear with a, the proof  in one dimension 
applies. Therefore, no node of G can exist outside those of P: the 
mesh based on the two shortest translations o f  a net is primitive. 
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Dolbilin, Zalgaller & Stogrin (1973) and Sabatier (1977) 
published differing proofs. The complexity of several of  
the above-mentioned proofs shows that the primitivity the- 
orem, although simply stated, cannot be taken for granted 
in three dimensions. Translations are available for several 
of the above publications and are referenced here. 

The three shortest noncoplanar translations (a, b, ¢) of 
a lattice are selected as given by, for example, Burzlaff, 
Zimmermann & de Wolff (1983): of all lattice vectors, 
none is shorter than a; of  those not directed along a, none 
is shorter than b; of those not lying in the ab  plane, none is 
shorter than c. When several lattice vectors have the same 
lengths, the selection of  ' the three shortest translations' 
may not be unique. In such cases, the considerations below 
apply to all selections satisfying the above criteria. 

The proof by Delaunay et al. (1973) is well suited 
for teaching and, due to its simplicity, deserves wide 
exposure. In the present adaptation, the primitive lattice 
P built using the shortest translations of a given lattice G 
is considered. For any point M outside the nodes of P, a 
node 0 of P can be found such that the length of O M  is too 
short for M to be a node of  G without conflicting with the 
selection of  the shortest translations of G. Consequently, 
all nodes of  G are nodes of P,  i.e. G is primitive when 
referred to its shortest translations. This is illustrated here 
firstly in one dimension, where the property and its proof 
are trivial (Fig. 1). The one-dimensional property is then 
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Fig. 3. In three dimensions, the primitive lattice P based on the three 

shortest noncoplan~ translations a, b and c of a lattice G is considered. 
Point M is projected orthogonally in M ~ to the closest lattice plane 
of  the (001) family, then M' is projected orthogonaily in M" to the 
closest  lattice row of the [100] family in that plane. The node closest 
to M "  on  that row is called O. Similar to the case in two dimensions ,  
the distance OM cannot be greater than c3112/2. If OM is not coplanar 
with a and b, M cannot be a node of G since it is shorter than c. If OM 
is coplanar with a and b, the proof in two dimensions applies. The 
cell based on the three short~st translations o f  a lattice is therefore 
primitive. 

used to complete the proof in two dimensions (Fig. 2), then 
in three dimensions (Fig. 3). For full proofs, the reader 
should consult the original publications. 

Recurrence in the previous reasonings is obvious, but 
the conclusions are not the same for all dimensions. In four 
dimensions, the shortest vectors are a, b, c, d. Point M is 
projected orthogonally etc. All projection lines are again 
mutually perpendicular and Pythagoras '  theorem applies: 
it is concluded that O M  cannot be longer than d. However,  
equality with d is possible in one case: if a, b, c and d are 
equal in length and mutually perpendicular, point I with 
fractional coordinates (½, ½, ½, ½) is at a distance from the 
closest nodes that is equal to the length of  the edge of  the 
hypercube. Point ! is not a node of P but could be a node 
of G without contradicting the selection criteria of  the four 
shortest 'noncoplanar '  translations of G: the body-centered 
hypercube is a counterexample in four dimensions. 

In five dimensions and more, a point inside the cell can 
be at a greater distance from the origin than the shortest 
'noncoplanar '  vectors and no equivalent of the primitivity 
theorem is true. 

In view of the existence of simple proofs, the primitivity 
theorem should not be taught without clarification. With- 
out delving into the details of a rigorous proof, a figure 
similar to Fig. 3 could sufficiently clarify this theorem for 
average undergraduate students. A reference to Delaunay 
et al. (1973) could then satisfy the curiosity of students 
wishing to have access to complete proofs. 
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