research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

High-resolution crystal structure of the double nitrate hydrate [La(NO3)6]2[Ni(H2O)6]3·6H2O

crossmark logo

aCrystal Growth Facility, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
*Correspondence e-mail: wen.bi@epfl.ch

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 13 March 2024; accepted 15 April 2024; online 10 May 2024)

This study introduces bis­[hexa­kis­(nitrato-κ2O,O′)lanthanum(III)] tris­[hexa­aqua­nickel(II)] hexa­hydrate, [La(NO3)6]2[Ni(H2O)6]3·6H2O, with a structure refined in the hexa­gonal space group R[\overline{3}]. The salt com­prises [La(NO3)6]3− icosa­hedra and [Ni(H2O)6]2+ octa­hedra, thus forming an intricate network of inter­penetrating honeycomb lattices arranged in layers. This arrangement is stabilized through strong hydrogen bonds. Two successive layers are connected via the second [Ni(H2O)6]2+ octa­hedra, forming sheets which are stacked perpendicular to the c axis and held in the crystal by van der Waals forces. The synthesis of [La(NO3)6]2[Ni(H2O)6]3·6H2O involves dissolving lanthanum(III) and nickel(II) oxides in nitric acid, followed by slow evaporation, yielding green hexa­gonal plate-like crystals.

1. Chemical context

Double nitrates, which contain two different metal cations and nitrate anions, have applications in various fields. They exhibit unique solubility properties, crystalline structures and special magnetic properties, and act as excellent precursors for the synthesis of mixed oxides. For example, double nitrates of Zn and Cu have been used to produce a mixed Cu and Zn oxide that exhibits high catalytic activity in reactions such as the water gas shift reaction to produce CO2 and H2 from CO and H2O (Smith et al., 2010[Smith, B., Loganathan, M. & Shantha, M. (2010). Int. J. Chem. Reactor Eng. 8. https://doi.org/10.2202/1542.]), as well as selective CO2 hydrogenation into methanol (Zhong et al., 2020[Zhong, J., Yang, X., Wu, Z., Liang, B., Huang, Y. & Zhang, Y. (2020). Chem. Soc. Rev. 49, 1385-1413.]). Rare earth (RE) transition-metal (TM) double nitrates with the general formula RE2TM3(NO3)12·24H2O attracted much attention in the 1960s, in which the RE is a trivalent cation with an atomic number lower than that of Ho and the TM is a divalent cation, including Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ (Hellwege & Hellwege, 1953[Hellwege, A. M. & Hellwege, K. H. (1953). Z. Phys. 135, 615-619.]; Brochard & Hellwege, 1953[Brochard, J. & Hellwege, K. H. (1953). Z. Phys. 135, 620-638.]; Buckmaster et al., 1968[Buckmaster, H. A., Dering, J. C. & Fry, D. J. I. (1968). J. Phys. C.: Solid State Phys. 1, 599-607.]). It should be noted that when RE has a +4 oxidation state, double nitrates are isomorphic with the triclinic MgTh(NO3)6(H2O)8 salt (Šćavničar & Prodić, 1965[Šćavničar, S. & Prodić, B. (1965). Acta Cryst. 18, 698-702.]). Cerium(III) magnesium and cerium(III) zinc double nitrates have been used extensively in nuclear orientation experiments because very low temperatures can be obtained by adiabatic demagnetization of the salt (Culvahouse, 1961[Culvahouse, J. W. (1961). Phys. Rev. 124, 1413-1417.]). Their properties make them suitable magnetic thermometers (Thornley, 1963[Thornley, J. H. M. (1963). Phys. Rev. 132, 1492-1493.]). Like ruby single crystals (Cr3+:Al2O3), a Ce-doped lanthanum magnesium double nitrate is an ideal medium to study phonon avalanche, a delayed and sudden relaxation of paramagnetic ions by the emission of phonons (Mims & Taylor, 1969[Mims, W. B. & Taylor, D. R. (1969). Phys. Rev. Lett. 22, 1430-1432.]). Heat capacity and susceptibility measurements sug­gested that Mn, Ni, Co and Cu lanthanum double nitrates show anti­ferromagnetic transitions below 0.5 K (Mess et al., 1967[Mess, K. W., Lagendijk, E. & Huiskamp, W. J. (1967). Phys. Lett. A, 25, 329-331.], 1968[Mess, K. W., Blöte, H. W. J. & Huiskamp, W. J. (1968). Phys. Lett. A, 27, 353-354.]). The lack of high-quality crystalline structures of these salts limits the profound understanding of the magnetic properties, as well as their theoretical investigation. We report herein on the growth of centimeter-large crystals of [La(NO3)6]2[Ni(H2O)6]3·6H2O (Fig. 1[link]) and the crystal structure determined by single-crystal X-ray diffraction.

[Figure 1]
Figure 1
Left: large green crystals of [La(NO3)6]2[Ni(H2O)6]3·6H2O with a pseudo-hexa­gonal shape placed on a scale paper. The distance between two thick lines is 1 cm. Right: powder X-ray diffraction patterns of [La(NO3)6]2[Ni(H2O)6]3·6H2O. The PDF5 (ID = 00-049-1235) pattern available in the database is shown in green. The PXRD pattern calculated from the structure refined from single-crystal data and the experimental pattern measured on a Panalytical Empyrean diffractometer with Cu Kα1 radiation (λ = 1.540596 Å) are shown in blue and red, respectively. In the inset, the high-intensity diffraction peaks absent in the PDF5 pattern are highlighted with purple rectangles.

2. Structural commentary

Similar to those found in the corresponding magnesium double salt, the title com­pound is made up of two types of ions, [Ni(H2O)6]2+ and [La(NO3)6]3−, which are linked together by hydrogen bonds with water mol­ecules in the structure. The La atom on the threefold axis is coordinated by 12 O atoms from six nitrate groups to form a slightly distorted icosa­hedron. The La—O distances range from 2.6339 (8) to 2.7012 (8) Å, which are com­parable to those found in La2Mg3(NO3)12·24H2O determined by neutron diffraction (Anderson et al., 1977[Anderson, M. R., Jenkin, G. T. & White, J. W. (1977). Acta Cryst. B33, 3933-3936.]). As depicted in Fig. 2[link], the structure includes two crystallographically independent positions for Ni2+. Three water H7a—O7–H7b mol­ecules and three water H8a—O8—H8b mol­ecules surround Ni1, resulting in a distorted [Ni(H2O)6]2+ octa­hedron with C3 symmetry. In contrast, the Ni2-containing [Ni(H2O)6]2+ octa­hedron is highly symmetric, as Ni2 is situated in a site with [\overline{3}] symmetry. The Ni—O bond lengths in both octa­hedra vary from 2.0471 (8) to 2.0531 (8) Å, similar to those found in [Ni(H2O)6](NO3)2 (Breternitz et al., 2015[Breternitz, J., Farrugia, L. J., Godula-Jopek, A., Saremi-Yarahmadi, S., Malka, I. E., Hoang, T. K. A. & Gregory, D. H. (2015). J. Cryst. Growth, 412, 1-6.]).

[Figure 2]
Figure 2
The mol­ecular structure of [La(NO3)6]2[Ni(H2O)6]3·6H2O, with displace­ment ellipsoids for all non-H atoms drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radius. H-atom labels have been omitted for clarity. The colour scheme for the different elements can be found in the legend. The viewing direction is slightly tilted from the c axis, in order to prevent overlap between atoms. Hydrogen bonds are indicated with thin dotted lines.

