research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure characterization, Hirshfeld surface analysis, and DFT calculation studies of 1-(6-amino-5-nitro­naphthalen-2-yl)ethanone

crossmark logo

aShaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, People's Republic of China, bSchool of Life Sciences, Ningxia University, Yinchuan 750021, People's Republic of China, and cSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: yafu-zhou@xab.ac.cn

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 26 February 2024; accepted 25 April 2024; online 3 May 2024)

The title compound, C12H10N2O3, was obtained by the de­acetyl­ation reaction of 1-(6-amino-5-nitro­naphthalen-2-yl)ethanone in a concentrated sulfuric acid methanol solution. The mol­ecule comprises a naphthalene ring system bearing an acetyl group (C-3), an amino group (C-7), and a nitro group (C-8). In the crystal, the mol­ecules are assembled into a two-dimensional network by N⋯H/H⋯N and O⋯H/H⋯O hydrogen-bonding inter­actions. nπ and ππ stacking inter­actions are the dominant inter­actions in the three-dimensional crystal packing. Hirshfeld surface analysis indicates that the most important contributions are from O⋯H/H⋯O (34.9%), H⋯H (33.7%), and C⋯H/H⋯C (11.0%) contacts. The energies of the frontier mol­ecular orbitals were computed using density functional theory (DFT) calculations at the B3LYP-D3BJ/def2-TZVP level of theory and the LUMO–HOMO energy gap of the mol­ecule is 3.765 eV.

1. Chemical context

2-Naphthyl­amine (also known as β-naphthyl­amine, CAS 91-59-8) occurs as pink crystals under the influence of light and has a weak, aromatic odor. In the past, It has been used for ligands or surfactants for the production of azo dyes, as an anti­oxidant in the rubber industry, as well as in the cable industry (Czubacka et al., 2020[Czubacka, E. & Czerczak, S. (2020). Med. Pr. 71, 205-220.]). It is also used for oxytocinase assays, water analysis, and sewage control, and as a model bladder carcinogen in laboratories (Freudenthal et al., 1999[Freudenthal, R. I., Stephens, E. & Anderson, D. P. (1999). Int. J. Toxicol. 18, 353-359.]). It is not currently produced on an industrial scale and is not found in the natural state.

[Scheme 1]

2-Naphthyl­amine derivatives find applications in organic synthesis and serve as building blocks in the synthesis of dyes (Czubacka et al., 2020[Czubacka, E. & Czerczak, S. (2020). Med. Pr. 71, 205-220.]), pharmaceuticals (Wu et al., 2024[Wu, J., Liu, X., Zhang, J., Yao, J., Cui, X., Tang, Y., Xi, Z., Han, M., Tian, H., Chen, Y., Fan, Q., Li, W. & Kong, D. (2024). Bioorg. Chem. 142, 106930.]), and other organic compounds (Ding et al., 2005[Ding, K., Li, X., Ji, B., Guo, H. & Kitamura, M. (2005). Curr. Org. Synth. 2, 499-545.]; Yao et al., 2013[Yao, W., Yan, Y., Xue, L., Zhang, C., Li, G., Zheng, Q., Zhao, Y., Jiang, H. & Yao, J. (2013). Angew. Chem. Int. Ed. 52, 8713-8717.]). The title 2-naphthyl­amine derivative, (I) was obtained by the de­acetyl­ation reaction of 2-acetyl-6-acetyl­amino-5-nitro­naphthalene in concentrated sulfuric acid methanol solution. Herein we report the crystal structure, Hirshfeld surface analysis, and density functional theory (DFT) calculations of the mol­ecule.

2. Structural commentary

The title compound (Fig. 1[link]) comprises a naphthalene core structure, where all carbon atoms within the naphthalene ring system (C1–C10) are ideally sp2-hybridized. The amino group and the nitro group are adjacent, located at positions C-7 and C-8, respectively, of the naphthalene ring system,while the acetyl group is located at the C-3 position. The angles between the two hydrogen atoms on the amino group and between the two oxygen atoms on the nitro group are 120 and 118.66 (17)°, respectively. The O2—N1—C8—C9 and O2—N1—C8—C7 torsion angles are 112.80 (3) and −165.8 (2)°, respectively. The acetyl group and naphthalene ring system are almost coplanar, the O1—C11—C3—C2 and C12—C11—C3—C4 torsion angles being 2.00 (3) and 2.80 (3)°, respectively. The intra­molecular N2—H2A⋯O and C1—H1⋯O2 hydrogen bonds (Table 1[link]) lead to the formation of two six-membered rings, stabilizing the mol­ecular conformation (Fig. 1[link]). The structure of I is further stabilized by atom–centroid and centroid–centroid (CgCg) inter­actions, illustrated in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 2.16 2.988 (2) 162
N2—H2A⋯O3ii 0.86 2.54 3.146 (3) 128
N2—H2A⋯O3 0.86 1.95 2.556 (3) 127
C6—H6⋯O1i 0.93 2.57 3.341 (2) 141
C1—H1⋯O2 0.93 2.11 2.720 (3) 122
Symmetry codes: (i) [x+1, y, z-1]; (ii) [-x+1, -y+2, -z].
[Figure 1]
Figure 1
The title mol­ecule atomic numbering scheme. Displacement ellipsoids are depicted at the 50% probability level The C1—H1⋯O2 and N2—H2A⋯O3 intra­molecular hydrogen bonds are depicted by gray dashed lines.
[Figure 2]
Figure 2
The packing of the mol­ecules showing the nπ and ππ stacking inter­actions (dashed lines) along the a-axis direction.

3. Supra­molecular features

In the crystal, the mol­ecules are linked via C6—H6⋯O1 and N2—H2B⋯O1 hydrogen bonds (Table 1[link]), generating two-dimensional layers propagating along the [101] direction (Fig. 3[link]). Two-dimensional layers formed by N2—H2A⋯O3 inter­molecular hydrogen bonds (Fig. 3[link]) while nπ and ππ stacking inter­action form a super three-dimensional network structure (Fig. 2[link]). The ππ inter­actions are medium-to-weak (Cg1–Cg2 distances greater than 3 Å with a slippage value 3.627 Å where Cg1 and Cg2 are the centroids of the C1–C4/C10/C9 and C5–C10 rings, respectively). In addition, The structure exhibits typical nπ (O1⋯Cg2 = 3.359 Å) and van der Waals interactions (C3⋯Cg1 = 3.435  Å).

[Figure 3]
Figure 3
The packing of mol­ecules showing the hydrogen-bonding inter­actions (gray dashed lines) along (a) the a-axis direction and (b) the b-axis direction.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 2024.1.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed a total of nine compounds with structural similarity greater than 70%, of which six have an acetyl or nitro substituent connected to the naphthalene ring core structure. However, there is only one compound with both acetyl and amino groups on the naphthalene ring system (refcode EBUXIL, CCDC 955350; Rejc et al., 2014[Rejc, L., Fabris, J., Adrović, A., Kasunič, M. & Petrič, A. (2014). Tetrahedron Lett. 55, 1218-1221.]).

5. Hirshfeld Surface analysis

In order to visualize the inter­molecular inter­actions, a Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The three-dimensional dnorm surface of the title compound, plotted with a standardized resolution and color scale ranging from −0.4536 (red) to 1.4893 (blue) a.u. is shown in Fig. 4[link]. It reveals the primary inter­actions to be inter­nal and external hydrogen bonds, nπ and ππ inter­actions. The intense red spots symbolize short contacts and negative dnorm values on the surface are related to the presence of the N2—H2A⋯O3 hydrogen bonds in the crystal structure. Weak C1—H1⋯O2 and C6—H6⋯O1 contacts are showed by dim red spots (Fig. 5[link]). The 2D fingerprint plots qu­anti­tatively visualize the H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, and H⋯N/N⋯H inter­actions (Fig. 6[link]). The nπ and ππ stacking inter­actions, located in the middle region of the fingerprint plot, play an integral role in the overall crystal packing, contributing 16.6% (Fig. 6[link]a). The most significant contacts are H⋯O/O⋯H and H⋯H, contributing 34.9% and 33.7%, respectively, while the H⋯C/C⋯H contacts contribute 11.0%, and the H⋯N/N⋯H contacts contribute 3.8% to the Hirshfeld surface (Fig. 6[link]b–6e). The Hirshfeld surfaces mapped over shape-index, curvedness, electrostatic potential, and fragment patches are shown in Fig. 7[link]. The pattern of orange and blue triangles on the shape-index surface (Fig. 7[link]a) shows the characteristic feature of ππ inter­actions. Since curvedness plot (Fig. 7[link]b) shows flat regions, it is evident that the title mol­ecules are arranged in planar stacking (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface mapped over dnorm.
[Figure 5]
Figure 5
Hirshfeld surface mapped over dnorm showing H⋯O/O⋯H, H⋯N/N⋯H, and C⋯H/H⋯C contacts.
[Figure 6]
Figure 6
The two-dimensional fingerprint plots showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯O, (c) H⋯H, (d) C⋯H/H⋯C, and (f) N⋯H/H⋯N inter­actions [the de and di values represent the distances (in Å) from a point on the Hirshfeld surface to the nearest atoms inside and outside the surface, respectively].
[Figure 7]
Figure 7
Hirshfeld surfaces mapped over (a) electrostatic potential, (b) shape-index, (c) curvedness, and (d) fragment patches.

6. DFT calculations

The mol­ecular structure of the title compound in the gas phase was optimized using density functional theory (DFT) (Neese et al., 2009[Neese, F., Wennmohs, F., Hansen, A. & Becker, U. (2009). Chem. Phys. 356, 98-109.]) with the standard B3LYP-D3BJ method with the basis set def2-TZVP (Hanwell et al., 2012[Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). J. Cheminf. 4, 1-17.]), default SCF and geometrical convergence criteria as implemented in the Orca 5.0.4 package (Neese, 2018[Neese, F. (2018). Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1327.], 2022[Neese, F. (2022). Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12, e1606.]). The input files were prepared from the CIF file using Avogadro 1.98.1 software (Hanwell et al., 2012[Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). J. Cheminf. 4, 1-17.]). The calculated bond lengths and bond angles for the title compound are presented in Table 2[link] along with the corresponding crystallographic data (from the CIF file) for comparison·The computed results agree well with the experimental crystallographic data.

Table 2
Comparison of selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray ωB97M-V/def2-TZVP
C12—C11 1.492 (3) 1.514
C10—C4 1.398 (2) 1.406
C11—C3 1.483 (3) 1.491
C10—C5 1.422 (2) 1.419
C11—O1 1.215 (2) 1.215
C5—C6 1.338 (3) 1.354
C3—C2 1.408 (3) 1.410
C6—C7 1.431 (3) 1.427
C3—C4 1.373 (2) 1.378
C7—C8 1.412 (3) 1.410
C2—C1 1.366 (3) 1.371
C7—N2 1.333 (2) 1.348
C1—C9 1.416 (3) 1.418
C8—N1 1.425 (2) 1.446
C9—C10 1.424 (2) 1.427
N1—O2 1.217 (2) 1.223
C9—C8 1.447 (3) 1.437
N1—O3 1.227 (2) 1.240
C3—C11—C12 119.48 (18) 118.71
C5—C10—C9 119.73 (16) 119.45
O1—C11—C12 119.56 (19) 120.66
C3—C4—C10 122.33 (17) 121.48
O1—C11—C3 120.96 (19) 120.63
C6—C5—C10 122.09 (17) 121.61
C2—C3—C11 120.46 (17) 118.95
C5—C6—C7 121.51 (17) 119.00
C4—C3—C11 122.46 (17) 122.97
C8—C7—C6 117.75 (16) 117.98
C4—C3—C2 117.08 (17) 118.02
N2—C7—C6 115.85 (17) 117.13
C1—C2—C3 122.07 (17) 121.89
N2—C7—C8 126.40 (17) 124.87
C2—C1—C9 121.76 (17) 121.22
C7—C8—C9 121.77 (16) 121.48
C1—C9—C10 116.07 (16) 116.84
C7—C8—N1 118.03 (16) 118.18
C1—C9—C8 126.75 (16) 125.24
N1—C8—C9 120.18 (16) 120.31
C10—C9—C8 117.15 (16) 117.85
O2—N1—C8 120.96 (17) 119.41
C4—C10—C9 120.65 (16) 120.53
O2—N1—O3 118.66 (17) 121.99
C4—C10—C5 119.62 (16) 120.01
O3—N1—C8 120.21 (18) 118.58

Electron distribution in the frontier mol­ecular orbital (FMOs), i.e. the highest occupied MO (HOMO; −6.357 eV) and the lowest unoccupied MO (LUMO; −2.592 eV) with a LUMO–HOMO gap of 3.765 eV, are illustrated in Fig. 8[link]. The HOMO is less distributed on the naphthyl acetyl group while LUMO is more distributed. When the energy gap is small, the mol­ecule exhibits high polarizability and enhances its chemical reactivity. The calculated energies and related parameters are presented in Table 3[link]. The hardness and softness values are important parameters in understanding the chemical reactivity of a compound and stability index of a ligand. Compounds formed with a ligand exhibiting higher dipole moment values are generally more stable (Zhan et al., 2003[Zhan, C. G., Nichols, J. A. & Dixon, D. A. (2003). J. Phys. Chem. A, 107, 4184-4195.]).

Table 3
Calculated energies for the title compound

Mol­ecular energy Compound (I)
Total energy, TE (eV) −21726.75
EHOMO (eV) − 6.357
ELUMO (eV) −2.592
Gap, ΔE(eV) 3.765
Dipole moment, μ (Debye) 7.33
Ionization potential, I (eV) 8.16
Electron affinity, A 0.77
Electronegativity, χ 4.46
Hardness,η 7.40
Electrophilicity index, ω 1.34
Softness, σ 0.14
Fraction of electron transferred, ΔN 0.69
[Figure 8]
Figure 8
HOMO and LUMO calculated by the B3LYP-D3BJ/def2-TZVP method. The energy band gap is shown.

7. Mol­ecular electrostatic potential (MEP)

The mol­ecular electrostatic potential (MEP) map, generated using ωB97M-V/def2-TZVP (Mardirossian & Head-Gordon, 2016[Mardirossian, N. & Head-Gordon, M. (2016). J. Chem. Phys. 144, 214110.]) basis sets with the Orca 5.0.4 software package (Neese, 2022[Neese, F. (2022). Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12, e1606.]), was used to broadly predict reactive sites for electrophilic and nucleophilic attack in the title compound. The map, drawn using VMD 1.9.4 (Humphrey & Schulten, 1996[Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 33-38.]) and Multiwfn 3.8 (Lu & Chen, 2012[Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580-592.]; Zhang & Lu, 2021[Zhang, J. & Lu, T. (2021). Phys. Chem. Chem. Phys. 23, 20323-20328.]), is shown in Fig. 9[link]. In the crystal, the mol­ecular charge distribution is governed by the MEP. The electrostatic potential in the MEP map varies increasingly according to a red < white < blue color scheme [ranging from −35.80 kcal mol−1 (extreme red) to 51.87 kcal mol−1 (extreme blue)].

[Figure 9]
Figure 9
Mol­ecular electrostatic potential (MEP) surfaces mapped from the optimized geometries of the ωB97M-V/def2-TZVP calculation.

8. Synthesis and crystallization

0.5 g of 2-acetyl-6-acetamido-5-nitro­naphthalene were dissolved in 30 mL of MeOH, 3 mL of concentrated H2SO4 was, and the reaction was refluxed at 353 K for 6 h. After the reaction was complete, it was quenched with 10 mL of ice water, precipitating yellow solids, and filtered to obtain the target product. The MeOH was dissolved and red transparent block-shaped crystals were cultured at 277 K in the refrigerator (Xu et al., 2017[Xu, Z., Zheng, S. & Liu, Y. (2017). China patent, CN106866437 A.]).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geometrically (C—H = 0.93–0.96 Å and N—H = 0.86 Å) and refined as riding, with Uiso(H) = 1.2Ueq(N) for NH hydrogen atoms or 1.5Ueq(C-meth­yl).

Table 4
Experimental details

Crystal data
Chemical formula C12H10N2O3
Mr 230.22
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.1208 (13), 8.2262 (14), 9.5944 (15)
α, β, γ (°) 73.338 (4), 72.167 (4), 62.966 (4)
V3) 535.19 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.30 × 0.15
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 3406, 1884, 1448
Rint 0.013
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.148, 1.03
No. of reflections 1884
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.30
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

1-(6-Amino-5-nitronaphthalen-2-yl)ethanone top
Crystal data top
C12H10N2O3Z = 2
Mr = 230.22F(000) = 240
Triclinic, P1Dx = 1.429 Mg m3
a = 8.1208 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2262 (14) ÅCell parameters from 1265 reflections
c = 9.5944 (15) Åθ = 2.8–25.0°
α = 73.338 (4)°µ = 0.11 mm1
β = 72.167 (4)°T = 296 K
γ = 62.966 (4)°Block, red
V = 535.19 (15) Å30.40 × 0.30 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
1448 reflections with I > 2σ(I)
phi and ω scansRint = 0.013
Absorption correction: multi-scan
SADABS; Krause et al., 2015)
θmax = 25.0°, θmin = 2.3°
h = 99
3406 measured reflectionsk = 69
1884 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.2098P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1884 reflectionsΔρmax = 0.41 e Å3
155 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C120.0695 (3)0.0991 (3)0.7872 (3)0.0632 (7)
H12A0.19140.02360.81170.095*
H12B0.07170.08470.69080.095*
H12C0.02380.06150.85990.095*
C110.0216 (3)0.2974 (3)0.7860 (2)0.0456 (5)
C30.1180 (3)0.3996 (3)0.6612 (2)0.0372 (4)
C20.0793 (3)0.5851 (3)0.6600 (2)0.0444 (5)
H20.00810.64260.73830.053*
C10.1661 (3)0.6831 (3)0.5474 (2)0.0423 (5)
H10.13660.80520.55140.051*
C90.2999 (2)0.6039 (2)0.4247 (2)0.0324 (4)
C100.3356 (2)0.4177 (2)0.42440 (19)0.0328 (4)
C40.2454 (3)0.3209 (2)0.5420 (2)0.0357 (4)
H40.27260.19900.53960.043*
C50.4643 (3)0.3292 (2)0.3033 (2)0.0392 (5)
H50.48590.20790.30400.047*
C60.5553 (3)0.4150 (3)0.1883 (2)0.0408 (5)
H60.63950.35140.11200.049*
C70.5262 (3)0.6024 (3)0.1800 (2)0.0380 (5)
C80.3990 (3)0.6942 (2)0.2985 (2)0.0357 (4)
N10.3732 (3)0.8791 (2)0.2929 (2)0.0489 (5)
N20.6247 (3)0.6726 (3)0.05977 (18)0.0538 (5)
H2A0.61360.78430.04910.065*
H2B0.69920.60620.00710.065*
O10.0958 (2)0.3728 (2)0.88712 (17)0.0677 (5)
O20.2953 (3)0.9525 (2)0.4026 (2)0.0887 (7)
O30.4405 (4)0.9628 (2)0.1795 (2)0.0975 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0646 (15)0.0471 (13)0.0580 (14)0.0232 (12)0.0059 (11)0.0006 (11)
C110.0401 (11)0.0489 (12)0.0382 (10)0.0153 (9)0.0010 (9)0.0056 (9)
C30.0336 (9)0.0373 (10)0.0363 (10)0.0123 (8)0.0038 (8)0.0075 (8)
C20.0427 (11)0.0456 (11)0.0397 (10)0.0137 (9)0.0033 (8)0.0196 (9)
C10.0473 (11)0.0309 (10)0.0467 (11)0.0133 (9)0.0025 (9)0.0156 (8)
C90.0331 (9)0.0280 (9)0.0359 (10)0.0104 (7)0.0072 (8)0.0086 (7)
C100.0334 (9)0.0293 (9)0.0357 (9)0.0120 (8)0.0039 (7)0.0100 (7)
C40.0366 (10)0.0301 (9)0.0389 (10)0.0137 (8)0.0037 (8)0.0078 (8)
C50.0437 (11)0.0283 (9)0.0437 (11)0.0145 (8)0.0003 (8)0.0135 (8)
C60.0449 (11)0.0371 (10)0.0372 (10)0.0160 (9)0.0036 (8)0.0154 (8)
C70.0427 (11)0.0361 (10)0.0357 (10)0.0186 (9)0.0058 (8)0.0049 (8)
C80.0409 (10)0.0271 (9)0.0399 (10)0.0139 (8)0.0078 (8)0.0072 (8)
N10.0591 (11)0.0313 (9)0.0543 (11)0.0213 (8)0.0023 (8)0.0092 (8)
N20.0723 (13)0.0476 (10)0.0405 (10)0.0344 (10)0.0068 (9)0.0083 (8)
O10.0671 (11)0.0683 (11)0.0509 (9)0.0280 (9)0.0205 (8)0.0200 (8)
O20.1203 (16)0.0512 (10)0.0912 (14)0.0504 (11)0.0344 (12)0.0407 (10)
O30.174 (2)0.0506 (11)0.0627 (11)0.0669 (13)0.0141 (12)0.0071 (9)
Geometric parameters (Å, º) top
C12—C111.492 (3)C10—C41.398 (2)
C11—O11.215 (2)C10—C51.422 (2)
C11—C31.483 (3)C5—C61.338 (3)
C3—C41.373 (2)C6—C71.431 (3)
C3—C21.408 (3)C7—N21.333 (2)
C2—C11.366 (3)C7—C81.412 (3)
C1—C91.416 (3)C8—N11.425 (2)
C9—C101.424 (2)N1—O21.217 (2)
C9—C81.447 (3)N1—O31.227 (2)
O1—C11—C3120.96 (19)C5—C10—C9119.73 (16)
O1—C11—C12119.56 (19)C3—C4—C10122.33 (17)
C3—C11—C12119.48 (18)C6—C5—C10122.09 (17)
C4—C3—C2117.08 (17)C5—C6—C7121.51 (17)
C4—C3—C11122.46 (17)N2—C7—C8126.40 (17)
C2—C3—C11120.46 (17)N2—C7—C6115.85 (17)
C1—C2—C3122.07 (17)C8—C7—C6117.75 (16)
C2—C1—C9121.76 (17)C7—C8—N1118.03 (16)
C1—C9—C10116.07 (16)C7—C8—C9121.77 (16)
C1—C9—C8126.75 (16)N1—C8—C9120.18 (16)
C10—C9—C8117.15 (16)O2—N1—O3118.66 (17)
C4—C10—C5119.62 (16)O2—N1—C8120.96 (17)
C4—C10—C9120.65 (16)O3—N1—C8120.21 (18)
O1—C11—C3—C4177.21 (19)C4—C10—C5—C6179.61 (18)
C12—C11—C3—C42.8 (3)C9—C10—C5—C60.4 (3)
O1—C11—C3—C22.0 (3)C10—C5—C6—C70.8 (3)
C12—C11—C3—C2178.01 (19)C5—C6—C7—N2179.82 (18)
C4—C3—C2—C11.1 (3)C5—C6—C7—C80.6 (3)
C11—C3—C2—C1179.64 (18)N2—C7—C8—N11.2 (3)
C3—C2—C1—C90.2 (3)C6—C7—C8—N1178.35 (17)
C2—C1—C9—C101.1 (3)N2—C7—C8—C9179.66 (18)
C2—C1—C9—C8179.23 (18)C6—C7—C8—C90.2 (3)
C1—C9—C10—C41.7 (3)C1—C9—C8—C7178.23 (18)
C8—C9—C10—C4179.93 (16)C10—C9—C8—C70.2 (3)
C1—C9—C10—C5178.33 (16)C1—C9—C8—N13.3 (3)
C8—C9—C10—C50.1 (3)C10—C9—C8—N1178.64 (16)
C2—C3—C4—C100.6 (3)C7—C8—N1—O2165.8 (2)
C11—C3—C4—C10179.81 (17)C9—C8—N1—O212.8 (3)
C5—C10—C4—C3179.17 (17)C7—C8—N1—O39.4 (3)
C9—C10—C4—C30.8 (3)C9—C8—N1—O3172.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.162.988 (2)162
N2—H2A···O3ii0.862.543.146 (3)128
N2—H2A···O30.861.952.556 (3)127
C6—H6···O1i0.932.573.341 (2)141
C1—H1···O20.932.112.720 (3)122
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+2, z.
Comparison of selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayωB97M-V/def2-TZVP
C12—C111.492 (3)1.514
C10—C41.398 (2)1.406
C11—C31.483 (3)1.491
C10—C51.422 (2)1.419
C11—O11.215 (2)1.215
C5—C61.338 (3)1.354
C3—C21.408 (3)1.410
C6—C71.431 (3)1.427
C3—C41.373 (2)1.378
C7—C81.412 (3)1.410
C2—C11.366 (3)1.371
C7—N21.333 (2)1.348
C1—C91.416 (3)1.418
C8—N11.425 (2)1.446
C9—C101.424 (2)1.427
N1—O21.217 (2)1.223
C9—C81.447 (3)1.437
N1—O31.227 (2)1.240
C3—C11—C12119.48 (18)118.71
C5—C10—C9119.73 (16)119.45
O1—C11—C12119.56 (19)120.66
C3—C4—C10122.33 (17)121.48
O1—C11—C3120.96 (19)120.63
C6—C5—C10122.09 (17)121.61
C2—C3—C11120.46 (17)118.95
C5—C6—C7121.51 (17)119.00
C4—C3—C11122.46 (17)122.97
C8—C7—C6117.75 (16)117.98
C4—C3—C2117.08 (17)118.02
N2—C7—C6115.85 (17)117.13
C1—C2—C3122.07 (17)121.89
N2—C7—C8126.40 (17)124.87
C2—C1—C9121.76 (17)121.22
C7—C8—C9121.77 (16)121.48
C1—C9—C10116.07 (16)116.84
C7—C8—N1118.03 (16)118.18
C1—C9—C8126.75 (16)125.24
N1—C8—C9120.18 (16)120.31
C10—C9—C8117.15 (16)117.85
O2—N1—C8120.96 (17)119.41
C4—C10—C9120.65 (16)120.53
O2—N1—O3118.66 (17)121.99
C4—C10—C5119.62 (16)120.01
O3—N1—C8120.21 (18)118.58
Calculated energies for the title compound top
Molecular energyCompound (I)
Total energy, TE (eV)-21726.75
EHOMO (eV)- 6.357
ELUMO (eV)-2.592
Gap, ΔE(eV)3.765
Dipole moment, µ (Debye)7.33
Ionization potential, I (eV)8.16
Electron affinity, A0.77
Electronegativity, χ4.46
Hardness,η7.40
Electrophilicity index, ω1.34
Softness, σ0.14
Fraction of electron transferred, ΔN0.69
 

Acknowledgements

The authors thank Nian Zhao, from Hubei Normal University, for the data collection.

Funding information

Funding for this research was provided by: the Xi'an Science and Technology Plan Project (grant No. 20NYYF0043); the Key Research and Development Program of Shaanxi (grant No. 2023-YBNY-248 and 2023-YBNY-100); the Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (grant No. BRZD2005); the Foundation of Science and Technology in Shaanxi Province (grant No. 2020TD-050); the Key Research and Development Program of China (grant No. 2021YFD1600400).

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCzubacka, E. & Czerczak, S. (2020). Med. Pr. 71, 205–220.  Web of Science PubMed Google Scholar
First citationDing, K., Li, X., Ji, B., Guo, H. & Kitamura, M. (2005). Curr. Org. Synth. 2, 499–545.  Web of Science CrossRef CAS Google Scholar
First citationFreudenthal, R. I., Stephens, E. & Anderson, D. P. (1999). Int. J. Toxicol. 18, 353–359.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). J. Cheminf. 4, 1–17.  Web of Science CrossRef Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHumphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graph. 14, 33–38.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592.  Web of Science CrossRef PubMed Google Scholar
First citationMardirossian, N. & Head-Gordon, M. (2016). J. Chem. Phys. 144, 214110.  Web of Science CrossRef PubMed Google Scholar
First citationNeese, F. (2018). Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1327.  Web of Science CrossRef Google Scholar
First citationNeese, F. (2022). Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12, e1606.  Web of Science CrossRef Google Scholar
First citationNeese, F., Wennmohs, F., Hansen, A. & Becker, U. (2009). Chem. Phys. 356, 98–109.  Web of Science CrossRef CAS Google Scholar
First citationRejc, L., Fabris, J., Adrović, A., Kasunič, M. & Petrič, A. (2014). Tetrahedron Lett. 55, 1218–1221.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Liu, X., Zhang, J., Yao, J., Cui, X., Tang, Y., Xi, Z., Han, M., Tian, H., Chen, Y., Fan, Q., Li, W. & Kong, D. (2024). Bioorg. Chem. 142, 106930.  Web of Science CSD CrossRef PubMed Google Scholar
First citationXu, Z., Zheng, S. & Liu, Y. (2017). China patent, CN106866437 A.  Google Scholar
First citationYao, W., Yan, Y., Xue, L., Zhang, C., Li, G., Zheng, Q., Zhao, Y., Jiang, H. & Yao, J. (2013). Angew. Chem. Int. Ed. 52, 8713–8717.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhan, C. G., Nichols, J. A. & Dixon, D. A. (2003). J. Phys. Chem. A, 107, 4184–4195.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J. & Lu, T. (2021). Phys. Chem. Chem. Phys. 23, 20323–20328.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds