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Small-Angle Scattering of Microparacrystallites (mPC's) 
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Two-dimensional small-angle X-ray scattering (SAXS) an- 
alysis combined with wide-angle X-ray scattering (WAXS) 
from highly oriented polymers proves that the polymers con- 
sist of mosaic blocks with paracrystalline distortions - the 
so-called microparacrystallites (mPC's), which are the bricks 
of a paracrystailine superlattice - the so-called macropara- 
crystal (MPC). The concept of meso-phases fails, because 
the MPC's show simultaneously both nematic and smectic 
properties. All this new information cannot be obtained with 
slit-smearing cameras and unoriented samples. 

An interesting example is the SAXS four-point diagram 
of biaxially oriented polyethylene film (Karl, Mochizuki, 
Akiyama & Hosemann, 1978). It is impossible to explain it 
by the well-known two-phase model of 'crystalline' lamellae. 
One has to take into account statistical correlations be- 
tween the surfaces of adjacent lamellae which influence the 
SAXS remarkably. The conventional explanation of four- 
point diagrams is given in the left-hand side of Fig. 1. A 
bundle of lamellae, tilted away from the stretching direc- 
tion x3 (vertical in the figure) by an angle ~o can most con- 
veniently be described by the folding product of the shape 
function of one lamella with the one-dimensional point 
function of the positions of the centers of the lameilae. In 
Fourier space this is the product of the Fourier transform 
of one lamella (LS) with the Fourier transform EL of the 
lattice point function. This function is assumed for simpli- 
city (at the bottom left of the figure) to be crystalline and to 
consist therefore of a series of equidistant thin discs. Two of 
the maxima of the observed four-point diagram (center of the 
figure) are thus explained. Near the other surface of the film 
the other corresponding families of tilted lamellae produce 
the other two maxima. 

The conventional explanation fails, since 
(1) the lateral sizes of the maxima are always much broader 

than expected from the lateral dimensions of the lamellae; 
(2) the bundles always have quite irregular lateral bound- 

aries and therefore cannot determine the direction of the 
flat maxima, which in our case are tilted by ~ =  12 ~ 
away from the normal to the stretching direction. 

An adequate explanation is given on the right-hand side of 
the figure. The lamellae consist of mPC's whose centers 
build up a MPC with supercell edges a3 and at. The vectors 
fluctuate statistically in length and direction from super- 
lattice cell to superlattice cell and build up two families of 
discs in Fourier space each orthogonal to the respective 
mean edge vector. Unlike the thin crystalline discs, they 
are more and more broadened with increasing distance from 
the primary beam. Their product has two maxima, which 
explain quantitatively the shape of the SAXS maxima if one 
introduces adequate statistical fluctuations of a3 and at. The 
maxima of the four-point diagram then have the Miller 
indices 01 and 0]- of the superlattice, on which the shape of the 
bundle oflamellae has no influence. Multiplying the product 
of the discs with the shape factor of the mPC's, one obtains 

an intensity function which defines quantitatively the shape 
of the SAXS maxima. The intensity functions depend in 
their lateral direction on the lateral size of the mPC's and the 
relative statistical fluctuation of at in the direction of a3 
called g,3- The two-dimensional analysis of the SAXS shows 
that for gr3>0"5 (nematic-like superstructures) the lateral 
shape of the maxima is given solely by the lateral size of the 
mPC's (Loboda-12a(zkovid, Hosemann, Ca6kovid, Ferrero & 
Ferracini, 1976) and not by the size the bundle. With de- 
creasing g,3 the influence of the paracrystalline superlattice 
factor become more pronounced. Hard elastic fibers with 
substantially smectic-like lamellae show SAXS reflections of 
small lateral dimensions corresponding to 1000 A or more 
(Noether & Whitney, 1973), produced by a couple of mPC's 
well aligned in the lateral direction. 

The concept of mesophases (Hermann, 1931a, b) fails, be- 
cause it cannot describe structures with simultaneous ne- 
matic- and smetic-like (fibriilar and lamellar) properties. 
Using the concept of mPC's one directly finds a quantitative 
explanation in terms of the special kind of the arrangement 
of such mPC's in a paracrystalline superlattice (MPC). Here 
as well as in the atomic lattice of the mPC's nine new sta- 
tistical parameters have to be introduced which describe the 
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Fig. 1. The SAXS four-point diagram of biaxially oriented poly- 
ethylene. The conventional explanation is given on the left-hand 
side of the figure and the explanation in terms of mPC's on the 
right-hand side of the figure. 



R. HOSEMANN, J. LOBODA-(~A(~KOVI(~ AND K. KAJI 541 

statistical (liquid-like) fluctuations of the edge vectors of the 
lattice cells. From the two-dimensional SAXS analysis one 
learns, for instance, that during annealing the vector at, 
which expands between the centers of laterally adjacent 
mPC's, shows a decreasing fluctuation in chain direction 3. 
The structure becomes bimodal after a certain annealing time 
indicating that groups of mPC's cluster together within the 
lamellae with well-aligned fold surfaces (Loboda-t~a6kovi6, 
Hosemann & (~a6kovi6, 1971). From WAXS one learns that 
smaller mPC's recrystallize here to form larger ones. 

The lateral grain boundaries of the mPC's proved by a 
combined SAXS and WAXS analysis play an important role 
in the understanding of the increase of the long period, P, 
with temperature. Surface premelting cannot explain this 
for polymers with a crystallinity below 0"5 (Yeh, Hosemann, 
Loboda-(~a6kovi6 & Ca6kovi~, 1976). The paracrystalline 
model gives a direct answer: mPC's with unprotected 
lateral boundaries (e.g. at the end of lamellae) offer an excess 
free energy. They dissolve by solid-state diffusion and parts 
of their segments crystallize to form parts of the adjacent two 
lamellae (Hosemann, 1962). A true melting occurs solely in 
temperature range III near the melting point where the 
SAXS intensity decreases and isolated groups of bounded 
bundles of lamellae are imbedded in the melt. This can be 
shown directly on isotactic poly(1-butene) which in this 
range only melts partially; quenched to room temperature 
it recrystallizes to the unstable modification II (Haase, 
Hosemann & Renwanz, 1977). Even the so-called single 
crystals grown from dilute solution consist of specially 
aligned mPC's. Their degradation by 03 or HNOa can only 

be understood in terms of the important role of the lateral 
grain boundaries of the mPC's (Sch~Snfeld, Wilke, H6hne & 
Hosemann, 1972; Hosemann, Ca6kovi6 & Loboda-t~a(zko- 
vi6, 1975). 

The full paper will be published in Journal ().]" Materials 
Science. 
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The effects of deviations from an ideal lamellar structure (infinite-size clusters of parallel layers of alternating electron 
densities) on the small-angle scattering curve are treated with the aid of the correlation function. If surrounded by a 
matrix of the average electron density, reduction of the size of the clusters in the direction of the layer normals leads to a 
simple modification of the one-dimensional correlation function. Distortions giving rise to structures containing con- 
centric layers have little effect on this function, whereas corrugation of the surfaces causes minor modifications. Second- 
order defects are shown to reduce the three-dimensional correlation function of the ideal structure 7°(r) according to 
7(r) = 7°(r) exp ( - 2r/d), where d is the 'distortion length'. This is the average length of the vectors for which the number of 
intersections with lamellar interfaces has changed by _+ 1 as a consequence of the distortions. Calculated diffraction 
curves show that the effects of reducing the cluster size and of increasing the width fl of the lamellar thickness distribu- 
tion function are very similar. However, changes in d and fl affect the scattering curves in a different way, which, other 
conditions being favourable, may enable these parameters to be determined from observed scattering curves. 

Introduction 
In nearly all calculations of the small-angle scattering of 
melt-crystallized polymers use is made of a structure model 
consisting of alternating parallel crystalline and amorphous 
layers in randomly oriented clusters, whose dimensions in 
all directions are large compared with those covered by the 
experiments. In the following this model will be referred to 

as the 'ideal lamellar model'. In the calculations two ap- 
proaches have been followed; according to the first, and 
more general one, the one-dimensional intensity function 
Ia from a cluster is obtained by squaring the corresponding 
one-dimensional amplitude function FI, which in turn is 
obtained by Fourier transformation of the electron-density 
variations along the lamellar normal. A review of the litera- 
ture about procedures and results, which also deals with the 


