3. The copper rod F which connects the glass hair on which the crystal is mounted with the goniometer head. This rod prevents icing at places where mixing of the cold gas and the outer air can occur, the temperature of the rod being above 0°C at these places.

Since $\chi \le 90^\circ$ for the three-circle Nonius diffractometer, for all crystal settings, except those with $\chi \simeq 90^\circ$, the component of the gas stream along the glass hair points to the goniometer head. No icing occurs in the neighbourhood of the crystal for this direction of the gas stream, as it prevents outer air from being sucked along the glass hair towards the crystal. Care must be taken that the crystal does not stay at $\chi \simeq 90^\circ$ for too long during the intensity measurements.

The temperature at the position of the crystal was measured with a very

thin Chromel–Alumel thermocouple. Values of 110 (± 2) °K or lower can be reached depending on the strength of the current through the electric heater in the evaporation vessel. We usually work at 110 °K. This temperature is obtained with a total consumption of liquid nitrogen of 0.80 litre per hour, 0.35 litre of which is used for the cold gas stream.

The equipment described above has worked well during several long intensity runs. For a recent example, see Koster, van Bolhuis & Visser (1970). The cooling system described above is now commercially available (Enraf–Nonius, Delft, The Netherlands) in a slightly modified form.

The author thanks Dr J. L. de Boer for valuable discussions during the development of the apparatus, and Mr P. Lasker

and Mr J. Spoelstra for their technical assistance.

F. VAN BOLHUIS

Laboratorium voor Structuurchemie Rijksuniversiteit Groningen Bloemsingel 10 Groningen The Netherlands

(*Received* 11 *November* 1970; accepted 2 *March* 1971)

References

- Koster, P. B., VAN BOLHUIS, F. & VISSER, G. J. (1970). Acta Cryst. **B26**, 1932.
- LEWIN, J. D. (1963). J. Sci. Instrum. 40, 539.
- Post, B., Schwartz, R. S. & Fankuchen, I. (1951). *Rev. Sci. Instrum.* **22**. 218. Robertson, J. H. (1960). *J. Sci. Instrum*, **37**. 41.

International Union of Crystallography

Commission on Crystallographic Computing

Call for material for the third edition of the

World List of Cryrstallographic Computer Programs

The Commission on Crystallographic Computing of the International Union of Crystallography wishes to announce its decision to prepare a third edition of the *World* List of Crystallographic Computer Programs. The Editor in charge of this edition is

Dr G. C. Bassi

C.N.R.S., Laboratoire d'Electrostatique et de Physique du Métal

Cedex no. 166, 38-Grenoble-Gare, France.

Suitable publication of the *List* will be arranged. The *Journal of Applied Crystallography* is being considered as a possible publication medium. Authors and/or distributors of crystallographic computer programs or systems are invited to submit the necessary information about their programs to the Editor, G. C. Bassi, by 1 November 1971, or earlier if possible. Formats for the submission cards are described below; if punched-card equipment is not available the information may be presented on sheets in the prescribed formats.

All material to be included in the third edition will be based only on the newly submitted cards (or sheets), regardless of whether or not the programs are included in the second edition. It is hoped that this will encourage programmers to eliminate any programs which are out of date, or of very limited interest. In general, only programs that are well checked and in good running order will be accepted. Proper documentation is essential, and the Editor urges those submitting programs to ensure that they will be well documented by the time of publication of the *World List.*

Required information

(a) A Title card, a Name and Source card, and six or less Abstract cards are needed for each program.

(b) An Author Index card should be submitted for each author, programmer, and distributor of programs. When one of these names is abbreviated in the Title or Name cards, an additional Author Index card should be supplied, giving the full name as in the following example:

SHMKR, SEE SHØEMAKER, D. P. SHØEMAKER, D. P., ØREGØN STATE UNIVER-SITY, CØRVALLIS, ØREGØN 97331, U.S.A.

(c) A *Definition* card should be included for each abbreviated function, machine, language, or system that has been used but is not already included in the list of abbreviations supplied.

Formats

Title card Card

columns Contents

- 1- 4 Program accession number, to be assigned by the Editor. Programs are numbered serially in chronological order of receipt by the Editor.
- 6-13 Machine type, by code name or number.
- 15-22 Language in which the program is written.
- 24-31 Crystallographic computer system, and the program number or identification within the system, as for example XRAY-23, XRY 70-23, or NRC-10.
- 33-64 Program name, and functions in coded form chosen from the supplied abbreviation list. If necessary only use new symbols defined in a Definition card. The name should be followed by a comma, and the functions should be separated by a blank space. The functions should serve as identification of the types of calculation included in the program. Example:

POW, HKL DHK DST

means that the program generates the indices H, calculates the *d*-spacings, and sorts the reflections in descending order of d(H). The functions may be omitted if desired.

- 66–67 Core requirement in K words for the program as supplied, where K=1024.
- 69-75 Name of distributor or person in charge of the program to whom enquiries should be addressed.
 - 78 Status of program operability, and availability of program code:
 - L well checked out, program code available
 - M well checked out, program code not available
 - N operable but not well checked out.
 - 79 Status of program write-up:
 - C complete write-up available, with the algorithms and the input/output explained
 - I write-up available for input/output only
 - N no write-up available.
 - 80 Status of availability of program in working form: A available on request for no charge
 - C available for the charge stated in the abstract
 - N not available at present, probably available at later date
 - S program is of special or local nature, conditionally available.

Name and Source card

- 1- 4 Program accession number, same as on the Title card.
 - 5 1 (a card sequence number of identification).
- 6–40 Authors, programmers' names. Only surnames should be given except when use of an initial is necessary to avoid confusion. Surnames should be separated by commas. Where initials are needed they should follow the surname, separated by spaces but no punctuation. The person to whom technical enquiries should be addressed should have an asterisk after his surname if he is not the first author. The name of the distributor should be omitted from this card unless he is one of the authors.
- 42–75 Source. If the program happens to be a modification of another program, the original program and authors should be identified; otherwise this space should be left blank.

Abstract cards

- 1- 4 Program accession number, the same as on the Title card.
 - 5 2 ... 7 (a card sequence number for identification).
- 8–75 Abstract, limited to about 50 words. It should include the relevant information which cannot be directly identified from the program title such as special features, speed, and generality.

Author Index card

1-80 Surname starting in column 1, initials, and mailing address. All name abbreviations should be explained on additional cards.

Definition card

1-10 The abbreviation used, starting in col. 1.

11-80 Full meaning.

PROGRAM AND FUNCTION ABBREVIATIONS

Space group generalities

- ALL SPACE GROUPS ASG CSP CENTROSYMMETRIC SPACE GROUPS ONLY NSG NON-CENTROSYMMETRIC SPACE **GROUPS ONLY** PRI PRIMITIVE UNIT CELLS ONLY TRICLINIC, MONOCLINIC, AND TMO ORTHORHOMBIC SYSTEMS ONLY LAT Lattice constants LCD LATTICE CONSTANTS DETERMINATION LCR LATTICE CONSTANTS REFINEMENT RUC **REDUCTION OF UNIT CELL** DIF **Diffractometer control** CCD COMPUTER CONTROLLED DIFFRACTOMETER CIR **3 OR 4 CIRCLE GEOMETRY** GONIOSTAT SETTINGS CALCULATION GSC HKL **GENERATE THE INDICES** OMC **ORIENTATION MATRIX CALCULATION ORIENTATION MATRIX REFINEMENT** OMR WEI WEISSENBERG GEOMETRY PRO Processing of raw intensity data AVG AVERAGING OF INTENSITIES CMP COMPARISON OF MULTIPLE MEASUREMENTS OUA **OBS/UNOBS ASSIGNMENT** LAY SCALING ACCORDING TO LAYERS NET CALCULATION OF NET COUNTS SCH SEARCH FOR UNMEASURED REFLEXIONS
- SCL SCALING OF THE INTENSITIES
- SRT SORT ON THE INDICES

DRF Data reduction and generation of data file

- ABS ABSORPTION CORRECTIONS
- ACT ACENTRIC-CENTRIC TEST
- CIR 3 OR 4 CIRCLE GONIOSTAT GEOMETRY
- FOB F OBS CALCULATION
- ISC INTERPOLATION ON SCATTERING FACTOR CURVES
- LPC LORENTZ AND POLARIZATION CORRECTIONS
- PRC PRECESSION GEOMETRY
- SHF SHARPENING FUNCTION APPLICATION
- WEI WEISSENBERG GEOMETRY
- WSN WILSON STATISTICS

DIR

WTA WEIGHT ASSIGNMENT

Direct phasing

- EHS NORMALIZED STRUCTURE FACTORS AND STATISTICS
- MLT MULTISOLUTION PROCEDURE
- OES ORIGIN AND ENANTIOMORPH SELECTION
- ORG ORIGIN SELECTION
- PAS PHASE ESTIMATION FROM ANOMALOUS SCATTERING
- PIA PHASE ESTIMATION FROM ISOM. REPL. AND ANOM. SCAT.

PIR	PHASE ESTIMATION FROM	AB
PLS	PHASE ESTIMATION BY LEAST	AB
PST	SQUARES PHASE REFINEMENT BY THE SQUARED	LP
PTN	TANGENT FORMULA PHASE REFINEMENT BY THE TANGENT	MI
SAP	FORMULA SYMBOLIC ADDITION PROCEDURE	PE
SIC STF	STRUCTURE INVARIANT CALCULATION SCALE AND TEMPERATURE FACTOR	SE
SYR	SAYRE'S EQUATION APPLICATION	EE
S1I	SIGMA 1 INTERACTIONS SEARCH	
S2I	SIGMA 2 INTERACTIONS SEARCH	
USF	UNITARY STRUCTURE FACTORS	гэ GR
SCF	Scattering factor determination	מת
ISC	INTERPOLATION ON SCATTERING	PK
NICO	FACTOR CURVES	RE
NSC	DETERMINATION	BIJ
XSC	X-RAY SCATTERING FACTOR	DIC
	DETERMINATION	DIC
SFC	Structure factor calculation	BL
AGA	AGREEMENT ANALYSIS OF OBS & CALC	DF
CAD	DATA STRUCTURE EACTORS WITH	DL
SAD	ANOMALOUS DISPERSION	ES
SAN	STRUCTURE FACTORS WITH ANISO-	
	TROPIC THERMAL PARAMETERS	FD
SIS	STRUCTURE FACTORS WITH ISOTRO-	FL
SEO	PIC THERMAL PARAMETERS	ĹĀ
SET	S.F. WITH FRACTIONAL OCCUPANCIES	
511	SUBTRACTION OF ATOMS	LA
SRG	CONTRIBUTION OF RIGID GROUP	
FOU	Fourier type colculation	LE
		LS
FBL	CALCULATION	
FCT	FOURIER BY COOLEY-TUKEY	00
	ALGORITHM	RB
FPD	FOURIER, PATTERSON & DIFFERENCE	SC
EDC	SYNTHESES	SC
FP3 FD1	ONE DIMENSIONAL FOUDIED	
FD2	TWO DIMENSIONAL FOURIER	XY
FD 3	THREE DIMENSIONAL FOURIER	
FTM	FOURIER TRANSFORM	GE
FUM	FOURIER PRODUCING UNDISTORTED	
1 0	MAPS	
SHF	SHARPENING FUCTION APPLIED	IVIT
VMS	Vector man solving and manipulation	PO
VUA	VECTOR HEAVY ATOM ANALYSIS	RO
VME	VECTOR MINIMIM FUNCTION	SA
VOS	VECTOR ORIENTATION SEADCH	SIL
VPS	VECTOR POSITION SEARCH	2.BI
VVR	VECTOR VERIFICATION	10
COP	Corrections to cheared data	TH
		AC
ABA	ABSORPTION CORRECTION BY ANALYTICAL METHOD	CB.

ABI	ABSORPTION CORRECTION BY
	GAUSSIAN INTEGRATION
ABE	ABSORPTION CORRECTION BY
IDC	EXPERIMENTAL METHOD
LPU	CORRECTIONS
MPD	CORRECTION FOR MULTIPLE
MFD	DIFERACTION
PFX	CORRECTION FOR PRIMARY
1 L/X	EXTINCTION
SEX	CORRECTION FOR SECONDARY
~	EXTINCTION
FED	File editing and manipulation
ADI	
ADL	ADD TO OR DELETE FROM FILE
CDT	FILE SOKT ON THE INDICES
OKI	IN HIGH SYMMETRY SPACE CROUPS
PRT	PRINT FILE CONTENTS
INI	TRINT THE CONTENTS
REF	Refinement of atomic parameters
BIJ	REFINEMENT OF ANISOTROPIC
	THERMAL PARAMETERS
BIS	REFINEMENT OF ISOTROPIC
	THERMAL PARAMETERS
BLS	BLOCK DIAGONAL LEAST SQUARES
DFS	REFINEMENT BY DIFFERENTIAL
DIC	SYNTHESES
DL2	CALCULATION OF THE ESTIMATED
ESD	STANDARD DEVIATIONS
FDG	ADDI ICATION OF FUDGE OD
I DO	RELAXATION FACTORS
FLS	FULL MATRIX LEAST SOLIARES
LAD	LEAST SOUARES WITH ANOMALOUS
	DISPERSION
LAY	REFINEMENT OF LAYER SCALE
	FACTORS
LEQ	LEAST SQUARES FOR ATOMS WITH
	EQUIVALENT COORDINATES
LSP	LEAST SQUARES WITH ALLOWANCE FOR
	ATOMS IN SPECIAL POSITIONS
OCC	REFINEMENT OF OCCUPANCY FACTORS
RBL	RIGID BODY LEAST SQUARES
SCH	SCHOMAKER'S CORRECTION OF
SCI	THERMAL PARAMETER SHIFTS
SCL	EACTOR
VV7	PEEINEMENT OF DOSITIONAL DADAM
AIL	ETERS
<u> </u>	
GEO	Molecular geometry calculations
DIH	DIHEDRAL ANGLE BETWEEN PLANES
MPL	MEAN PLANE THROUGH A SET OF
	ATOMS BY LEAST SQUARES
POL	COORDINATION POLYHEDRA
ROT	RUTATION ANGLES
SAN	SCAN OF INTERMOLECUL AR DISTANCES
5D1 21D	SCAN OF INTERMOLECULAR DISTANCES
SBL	SCAN OF BOIND LENGIHS
IUK	IUNSIUNAL ANGLES
THV	Thermal vibration analysis
ACC	ACCUMULANTS
CBA	CORRECTIONS OF BOND LENGTHS
	AND ANGLES

266

PLT RID	AUTOMATIC PL ELLIPSOIDS RIDING MOTIO	OTTING OF TH	ERMAL		CDC 3500 CDC 6600 CDC 7600	CDC3500 CDC6600 CDC7600
TEL	RIGID BODY MOTION THERMAL ELLIPSOIDS CALCULATION			DIGITAL EQUIPMENT	PDP 7	PDP7
SFT	Structure fac	tor tables for publi	cation		PDP 8	PDP8
AGR	AGREEMENT ANALYSIS OF THE OBS &				PDP 8/E PDP 9	PDP8E PDP9
CSF	COMPRESSED STRUCTURE FACTOR TABLES FOR PUBLICATION		GENERAL ELECTRIC	GE 615	GE615	
PLT	Pl	otter programs			GE 655 GE 655	GE655 GE655
FCR DRW TEL	FOURIER CONTOURS STRUCTURE DRAWING THERMAL ELLIPSOIDS			HEWLETT PACKARD	HP 2114 A HP 2115 A	HP2114A HP2115A
POW	Pow	vder diffraction			ПГ 2110 В	HF 2110B
BRG CPP DHK	CALCULATION CALCULATION CALCULATION SPACINGS	OF BRAGG AND OF POWDER PA OF INTERPLAN	GLES ATTERN AR	HONEYWELL	200/1200 200/1250 200/2200 H 632	H2001200 H2001250 H2002200 H632
DST	SORTING IN DE	ESCENDING ORI	DER OF	IBM	360/65	IBM36065
HKL IND LCD	GENERATE THI INDEXING OF I LATTICE CONS	E INDICES POWDER PATTE TANTS DETERM	RN INATION		360/50 360/44 360/40	IBM36050 IBM36044 IBM36040
0.011	FROM POWDER	PATTERN			1130	IBM1130
SCH STP	SEARCH OF TH	E ASIM POWDE	IR FILE		1800	1BW1800
UCP	POWDER PATTERN BY LEAST SQUARES UNIT CELL REFINEMENT FROM			NCR	CENTURY 100 CENTURY 200	NCRC100 NCRC200
	POWDER PATTI	ERN BY LEAST S	SQUARES	UNIVAC	1106	UNC1106
PRJ	Projecti	ions of the structure	es		1108	UNC1108
ORT STE	ORTHOGONAL STEREOSCOPIC	PROJECTION PROJECTION		XEROX DATA SYSTEMS	SIGMA 3 SIGMA 5	XDSSIG3 XDSSIG5
MSC]	Miscellaneous			SIGMA 6 SIGMA 7	XDSSIG6 XDSSIG7
ASD	ATOMIC STRUC	CTURE DETERM	INATION	ICI	1001	ICI 1001
CCS	ATOMIC RADII CRYSTALLOGRAPHIC COMPUTER			ICL	1901 A 1902 A	ICL1901 ICL1901A
EDN	ELECTRON DIF	FRACTION			1903 A	ICL1903A
MFF	MAGNETIC FO	RM FACTOR			1904 A 1906 A	ICL1904A
MSD	MAGNETIC STF TION	RUCTURE DETE	RMINA-		KDF 9	ICLKDF9
NDN	NEUTRON DIFI	FRACTION		BULL-GE	415	BGE415
PRT	PROTEIN WORI	K			425	BGE425
REN	RENNINGER EI	FFECI STEM			433	BGE435
SPW	SIMPLEX METH	HOD		C.I.I.	510	CII510
TDS	THERMAL DIFI	FUSE SCATTERI	NG		90/10	CII0910
VAR XDN	VARIANCE X-RAY DIFFRA	CTION			90/40 90/80 10020	CII9040 CII9080 CII10020
	COMPUTER	ABREVIATIO	NS		10070	CI110070
Name		Type	Abbreviation	SIEMENS	4004/35	SI400435
RURROUGHS		B 500	B 500		4004/45	SI400445
DOKK		B 6500	B 6500	TELEFUNKEN	TR 4	TR4
CONTROL DATA		CDC 3300	CDC3300		TR 86 TR 440	TR86 TR440

Commission on Crystallographic Apparatus

An international project for the calibration of absolute intensities in small-angle X-ray scattering

The importance of absolute intensity measurements in small-angle X-ray experiments has been recognized for many years, and a wide variety of methods have been reported for achieving such calibrations (Luzzati, 1960; Gerold, 1961; Kratky & Wawra, 1963; Damaschun & Müller, 1965; Kratky, Pilz & Schmitz, 1966). Apart from a comparison by Weinberg (1963) of the foil-attenuation method with the gas-scattering method and a comparison by Shaffer (1964) and Shaffer & Beeman (1970) of the data for zero-angle scattering for several gases, there has been no attempt to compare the many techniques. The problem of precision in measurements of absolute intensity, and the need for a comparison of the different techniques for a common standard sample, were discussed at the recent Second International Conference on Small-Angle Scattering of X-rays held in Graz, Austria, in August, 1970. The results of these discussions may be summarized as follows:

I. An international project should be established with the aims of (1) testing the precision of reproducibility and the comparative accuracy of the various calibration techniques in current use, and (2) clarifying the areas of difficulty in absolute intensity calibration.

II. There shall be no attempt to nominate a single absolute intensity calibration technique. Each participating laboratory will use its own preferred technique to carry out measurements on a set of standard specimens to be provided by the project organizer.

III. The secondary standards would be (1) chemically, thermally, and physically stable, (2) unaffected by long exposures to X-rays, (3) easily transported, and (4) easily handled. On the basis of these criteria, liquid samples were eliminated from consideration. Three solid samples were agreed upon as suitable standards: (1) glassy carbon, (2) polyethylene, and (3) cellulose acetate. Each specimen would be mounted in a specimen holder suitable for use in almost all small-angle scattering geometries.

IV. The project organizer would have the responsibility for (1) designing the specimen holders, (2) preparing the instructions to participants, (3) maintaining and distributing the standards, and (4) collecting and comparing the data.

Each participating laboratory will receive for calibration one of each of the three standard samples from the project organizer. The same three samples will be destributed sequentially to all participants in order to assist in separating technique errors from specimen errors. Detailed instructions regarding the kind and quantity of data required to make the comparison of results from different laboratories meaningful will be provided. Basically, data will be required that fully characterize (1) the geometry of the small-angle collimation system, (2) the X-ray generator and the focal spot, (3) the X-ray wavelength and monochromatization, and (4) the X-ray detection system. These data will be recorded on forms provided. Detailed descriptions of the calibration techniques and all raw data will be recorded. Equations and sample calculations for the data reduction must be shown, including the method of collimation corrections if any is used. The final result - the absolute differential X-ray scattering cross section for each sample will be used to compare the results from the different laboratories. The data from participants will be analyzed with the assistance of L. B. Shaffer and a report prepared for publication. Complete anonymity of all participants will be maintained.

The standard samples and their mounts and the detailed instructions for participation are now being prepared and checked. All interested researchers are encouraged to communicate with the project organizer (address below) for further details.

> Robert W. Hendricks Metals and Ceramics Division Oak Ridge National Laboratory P.O. Box X Oak Ridge Tennessee 37830, U.S.A.

References

DAMASCHUN, G. & MÜLLER, J. (1965). Z. Naturforsch. 20, 1274.

GEROLD, V. (1961). Phys. Stat. Solidi, 1, 37.

- KRATKY, O., PILZ, I. & SCHMITZ, P. J. (1966). J. Colloid Interface Sci. 21, 24.
- KRATKY, O. & WAWRA, H. (1963). Mh. Chem. 94, 981.
- LUZZATI, V. (1960). Acta Cryst. 13, 939.
- SHAFFER, L. B. (1964). Absolute X-ray Scattering Cross-Sections of Liquids and Solutions. Ph.D. thesis, Univ. of Wisconsin.
- SHAFFER, L. B. & BEEMAN, W. W. (1970). J. Appl. Cryst. 3, 379.
- WEINBERG, D. L. (1963). Rev. Sci. Instrum. 34, 691.