research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of (3Z)-4-[(4-amino-1,2,5-oxa­diazol-3-yl)amino]-3-bromo-1,1,1-tri­fluoro­but-3-en-2-one

crossmark logo

aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dMIREA, Russian Technology University, Lomonosov Institute of Fine Chemical Technology, Moscow, 119571, Russian Federation, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 24 April 2024; accepted 3 May 2024; online 10 May 2024)

In the title compound, C6H4BrF3N4O2, the oxa­diazole ring is essentially planar with a maximum deviation of 0.003 (2) Å. In the crystal, mol­ecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an R22(8) motif. The dimers are linked into layers parallel to the (10[\overline{4}]) plane by N—H⋯O hydrogen bonds. In addition, C—O⋯π and C—Br⋯π inter­actions connect the mol­ecules, forming a three-dimensional network. The F atoms of the tri­fluoro­methyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The inter­molecular inter­actions in the crystal structure were investigated and qu­anti­fied using Hirshfeld surface analysis.

1. Chemical context

Among the main trends in the development of organic chemistry over the past 20 years, one can note the key role and rapid development of the chemistry of organofluorine compounds (Meanwell, 2018[Meanwell, N. A. (2018). J. Med. Chem. 61, 5822-5880.]). This is due to the extremely high practical importance of organofluorine mol­ecules. The introduction of fluorine into the target mol­ecule changes such important parameters as lipophilicity, solubility, binding to receptors, metabolism, acid–base characteristics, and conformational properties of compounds. Currently, about 25% of new drugs and 35% of substances used in agriculture (agrochemicals) contain at least one fluorine atom (Chandra et al., 2023[Chandra, G., Singh, D. V., Mahato, G. K. & Patel, S. (2023). Chem. Pap. 77, 4085-4106.]; Han et al., 2020[Han, J. L., Remete, A. M., Dobson, L. S., Kiss, L., Izawa, K., Moriwaki, H., Soloshonok, V. A. & O'Hagan, D. (2020). J. Fluor. Chem. 239, 109639.]; Mei et al., 2019[Mei, H., Han, J., Fustero, S., Medio-Simon, M., Sedgwick, D. M., Santi, C., Ruzziconi, R. & Soloshonok, V. A. (2019). Chem. A Eur. J. 25, 11797-11819.]; Shabir et al., 2023[Shabir, G., Saeed, A., Zahid, W., Naseer, F., Riaz, Z., Khalil, N., Muneeba & Albericio, F. (2023). Pharmaceuticals, 16, 1162.]; Zhang et al.,, 2022[Zhang, C., Yan, K., Fu, C., Peng, H., Hawker, C. J. & Whittaker, A. K. (2022). Chem. Rev. 122, 167-208.]).

Di­amino­furaza­nes and their derivatives are widely used to obtain useful heterocyclic compounds, high-energy explosives with great potential application value, anti­microbials, highly effective biocidal and anti­tumor agents, as well as in photochemistry (Chang et al., 2023[Chang, J., Hu, L., Pang, S. & He, C. (2023). J. Mater. Chem. A, 11, 15979-15985.]; Chen et al., 2022[Chen, W., Chen, C., Chang, T. T., Hsieh, F. C., Chen, W. & Li, W. (2022). J. Chin. Chem. Soc. 69, 375-387.]; Dutta et al., 2022[Dutta, S., Liu, N., Gao, Y., Beck, L. & Wang, X. (2022). Bioorg. Med. Chem. Lett. 72, 128878.]; Liao et al., 2020[Liao, S., Deng, M. & Song, S. (2020). Chin. J. Energetic Mater. 28, 632-637.]; Liu et al., 2022[Liu, Y., Zeng, Z., Huang, W., Shreeve, J. M. & Tang, Y. (2022). J. Org. Chem. 87, 4226-4231.]; Ugrak et al., 2023[Ugrak, B. I., Shkineva, T. K., Sheremetev, A. B. & Dalinger, I. L. (2023). Russ. Chem. Bull. 72, 2706-2716.]). Similarly to other N-ligands (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Kopylovich et al., 2011a[Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247-4252.],b[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175-180.], 2012[Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012). New J. Chem. 36, 1646-1654.]), new derivatives of furazan can also be used in crystal engineering (Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.]) as well as the synthesis of coordination compounds for catal­ysis (Mac Leod et al., 2012[Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]) and biological studies (Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]). In fact, the non-covalent bond-acceptor ability of the furazan motif can be employed as a unique tool for crystal engineering. We believe that the combination of tri­fluoro­methyl and furazan fragments in one mol­ecule can lead to the synthesis of new compounds with useful properties. Therefore, we studied the condensation of (Z)-3-bromo-4-eth­oxy-1,1,1-tri­fluoro­but-3-en-2-one with di­amino­furazan in different polar solvents, with the best yield being in ethanol. It was shown that the reaction occurs only with the participation of the vinyl fragment and the active ketone group is not affected. The condensation product is an enamine, and its structure was confirmed by NMR spectros­copy and X-ray diffraction analysis.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the oxa­diazole ring (N1/O2/N3/C4/C5) is essentially planar [maximum deviation = 0.003 (2) Å for C4]. In the mol­ecule, the intra­molecular N—H⋯Br, C—H⋯F and C—H⋯N hydrogen bonds form S(5), S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]; Fig. 1[link]). The N3—C4—N7—C8, C4—N7—C8—C9, C8—C9—C10—O10 and C8—C9—C10—C11 torsion angles are −7.5 (4), 173.0 (2), −178.3 (2) and −2.8 (4)°, respectively. The geometric parameters are normal and comparable to those of related compounds listed in the Database survey section.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O10i 0.77 (4) 2.14 (4) 2.871 (3) 159 (4)
N6—H6B⋯N1ii 0.90 (4) 2.11 (4) 2.995 (3) 169 (3)
N7—H7⋯Br9 0.81 (3) 2.76 (3) 3.127 (2) 109 (2)
C8—H8⋯F12 0.95 (3) 2.17 (3) 2.799 (5) 123 (2)
C8—H8⋯F12A 0.95 (3) 2.11 (3) 2.808 (5) 129 (2)
C8—H8⋯N3 0.95 (3) 2.38 (3) 2.759 (3) 103.3 (19)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, -y, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-labeling scheme and with displacement ellipsoids drawn at the 50% probability level. The intra­molecular N—H⋯Br, C—H⋯F and C—H⋯N hydrogen bonds are shown as dashed lines. Only the major disorder component is shown for clarity.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an [R_{2}^{2}](8) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]; Fig. 2[link]). The dimers are linked into layers parallel to the (10[\overline{4}]) plane by N—H⋯O hydrogen bonds (Table 1[link]; Fig. 2[link]). In addition, C—O⋯π and C—Br⋯π inter­actions connect the mol­ecules, forming a three-dimensional network (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Views of the intra­molecular N—H⋯Br, C—H⋯F, C—H⋯N hydrogen bonds, the inter­molecular N—H⋯O, N—H⋯N hydrogen bonds, and the C—O⋯π and C—Br⋯π inter­actions along the a-axis.
[Figure 3]
Figure 3
Packing viewed along the b-axis with the C—O⋯π and C—Br⋯π inter­actions indicated by dashed lines.

To qu­antify the inter­molecular inter­actions, a Hirshfeld surface analysis was performed and CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to obtain two-dimensional fingerprint plots. Fig. 4[link] shows the Hirshfeld surface mapped over dnorm using a common surface resolution and a constant color scale of −0.5339 (red) to + 0.9642 (blue) a.u. On the Hirshfeld surface, shorter and longer contacts are indicated by red and blue spots, respectively, and contacts with lengths about equal to the sum of the van der Waals radii are indicated by white spots.

[Figure 4]
Figure 4
The three-dimensional Hirshfeld surface for the title compound, plotted over dnorm.

Fig. 5[link] depicts the two-dimensional fingerprint plots of (di, de) points from all contacts contributing to the Hirshfeld surface analysis in normal mode for all atoms. The most important inter­molecular inter­actions are F⋯H/H⋯F, O⋯H/H⋯O and N⋯H/H⋯N contacts, contributing to 12.8%, 11.9% and 10.7%, respectively, to the overall crystal packing. Other inter­actions and their respective contributions are F⋯O/O⋯F (8.8%), F⋯N/N⋯F (7.4%), F⋯F (6.3%), Br⋯H/H⋯Br (5.7%), Br⋯F/F⋯Br (5.2%), F⋯C/C⋯F (4.9%), Br⋯C/C⋯Br (4.5%), Br⋯O/O⋯Br (3.8%), Br⋯N/N⋯Br (3.5%), O⋯C/C⋯O (3.4%), N⋯C/C⋯N (3.1%), C⋯H/H⋯C (3.0%), O⋯N/N⋯O (2.3%), H⋯H (2.2%) and N⋯N (0.4%).

[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) F⋯H/H⋯F, (c) O⋯H/H⋯O, (d) N⋯H/H⋯N, (e) F⋯O/O⋯F, and (f) F⋯N/N⋯F inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave four compounds closely related to the title compounds, viz. CSD refcodes KIMZEP (I: Okmanov et al., 2023[Okmanov, R. Y., Ziyaev, A. A., Abdukarimov, A. S., Toshmurodov, T. T. & Kholikov, T. S. (2023). Acta Cryst. E79, 552-556.]), KIMZIT (II: Okmanov et al., 2023[Okmanov, R. Y., Ziyaev, A. A., Abdukarimov, A. S., Toshmurodov, T. T. & Kholikov, T. S. (2023). Acta Cryst. E79, 552-556.]), ZARJEJ (III: Jia et al., 2012[Jia, S.-Y., Wang, B.-Z., Fan, X.-Z., Li, P. & Ng, S. W. (2012). Acta Cryst. E68, o1573.]) and PUHDUS (IV: Zhang et al., 2009[Zhang, H. & Jian, F. (2009). Acta Cryst. E65, o2911.]).

In the crystals of I and II, C—H⋯π inter­actions are observed between neighboring mol­ecules. In the crystal of III, one of the amino H atoms forms an intra­molecular N—H⋯N hydrogen bond; adjacent mol­ecules are linked by N—H⋯N hydrogen bonds, forming a chain running along [10[\overline{2}]]. In the crystal of IV, inter­molecular N—H⋯N, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

5. Synthesis and crystallization

Equimolar amounts of (Z)-3-bromo-4-eth­oxy-1,1,1-tri­fluoro­but-3-en-2-one (0.247 g, 1.0 mmol) and di­amino­furazan (0.100 g, 1.0 mmol) were dissolved in 25 ml of ethanol and refluxed for 3 h. The reaction was monitored by 1H NMR. A characteristic disappearance of the signals associated with the eth­oxy group was observed. At the end of the reaction, the solvent was removed in vacuo. (3Z)-4-[(4-amino-1,2,5-oxa­diazol-3-yl)amino]-3-bromo-1,1,1-tri­fluoro­but-3-en-2-one in the form of a yellow precipitate, which was then recrystallized from acetone. Yield 0.249 g (83%); m.p. 444–445 K. Analysis calculated (%) for C6H4BrF3N4O2: C 23.94, H 1.34, Br 26.54, F 18.93, N 18.93, O 10.63; found: C23.92, H 1.31, Br 26.57, F 18.93, N 18.94, O 10.60. 1H NMR (300 MHz, acetone-d6): 5.88 (br, 2H, NH2), 8.52 (s, 1H, CH), 9.05 (br, 1H, NH). 13C NMR (75 MHz, DMSO-d6): 97.89, 114.30, 120.06, 146.71, 147.01, 206.20. ESI–MS: m/z: 298.9408 [M − H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference map and freely refined. The F atoms of the tri­fluoro­methyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The C—F bond lengths in the disordered tri­fluoro­methyl group were constrained to be the same (using SADI), as were the thermal parameters of the F atoms (using EADP).

Table 2
Experimental details

Crystal data
Chemical formula C6H4BrF3N4O2
Mr 301.04
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 4.95281 (3), 14.0515 (1), 13.5208 (1)
β (°) 95.1372 (6)
V3) 937.19 (1)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.46
Crystal size (mm) 0.21 × 0.04 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.490, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24751, 2038, 2010
Rint 0.030
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.09
No. of reflections 2038
No. of parameters 159
No. of restraints 3
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.73, −0.50
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

(3Z)-4-[(4-Amino-1,2,5-oxadiazol-3-yl)amino]-3-bromo-1,1,1-trifluorobut-3-en-2-one top
Crystal data top
C6H4BrF3N4O2F(000) = 584
Mr = 301.04Dx = 2.134 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 4.95281 (3) ÅCell parameters from 17512 reflections
b = 14.0515 (1) Åθ = 4.5–78.8°
c = 13.5208 (1) ŵ = 6.46 mm1
β = 95.1372 (6)°T = 100 K
V = 937.19 (1) Å3Block, colorless
Z = 40.21 × 0.04 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2038 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2010 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 79.7°, θmin = 4.6°
ω scansh = 56
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 1717
Tmin = 0.490, Tmax = 1.000l = 1717
24751 measured reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0212P)2 + 2.0497P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2038 reflectionsΔρmax = 0.73 e Å3
159 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br90.19184 (5)0.35928 (2)0.19637 (2)0.02267 (9)
F120.8845 (8)0.5446 (3)0.3711 (3)0.0259 (3)0.515 (6)
F130.5295 (8)0.5812 (3)0.4473 (3)0.0259 (3)0.515 (6)
F140.6521 (9)0.6697 (4)0.3275 (4)0.0259 (3)0.515 (6)
F12A0.8549 (8)0.5453 (3)0.4018 (3)0.0259 (3)0.485 (6)
F14A0.7062 (9)0.6639 (4)0.3163 (4)0.0259 (3)0.485 (6)
F13A0.4825 (8)0.6121 (3)0.4364 (3)0.0259 (3)0.485 (6)
O21.2074 (4)0.20748 (12)0.50222 (14)0.0254 (4)
O100.2781 (4)0.57289 (12)0.23355 (13)0.0249 (4)
N11.0965 (4)0.11662 (14)0.48774 (16)0.0220 (4)
N31.0442 (4)0.27473 (15)0.45145 (17)0.0254 (4)
N60.7135 (5)0.05515 (16)0.3947 (2)0.0298 (5)
H6A0.568 (7)0.065 (2)0.373 (3)0.029 (9)*
H6B0.748 (7)0.000 (3)0.427 (3)0.033 (9)*
N70.6329 (4)0.27298 (14)0.35067 (15)0.0194 (4)
H70.525 (6)0.241 (2)0.316 (2)0.024 (8)*
C40.8417 (5)0.22775 (16)0.40856 (17)0.0195 (4)
C50.8708 (5)0.12796 (17)0.43003 (18)0.0197 (4)
C80.6209 (5)0.36888 (17)0.34691 (18)0.0198 (5)
H80.748 (6)0.400 (2)0.393 (2)0.019 (7)*
C90.4468 (5)0.42186 (16)0.28686 (17)0.0192 (4)
C100.4376 (5)0.52457 (17)0.28565 (17)0.0199 (5)
C110.6293 (5)0.58284 (17)0.36048 (18)0.0224 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br90.02440 (14)0.01774 (14)0.02471 (14)0.00003 (9)0.00423 (9)0.00055 (9)
F120.0292 (8)0.0196 (6)0.0282 (7)0.0003 (6)0.0016 (6)0.0005 (7)
F130.0292 (8)0.0196 (6)0.0282 (7)0.0003 (6)0.0016 (6)0.0005 (7)
F140.0292 (8)0.0196 (6)0.0282 (7)0.0003 (6)0.0016 (6)0.0005 (7)
F12A0.0292 (8)0.0196 (6)0.0282 (7)0.0003 (6)0.0016 (6)0.0005 (7)
F14A0.0292 (8)0.0196 (6)0.0282 (7)0.0003 (6)0.0016 (6)0.0005 (7)
F13A0.0292 (8)0.0196 (6)0.0282 (7)0.0003 (6)0.0016 (6)0.0005 (7)
O20.0264 (9)0.0158 (8)0.0317 (9)0.0015 (7)0.0105 (7)0.0016 (7)
O100.0278 (9)0.0194 (8)0.0261 (9)0.0031 (7)0.0062 (7)0.0032 (7)
N10.0236 (10)0.0156 (9)0.0258 (10)0.0000 (8)0.0031 (8)0.0003 (8)
N30.0263 (10)0.0171 (10)0.0308 (11)0.0009 (8)0.0090 (9)0.0023 (8)
N60.0219 (11)0.0165 (10)0.0478 (14)0.0013 (8)0.0142 (10)0.0046 (10)
N70.0190 (9)0.0147 (9)0.0238 (10)0.0004 (8)0.0024 (8)0.0006 (8)
C40.0198 (11)0.0166 (11)0.0216 (11)0.0012 (8)0.0009 (8)0.0009 (9)
C50.0194 (10)0.0174 (11)0.0218 (11)0.0019 (8)0.0005 (9)0.0015 (9)
C80.0216 (11)0.0166 (11)0.0210 (11)0.0009 (9)0.0008 (9)0.0009 (9)
C90.0204 (11)0.0166 (11)0.0202 (11)0.0018 (9)0.0002 (8)0.0007 (8)
C100.0209 (11)0.0179 (11)0.0209 (11)0.0004 (9)0.0006 (8)0.0015 (9)
C110.0256 (12)0.0180 (11)0.0227 (11)0.0004 (9)0.0026 (9)0.0029 (9)
Geometric parameters (Å, º) top
Br9—C91.894 (2)N6—C51.347 (3)
F12—C111.369 (5)N6—H6A0.76 (4)
F13—C111.314 (4)N6—H6B0.89 (4)
F14—C111.307 (5)N7—C81.350 (3)
F12A—C111.314 (5)N7—C41.393 (3)
F14A—C111.356 (6)N7—H70.82 (3)
F13A—C111.373 (5)C4—C51.437 (3)
O2—N31.385 (3)C8—C91.353 (3)
O2—N11.397 (3)C8—H80.95 (3)
O10—C101.217 (3)C9—C101.444 (3)
N1—C51.314 (3)C10—C111.557 (3)
N3—C41.294 (3)
N3—O2—N1110.46 (17)C8—C9—C10125.1 (2)
C5—N1—O2105.97 (18)C8—C9—Br9118.96 (18)
C4—N3—O2105.58 (19)C10—C9—Br9115.99 (17)
C5—N6—H6A120 (3)O10—C10—C9125.6 (2)
C5—N6—H6B114 (2)O10—C10—C11114.1 (2)
H6A—N6—H6B118 (3)C9—C10—C11120.1 (2)
C8—N7—C4120.3 (2)F14—C11—F13111.9 (3)
C8—N7—H7120 (2)F12A—C11—F14A105.3 (3)
C4—N7—H7119 (2)F14—C11—F12107.1 (3)
N3—C4—N7121.7 (2)F13—C11—F12108.5 (3)
N3—C4—C5110.3 (2)F12A—C11—F13A106.8 (3)
N7—C4—C5127.9 (2)F14A—C11—F13A105.4 (3)
N1—C5—N6123.5 (2)F14—C11—C10109.6 (3)
N1—C5—C4107.6 (2)F13—C11—C10108.3 (2)
N6—C5—C4128.7 (2)F12A—C11—C10120.7 (3)
N7—C8—C9126.5 (2)F14A—C11—C10109.5 (3)
N7—C8—H8114.1 (18)F12—C11—C10111.4 (3)
C9—C8—H8119.4 (18)F13A—C11—C10108.1 (2)
N3—O2—N1—C50.3 (3)Br9—C9—C10—O101.6 (3)
N1—O2—N3—C40.5 (3)C8—C9—C10—C112.8 (4)
O2—N3—C4—N7179.6 (2)Br9—C9—C10—C11177.15 (17)
O2—N3—C4—C50.5 (3)O10—C10—C11—F1424.2 (4)
C8—N7—C4—N37.5 (4)C9—C10—C11—F14159.8 (3)
C8—N7—C4—C5172.6 (2)O10—C10—C11—F1398.1 (3)
O2—N1—C5—N6176.1 (2)C9—C10—C11—F1377.9 (3)
O2—N1—C5—C40.0 (3)O10—C10—C11—F12A161.5 (3)
N3—C4—C5—N10.4 (3)C9—C10—C11—F12A22.5 (4)
N7—C4—C5—N1179.7 (2)O10—C10—C11—F14A39.1 (4)
N3—C4—C5—N6175.5 (3)C9—C10—C11—F14A144.9 (3)
N7—C4—C5—N64.4 (4)O10—C10—C11—F12142.7 (3)
C4—N7—C8—C9173.0 (2)C9—C10—C11—F1241.4 (3)
N7—C8—C9—C10179.2 (2)O10—C10—C11—F13A75.2 (3)
N7—C8—C9—Br90.7 (4)C9—C10—C11—F13A100.8 (3)
C8—C9—C10—O10178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O10i0.77 (4)2.14 (4)2.871 (3)159 (4)
N6—H6B···N1ii0.90 (4)2.11 (4)2.995 (3)169 (3)
N7—H7···Br90.81 (3)2.76 (3)3.127 (2)109 (2)
C8—H8···F120.95 (3)2.17 (3)2.799 (5)123 (2)
C8—H8···F12A0.95 (3)2.11 (3)2.808 (5)129 (2)
C8—H8···N30.95 (3)2.38 (3)2.759 (3)103.3 (19)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+2, y, z+1.
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, FIG, MA and AB; synthesis, VOO, BIU, OML and AIS; X-ray analysis, VOO, BIU, OML and AIS; writing (review and editing of the manuscript) FIG, STÇ and MA; supervision, MA and AB.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChandra, G., Singh, D. V., Mahato, G. K. & Patel, S. (2023). Chem. Pap. 77, 4085–4106.  Web of Science CrossRef CAS Google Scholar
First citationChang, J., Hu, L., Pang, S. & He, C. (2023). J. Mater. Chem. A, 11, 15979–15985.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, W., Chen, C., Chang, T. T., Hsieh, F. C., Chen, W. & Li, W. (2022). J. Chin. Chem. Soc. 69, 375–387.  Web of Science CrossRef CAS Google Scholar
First citationDutta, S., Liu, N., Gao, Y., Beck, L. & Wang, X. (2022). Bioorg. Med. Chem. Lett. 72, 128878.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, J. L., Remete, A. M., Dobson, L. S., Kiss, L., Izawa, K., Moriwaki, H., Soloshonok, V. A. & O'Hagan, D. (2020). J. Fluor. Chem. 239, 109639.  Web of Science CrossRef Google Scholar
First citationJia, S.-Y., Wang, B.-Z., Fan, X.-Z., Li, P. & Ng, S. W. (2012). Acta Cryst. E68, o1573.  CSD CrossRef IUCr Journals Google Scholar
First citationKopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012). New J. Chem. 36, 1646–1654.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, S., Deng, M. & Song, S. (2020). Chin. J. Energetic Mater. 28, 632–637.  CAS Google Scholar
First citationLiu, Y., Zeng, Z., Huang, W., Shreeve, J. M. & Tang, Y. (2022). J. Org. Chem. 87, 4226–4231.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationMeanwell, N. A. (2018). J. Med. Chem. 61, 5822–5880.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMei, H., Han, J., Fustero, S., Medio–Simon, M., Sedgwick, D. M., Santi, C., Ruzziconi, R. & Soloshonok, V. A. (2019). Chem. A Eur. J. 25, 11797–11819.  Web of Science CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationOkmanov, R. Y., Ziyaev, A. A., Abdukarimov, A. S., Toshmurodov, T. T. & Kholikov, T. S. (2023). Acta Cryst. E79, 552–556.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShabir, G., Saeed, A., Zahid, W., Naseer, F., Riaz, Z., Khalil, N., Muneeba & Albericio, F. (2023). Pharmaceuticals, 16, 1162.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUgrak, B. I., Shkineva, T. K., Sheremetev, A. B. & Dalinger, I. L. (2023). Russ. Chem. Bull. 72, 2706–2716.  Web of Science CrossRef CAS Google Scholar
First citationZhang, C., Yan, K., Fu, C., Peng, H., Hawker, C. J. & Whittaker, A. K. (2022). Chem. Rev. 122, 167–208.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, H. & Jian, F. (2009). Acta Cryst. E65, o2911.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds