Herstellung von Kupfereinkristallen Kleiner Versetzungsdichte. Par E. KAPPLER, W. UELHOFF, H. EHMER et F. ABBINK. Pp. 41. Fig. 54. Fernruf: Westdeutscher Verlag, 1971. Prix DM 57,60, (Forschungsberichte des Landes Nordrhein-Westfalen, No. 2181).

Les auteurs du présent mémoire ont eu pour objectif de préparer des monocristaux de cuivre pur, quasi-exempts de dislocations, en appliquant la méthode de Czochralski.

Celle-ci a eté, jusqu'alors, moins employée que la méthode de Bridgman, pour résoudre le problème laborieux de la croissance de monocristaux métalliques parfaits.

Mais la méthode de Bridgman, dans ses diverses modalités techniques, conduit à une densité de dislocations qui ne descend guère au-dessous de 10⁴ cm⁻² pour le cuivre le plus pur (5N).

En revanche, la méthode de Czochralski, vu l'absence de tout creuset, offre la possibilité de serrer de plus près les paramètres de la croissance et ceux des préparations ultérieures destinées aux examens par les rayons X (Berg-Barrett, double cristal, Lang).

L'étude et la mise en œuvre des conditions expérimentales favorables ont été faites avec un soin extrême par les auteurs du mémoire, en vue de gagner au moins une ou deux puissances de 10 par rapport à la densité Bridgman.

Par exemple, au cours du tirage, le réglage programmé de la température du bain fondu est commandé à ± 0.15 °C, car un écart de ± 1 °C provoque une variation de ± 5 % dans le diamètre du cristal qui croît.

Beaucoup d'autres détails, qui résultent d'une étude expérimentale critique, sont fournis ici: bilan thermique, vitesse de tirage, etc.

En ce qui concerne, notamment, les échantillons qu'on extrait du monocristal, après refroidissement, toute contrainte méchanique mineure imposée est source de nouvelles dislocations. Pour s'en affranchir, il est fait emploi d'une scie électrolytique et d'un polissage, lui aussi électrolytique.

On peut ainsi imaginer qu'un chercheur expérimenté serait en mesure de reproduire les travaux décrits dans ce mémoire, grâce à l'expose substantiel qu'il contient.

Les résultats atteints par Kappler et al. sont les suivants: la densité des dislocations varie d'un seuil inappréciable aux rayons X jusqu'à ~5·10³ cm-² (cette dernière valeur étant rarement observée); elle est, le plus souvent, comprise entre 10² et 10³; si ce domaine de densités est reproductible, il n'est toutefois pas possible de retrouver systématiquement les densités les plus faibles.

Aussi, les auteurs de ces travaux soumettent-ils à la discussion les causes probables auxquelles seraient dues les dislocations dans le monocristal formé (toutes precautions étant prises pour éviter contraintes mecaniques ou thermiques ou l'intervention d'impuretés comme l'oxygène dans l'atmosphère d'argon, au cours du refroidissement, etc.).

L'origine principale des dislocations serait à rapporter au germe polycristallin. Si le cristallite qui s'impose dans la croissance du monocristal n'a pas l'orientation optimale [100] ou [111] suivant l'axe du tirage, des tensions se produisent, d'origine thermique, qui provoquent la multiplication des dislocations.

L'hypothèse est alors exprimée que l'emplor d'un germe monocristallin pauvre en dislocations et d'orientation [111] soit susceptible d'engendre des monocristaux apparemment depourvus de dislocations.

Tel est le résultat intéressant et reproductible qui est cité en fin du mémoire. Il a été présenté par Fehmer et Uelhoff au troisième congrès international de croissance cristalline (ICCG 3) à Marseille (juillet 1971) (cf. Journal of Crystal Growth, 13/14, 1972).

Si ces monocristaux possèdent néanmoins d'autres défauts que les dislocations, par exemple des pores, on peut estimer que les auteurs des travaux analysés ci-dessus, parviendront, avec le même soin, à en circonscrire l'apparition.

R. HOCART

Laboratoire de Minéralogie-Cristallographie Université de Paris V1 11 quai St. Bernard Paris 5 France

Crystal growth 1971. Proceedings of 3rd International Conference, France 1971. Edited by R. A. LAUDISE, J. B. MULLIN and B. MUTAFTSCHIEV. Pp. xix + 875 Figs. 733. Tables 102. Amsterdam: North Holland, 1971. Price f 240.00 (ca. \$75.00).

The importance of the crystal growers science and art upon progress in solid

state physics can never be over-stressed. It is equally important that when the worlds' crystal growers meet triennially a representative collection of their papers, prepared especially for the Conference, should appear as a special issue of *Journal of Crystal Growth*, in order that the solid state physicist may separately assess progress in growth mechanisms.

These proceedings are a selection of 160 of the total 321 papers presented at the conference, grouped into 14 sections.

The first section consists of 20 invited papers ranging over the whole field of crystal growth from a biography of Verneuil to a futuristic assessment by Professor Frank.

Of particular interest are papers on the hydrodynamics of crystal growth from the melt and the use of X-ray topography for determination of crystal perfection in organic-crystal growth.

The use of holography as an aid to the study of crystal growth and the application of heat-pipe technology for heat transfer to the seed crystal are examples of new techniques that are influencing crystal-growth processes. Others include the use of an infrared TV system to control the crystal diameter during Czochralski growth and the use of pressure balancing techniques to control the vapour pressure and hence the chemical stoichiometry of crystals previously grown by liquid encapsulation.

Of particular interest to the crystallographer are many papers on X-ray topography giving indications of the degradations in crystal perfection likely to be experienced.

This comprehensive, well selected collection of papers in a single volume will be of great interest to those solid state physicists who want to assess for themselves the state of the art in July 1971.

D. W. GOODWIN

Department of Physics University of York Heslington York YO1 5 DD England

Technik-Wörterbuch Kristallografie. Englisch-Deutsch-Französisch-Russisch. 1. Auflage 1972. By K.-O. Back-HAUS. Pp. 132. Berlin: Veb Verlag, 1972. Price 20 DM.

This work is a technical dictionary covering 2042 words and phrases in the field