As illustrated in Fig. 3[link], each [La(NO3)6]3− icosa­hedron is surrounded by three Ni1-containing [Ni(H2O)6]2+ clusters, and each Ni1-containing octa­hedron is surrounded by three icosa­hedra. These two inter­penetrating honeycomb networks are arranged in a layer parallel to the ab plane. In this layer, the icosa­hedra are linked to the [Ni(H2O)6]2+ clusters through strong O7—H7A⋯O4, O9—H9A⋯O1 and O10—H10A⋯O9 hydrogen bonds. The six water H9A—O9—H9B mol­ecules per unit cell do not participate in the coordination of either La or Ni. Two successive layers are separated by Ni2-containing [Ni(H2O)6]2+ clusters, which bridge the layers between them via O10—H10A⋯O9 hydrogen bonds. The com­plex hydrogen-bonding network between the clusters is shown in Fig. 2[link] and the actual data for the hydrogen bonds are given in Table 1[link]. The network of bonded clusters form sheets that are stacked perpendicular to the c axis (Fig. 4[link]). The sheets are held together by van der Waals forces in the [La(NO3)6]2[Ni(H2O)6]3·6H2O structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O9 0.85 2.00 2.8386 (15) 169
O10—H10A⋯O9i 0.85 2.03 2.8149 (13) 153
O10—H10B⋯O5ii 0.86 2.14 2.9626 (13) 161
O7—H7A⋯O4iii 0.86 1.92 2.7656 (11) 168
O7—H7B⋯O6iv 0.86 2.13 2.9393 (11) 158
Symmetry codes: (i) [-x+y, -x+1, z]; (ii) [x-y, x, -z+1]; (iii) [-y, x-y, z]; (iv) [y, -x+y+1, -z+1].
[Figure 3]
Figure 3
The [La(NO3)6]2[Ni(H2O)6]3·6H2O structure represented along the c axis. The colour scheme for the different elements of the structure can be found in the figure inset. [Ni(H2O)6]2+ octa­hedra and [La(NO3)6]3− icosa­hedra are plotted as pink and green front-opening polyhedron, respectively. The unit-cell edges are plotted with blue lines.
[Figure 4]
Figure 4
The [La(NO3)6]2[Ni(H2O)6]3·6H2O structure represented along the a axis. The colour scheme for the different elements of the structure can be found in the inset. [Ni(H2O)6]2+ octa­hedra and [La(NO3)6]3− icosa­hedra are plotted as pink and green polyhedra, respectively. The unit-cell edges are plotted with blue lines.

3. Database survey

No record of the same com­pound was found in the Crystallography Open Database (COD) or the Inorganic Crystal Structure Database (ICSD). It is listed only once in the Powder Diffraction File (PDF) 2024 version, entry 00-049-1235, without any atomic positions provided. The powder X-ray diffraction (PXRD) pattern available in this database deviates significantly from both the theoretical pattern simulated from the structure refined via single-crystal XRD data and the experimental pattern recorded with powder obtained by crushing a few [La(NO3)6]2[Ni(H2O)6]3·6H2O single crystals. Notably, peaks below 10°, as well as those in the 22–23° region, are missing in the pattern found in PDF-00-49-1235 (Fig. 1[link]).

4. Synthesis and crystallization

Lanthanum(III) oxide was dissolved in dilute HNO3 with a concentration of 1 mol l−1 (1 M) and nickel(II) oxide in dilute HNO3 with a concentration of 0.5 mol l−1 (0.5 M). In order to dissolve the nickel(II) oxide in the dilute HNO3, the solution was heated at 423 K over a period of 12 h until the nickel(II) oxide com­pletely dissolved and a green transparent solution was obtained. Lanthanum(III) oxide solution (0.2 l) was first mixed with nickel(II) oxide solution (1.2 l) and then 1 mol of citric acid was added to the mixture under vigorous stirring until com­plete dissolution. The solution was transferred to a fume hood for slow evaporation. After 30 d, green hexa­gonal plate-shaped crystals formed with different sizes, the maximum dimension being 2 cm.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on O atoms were first located in a difference Fourier map and then refined isotropically in riding mode, with Uiso(H) values of 1.5Ueq of the parent O atoms. The O—H distance was refined against the residual peaks, without further constraint.

Table 2
Experimental details

Crystal data
Chemical formula [La(NO3)6]2[Ni(H2O)6]3·6H2O
Mr 1630.45
Crystal system, space group Hexagonal, R[\overline{3}]
Temperature (K) 297
a, c (Å) 11.0230 (1), 34.4826 (4)
V3) 3628.53 (8)
Z 3
Radiation type Mo Kα
μ (mm−1) 3.04
Crystal size (mm) 0.21 × 0.19 × 0.11
 
Data collection
Diffractometer XtaLAB Synergy-i HyPix3000
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.573, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27264, 2833, 2663
Rint 0.023
(sin θ/λ)max−1) 0.746
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.034, 1.06
No. of reflections 2833
No. of parameters 126
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.38
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Bis[hexakis(nitrato-κ2O,O')lanthanum(III)] tris[hexaaquanickel(II)] hexahydrate top
Crystal data top
[La(NO3)6]2[Ni(H2O)6]3·6H2ODx = 2.238 Mg m3
Mr = 1630.45Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 22661 reflections
a = 11.0230 (1) Åθ = 2.2–36.2°
c = 34.4826 (4) ŵ = 3.04 mm1
V = 3628.53 (8) Å3T = 297 K
Z = 3Plate, blue
F(000) = 24300.21 × 0.19 × 0.11 mm
Data collection top
XtaLAB Synergy-i HyPix3000
diffractometer
2663 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.023
ω scansθmax = 32.0°, θmin = 2.2°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2023)
h = 1616
Tmin = 0.573, Tmax = 1.000k = 1616
27264 measured reflectionsl = 5151
2833 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0161P)2 + 2.1621P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.034(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.30 e Å3
2833 reflectionsΔρmin = 0.38 e Å3
126 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00015 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.6666670.3333330.58402 (2)0.01660 (3)
Ni10.3333330.6666670.59443 (2)0.02146 (5)
O10.82133 (9)0.59977 (8)0.60265 (2)0.03067 (17)
N10.88316 (10)0.58535 (9)0.63163 (3)0.02614 (17)
Ni20.0000000.0000000.5000000.02201 (6)
O20.97264 (11)0.68693 (10)0.64928 (3)0.0487 (2)
N20.45188 (9)0.08678 (9)0.53286 (2)0.02312 (16)
O30.84704 (10)0.46142 (9)0.64135 (2)0.03567 (19)
O100.14730 (9)0.15389 (9)0.53499 (2)0.03423 (18)
H10A0.1076820.1852980.5499690.051*
H10B0.2025990.2246340.5211580.051*
O90.76944 (11)0.83079 (11)0.60307 (3)0.0422 (2)
H9A0.8079940.8870990.6218660.063*
H9B0.8077860.7804520.6028570.063*
O40.51001 (9)0.06874 (8)0.56231 (2)0.02866 (16)
O50.36341 (10)0.01345 (9)0.51426 (3)0.03803 (19)
O60.49052 (9)0.21141 (8)0.52368 (2)0.02951 (16)
O70.18944 (8)0.68410 (8)0.56094 (2)0.02971 (16)
H7A0.1146710.6040030.5590520.045*
H7B0.2197210.7044440.5376020.045*
O80.48738 (10)0.66808 (11)0.62819 (3)0.0386 (2)
H8A0.5727580.7073660.6213950.058*
H8B0.4781290.6058500.6444240.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01709 (4)0.01709 (4)0.01561 (5)0.00855 (2)0.0000.000
Ni10.02300 (7)0.02300 (7)0.01838 (10)0.01150 (3)0.0000.000
O10.0387 (4)0.0262 (4)0.0281 (4)0.0169 (3)0.0104 (3)0.0022 (3)
N10.0273 (4)0.0246 (4)0.0244 (4)0.0113 (3)0.0047 (3)0.0029 (3)
Ni20.02193 (9)0.02193 (9)0.02215 (14)0.01097 (4)0.0000.000
O20.0486 (6)0.0326 (5)0.0447 (5)0.0052 (4)0.0219 (4)0.0080 (4)
N20.0238 (4)0.0218 (4)0.0237 (4)0.0114 (3)0.0024 (3)0.0033 (3)
O30.0502 (5)0.0268 (4)0.0307 (4)0.0198 (4)0.0134 (4)0.0016 (3)
O100.0303 (4)0.0312 (4)0.0322 (4)0.0086 (3)0.0002 (3)0.0060 (3)
O90.0550 (6)0.0493 (6)0.0348 (5)0.0353 (5)0.0018 (4)0.0013 (4)
O40.0368 (4)0.0233 (3)0.0258 (4)0.0149 (3)0.0086 (3)0.0018 (3)
O50.0370 (4)0.0285 (4)0.0420 (5)0.0115 (4)0.0174 (4)0.0113 (3)
O60.0382 (4)0.0229 (3)0.0281 (4)0.0158 (3)0.0059 (3)0.0002 (3)
O70.0262 (4)0.0313 (4)0.0279 (4)0.0116 (3)0.0052 (3)0.0006 (3)
O80.0364 (4)0.0502 (5)0.0326 (4)0.0244 (4)0.0028 (3)0.0101 (4)
Geometric parameters (Å, º) top
La1—O12.6339 (8)N1—O21.2217 (12)
La1—O1i2.6340 (8)N1—O31.2621 (12)
La1—O1ii2.6340 (8)Ni2—O102.0531 (8)
La1—O42.6481 (8)Ni2—O10v2.0531 (8)
La1—O4ii2.6481 (8)Ni2—O10vi2.0531 (8)
La1—O4i2.6481 (8)Ni2—O10vii2.0531 (8)
La1—O32.6546 (8)Ni2—O10viii2.0531 (8)
La1—O3i2.6547 (8)Ni2—O10ix2.0531 (8)
La1—O3ii2.6547 (8)N2—O51.2271 (11)
La1—O6ii2.7011 (8)N2—O61.2585 (11)
La1—O6i2.7011 (8)N2—O41.2684 (11)
La1—O62.7012 (8)O10—H10A0.8536
Ni1—O7iii2.0471 (8)O10—H10B0.8554
Ni1—O7iv2.0471 (8)O9—H9A0.8499
Ni1—O72.0472 (8)O9—H9B0.8492
Ni1—O82.0526O7—H7A0.8576
Ni1—O8iii2.0526O7—H7B0.8571
Ni1—O8iv2.0526O8—H8A0.8489
O1—N11.2638 (11)O8—H8B0.8510
O1—La1—O1i114.254 (14)O4—La1—O647.44 (2)
O1—La1—O1ii114.253 (14)O4ii—La1—O6111.22 (2)
O1i—La1—O1ii114.252 (14)O4i—La1—O670.19 (3)
O1—La1—O4177.58 (2)O3—La1—O6177.63 (2)
O1i—La1—O467.33 (2)O3i—La1—O6111.60 (3)
O1ii—La1—O466.00 (2)O3ii—La1—O6110.71 (3)
O1—La1—O4ii67.33 (2)O6ii—La1—O667.04 (3)
O1i—La1—O4ii66.00 (2)O6i—La1—O667.04 (3)
O1ii—La1—O4ii177.58 (2)O7iii—Ni1—O7iv91.31 (3)
O4—La1—O4ii112.340 (15)O7iii—Ni1—O791.31 (3)
O1—La1—O4i66.00 (2)O7iv—Ni1—O791.31 (3)
O1i—La1—O4i177.58 (2)O7iii—Ni1—O892.55 (4)
O1ii—La1—O4i67.33 (2)O7iv—Ni1—O885.37 (4)
O4—La1—O4i112.341 (15)O7—Ni1—O8174.96 (4)
O4ii—La1—O4i112.340 (15)O7iii—Ni1—O8iii174.96 (4)
O1—La1—O347.95 (2)O7iv—Ni1—O8iii92.55 (4)
O1i—La1—O372.20 (3)O7—Ni1—O8iii85.37 (3)
O1ii—La1—O3115.50 (3)O8—Ni1—O8iii91.0
O4—La1—O3134.33 (2)O7iii—Ni1—O8iv85.37 (4)
O4ii—La1—O366.91 (3)O7iv—Ni1—O8iv174.96 (4)
O4i—La1—O3108.96 (3)O7—Ni1—O8iv92.55 (4)
O1—La1—O3i115.51 (3)O8—Ni1—O8iv91.0
O1i—La1—O3i47.95 (2)O8iii—Ni1—O8iv91.0
O1ii—La1—O3i72.20 (3)N1—O1—La198.15 (6)
O4—La1—O3i66.91 (3)O2—N1—O3122.21 (10)
O4ii—La1—O3i108.96 (3)O2—N1—O1121.18 (10)
O4i—La1—O3i134.33 (2)O3—N1—O1116.61 (9)
O3—La1—O3i70.62 (3)O10—Ni2—O10v180.0
O1—La1—O3ii72.20 (3)O10—Ni2—O10vi91.03 (3)
O1i—La1—O3ii115.50 (3)O10v—Ni2—O10vi88.97 (3)
O1ii—La1—O3ii47.95 (2)O10—Ni2—O10vii88.97 (3)
O4—La1—O3ii108.96 (3)O10v—Ni2—O10vii91.03 (3)
O4ii—La1—O3ii134.33 (2)O10vi—Ni2—O10vii91.03 (3)
O4i—La1—O3ii66.91 (3)O10—Ni2—O10viii91.03 (3)
O3—La1—O3ii70.62 (3)O10v—Ni2—O10viii88.97 (3)
O3i—La1—O3ii70.62 (3)O10vi—Ni2—O10viii88.97 (3)
O1—La1—O6ii108.56 (3)O10vii—Ni2—O10viii180.00 (4)
O1i—La1—O6ii66.37 (3)O10—Ni2—O10ix88.97 (3)
O1ii—La1—O6ii130.25 (2)O10v—Ni2—O10ix91.03 (3)
O4—La1—O6ii70.19 (3)O10vi—Ni2—O10ix180.00 (4)
O4ii—La1—O6ii47.43 (2)O10vii—Ni2—O10ix88.97 (3)
O4i—La1—O6ii111.22 (2)O10viii—Ni2—O10ix91.03 (3)
O3—La1—O6ii111.60 (3)O5—N2—O6122.29 (9)
O3i—La1—O6ii110.71 (3)O5—N2—O4120.90 (9)
O3ii—La1—O6ii177.63 (2)O6—N2—O4116.80 (8)
O1—La1—O6i66.37 (3)N1—O3—La197.19 (6)
O1i—La1—O6i130.25 (2)Ni2—O10—H10A109.7
O1ii—La1—O6i108.56 (3)Ni2—O10—H10B109.5
O4—La1—O6i111.22 (2)H10A—O10—H10B104.1
O4ii—La1—O6i70.19 (3)H9A—O9—H9B104.7
O4i—La1—O6i47.43 (2)N2—O4—La198.97 (6)
O3—La1—O6i110.71 (3)N2—O6—La196.66 (6)
O3i—La1—O6i177.63 (2)Ni1—O7—H7A109.7
O3ii—La1—O6i111.60 (3)Ni1—O7—H7B109.6
O6ii—La1—O6i67.04 (3)H7A—O7—H7B104.2
O1—La1—O6130.25 (2)Ni1—O8—H8A123.3
O1i—La1—O6108.57 (3)Ni1—O8—H8B127.0
O1ii—La1—O666.37 (3)H8A—O8—H8B104.4
La1—O1—N1—O2177.19 (10)O5—N2—O4—La1177.06 (9)
La1—O1—N1—O33.22 (10)O6—N2—O4—La13.67 (9)
O2—N1—O3—La1177.23 (10)O5—N2—O6—La1177.16 (9)
O1—N1—O3—La13.19 (10)O4—N2—O6—La13.58 (9)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z; (iii) y+1, xy+1, z; (iv) x+y, x+1, z; (v) x, y, z+1; (vi) xy, x, z+1; (vii) y, xy, z; (viii) y, x+y, z+1; (ix) x+y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O90.852.002.8386 (15)169
O10—H10A···O9iv0.852.032.8149 (13)153
O10—H10B···O5vi0.862.142.9626 (13)161
O7—H7A···O4vii0.861.922.7656 (11)168
O7—H7B···O6x0.862.132.9393 (11)158
Symmetry codes: (iv) x+y, x+1, z; (vi) xy, x, z+1; (vii) y, xy, z; (x) y, x+y+1, z+1.
 

References

First citationAnderson, M. R., Jenkin, G. T. & White, J. W. (1977). Acta Cryst. B33, 3933–3936.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreternitz, J., Farrugia, L. J., Godula-Jopek, A., Saremi-Yarahmadi, S., Malka, I. E., Hoang, T. K. A. & Gregory, D. H. (2015). J. Cryst. Growth, 412, 1–6.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBrochard, J. & Hellwege, K. H. (1953). Z. Phys. 135, 620–638.  CrossRef Web of Science Google Scholar
First citationBuckmaster, H. A., Dering, J. C. & Fry, D. J. I. (1968). J. Phys. C.: Solid State Phys. 1, 599–607.  CrossRef Web of Science Google Scholar
First citationCulvahouse, J. W. (1961). Phys. Rev. 124, 1413–1417.  CrossRef CAS Web of Science Google Scholar
First citationHellwege, A. M. & Hellwege, K. H. (1953). Z. Phys. 135, 615–619.  CrossRef CAS Web of Science Google Scholar
First citationMess, K. W., Blöte, H. W. J. & Huiskamp, W. J. (1968). Phys. Lett. A, 27, 353–354.  CrossRef CAS Web of Science Google Scholar
First citationMess, K. W., Lagendijk, E. & Huiskamp, W. J. (1967). Phys. Lett. A, 25, 329–331.  CrossRef CAS Web of Science Google Scholar
First citationMims, W. B. & Taylor, D. R. (1969). Phys. Rev. Lett. 22, 1430–1432.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationŠćavničar, S. & Prodić, B. (1965). Acta Cryst. 18, 698–702.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, B., Loganathan, M. & Shantha, M. (2010). Int. J. Chem. Reactor Eng. 8. https://doi.org/10.2202/1542Google Scholar
First citationThornley, J. H. M. (1963). Phys. Rev. 132, 1492–1493.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, J., Yang, X., Wu, Z., Liang, B., Huang, Y. & Zhang, Y. (2020). Chem. Soc. Rev. 49, 1385–1413.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds