research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3,3′-[ethane-1,2-diylbis(­­oxy)]bis­­(5,5-di­methyl­cyclo­hex-2-en-1-one) including an unknown solvate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 3 May 2024; accepted 8 May 2024; online 17 May 2024)

The title mol­ecule, C18H26O4, consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring adopts an envelope conformation. In the crystal, the mol­ecules are connected into dimers by C—H⋯O hydrogen bonds with R22(8) ring motifs, forming zigzag ribbons along the b-axis direction. According to a Hirshfeld surface analysis, H⋯H (68.2%) and O⋯H/H⋯O (25.9%) inter­actions are the most significant contributors to the crystal packing. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported mol­ecular weight and density.

1. Chemical context

β-Diketones have been employed as versatile synthetic precursors for the synthesis of new functional materials, such as catalysts, ionophores, heterocycles, organic conductors as well as pharmaceuticals (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Afkhami et al., 2017[Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]). For example, aryl­hydrazones of β-diketones have been widely used in coordination chemistry for a long time and have recently been the object of increasing attention as constituents of polydentate ligands in metallo-supra­molecular chemistry (Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.], 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.]; Kopylovich et al., 2012a[Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646-1654.],b[Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72-77.]; Mac Leod et al., 2012[Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763-4772.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]). The reactivity of β-diketones as enols or ketones can also be used as a synthetic strategy to access new organic materials (Yamabe et al., 2004[Yamabe, S., Tsuchida, N. & Miyajima, K. (2004). J. Phys. Chem. A, 108, 2750-2757.]). Moreover, bridging of two β-diketone moieties into one mol­ecule can improve their properties as well as the number of coordination and non-covalent sites (Shixaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]).

[Scheme 1]

We have bridged two dimedone mol­ecules into 3,3′-[ethane-1,2-diylbis(­oxy)]bis­(5,5-di­methyl­cyclo­hex-2-en-1-one) via reaction with di­chloro­ethane, and undertaken a full characterization, including X-ray analysis.

2. Structural commentary

The title compound (Fig. 1[link]) consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring (C2–C7) in the mol­ecule adopts an envelope conformation [the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.4488 (15) Å, θ = 127.49 (19)°, φ = 60.6 (2)°]. The geometric parameters of the title compound are normal and comparable to those of the related compound listed in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are connected into dimers by C—H⋯O hydrogen bonds with [R_{2}^{2}](8) ring motifs, forming zigzag ribbons along the b-axis direction (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]; Figs. 2[link], 3[link] and 4[link]). These ribbons are connected via van der Waals inter­actions, ensuring crystal cohesion.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.46 3.391 (2) 168
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
A partial view down the a axis of the C—H⋯O hydrogen bonds (dashed lines) in the title compound.
[Figure 3]
Figure 3
Partial packing of the title compound, viewed down the b axis, showing C—H⋯O hydrogen-bonded inversion-dimers with R22(8) graph-set motifs; H-atoms not involved in hydrogen bonds have been excluded for clarity.
[Figure 4]
Figure 4
A partial view down the c axis of the C—H⋯O hydrogen bonds (dashed lines) in the title compound.

In order to visualize and qu­antify the inter­molecular inter­actions, a Hirshfeld surface analysis was performed using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), which was also used to generate the associated two-dimensional fingerprint plots. The Hirshfeld surfaces were mapped over dnorm in the range −0.2098 (red) to +1.6767 (blue) a.u. (Fig. 5[link]). The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (68.2%, Fig. 6[link]b). The other major contributor is the O⋯H/H⋯O (25.9%, Fig. 6[link]c) inter­action. Other smaller contributions are made by C⋯H/H⋯C (5.5%) and O⋯O (0.4%) inter­actions.

[Figure 5]
Figure 5
Front and back views of the three-dimensional Hirshfeld surfaces of the title compound.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H and (c) O⋯H / H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the six-membered cyclo­hexene ring yielded nine compounds related to the title compound, viz. CSD refcodes WOMWUU (Naghiyev et al., 2024[Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Asadov, K. A., Bhattarai, A., Khalilov, A. N. & Mamedov, İ. G. (2024). Acta Cryst. E80, 446-451.]), UPOMOE (Naghiyev et al., 2021[Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 366-371.]), ZOMDUD (Gein et al., 2019[Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592-1596.]), PEWJUZ (Fatahpour et al., 2018[Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111-2122.]), OZUKAX (Tkachenko et al., 2014[Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166-1176.]), IFUDOD (Gein et al., 2007[Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven'ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101-1102.]), IWEVOV (Mohan et al., 2003[Mohan, K. C. (2003). J. Chem. Crystallogr. 33, 97-103.]), IWEVUB (Mohan et al., 2003[Mohan, K. C. (2003). J. Chem. Crystallogr. 33, 97-103.]) and HALROB (Ravikumar & Mehdi, 1993[Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027-2030.]).

WOMWUU, UPOMOE and ZOMDUD crystallize in the monoclinic space group P21/c, with Z = 4, PEWJUZ in I2/c with Z = 4, IFUDOD, HALROB and IWEVUB in P21/n with Z = 4, and IWEVOV and OZUKAX in the ortho­rhom­bic space group Pbca with Z = 8. In WOMWUU, mol­ecules are connected by inter­molecular C—H⋯S hydrogen bonds with [R_{2}^{2}](10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π inter­actions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. In UPOMOE, the central cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming mol­ecular layers parallel to the bc plane, which are connected by van der Waals inter­actions between them. In ZOMDUD, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. C—H⋯π inter­actions are also observed. In PEWJUZ, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. C—H⋯π inter­actions are also observed. In OZUKAX, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the ac plane. C—H⋯π inter­actions are also observed. Inter­molecular O—H⋯O hydrogen bonds consol­idate the crystal structure. There are no classical hydrogen bonds in the crystal of IFUDOD where inter­molecular C—H⋯O contacts and weak C—H⋯π inter­actions lead to the formation of a three-dimensional network. In the crystal of IWEVOV, the mol­ecules pack such that both carbonyl O atoms participate in hydrogen-bond formation with symmetry-related amide nitro­gen atoms present in the carbamoyl substituents, forming N—H⋯O hydrogen bonds in a helical arrangement. In the crystal, the phenyl rings are positioned so as to favour edge-to-edge aromatic stacking. When the crystal packing is viewed normal to the ac plane, it reveals a `wire-mesh' type hydrogen-bond network. In the crystal of IWEVUB, unlike in IWEVOV where both carbonyl O atoms participate in hydrogen bonding, only one of the carbonyl oxygen atoms participates in inter­molecular N—H⋯O hydrogen bonding while the other carbonyl oxygen participates in a weak C—H⋯O inter­action. In addition, one of the amide nitro­gen atoms participates in N—H⋯O hydrogen bonding with the hydroxyl oxygen atom, linking the mol­ecules in a helical arrangement, which is similar to that in the structure of IWEVOV. As observed in the structure of IWEVOV, the packing of the mol­ecules viewed normal to the ab plane resembles a `wire-mesh' arrangement of the mol­ecules. In the crystal of HALROB, the amide carbonyl groups are oriented in different directions with respect to the cyclo­hexa­none ring. These orientations of the carboxamide groups facilitate the formation of an intra­molecular O—H⋯O hydrogen bond. The mol­ecules are packed such that chains are formed along the b-axis direction. These chains are held together by N—H⋯O hydrogen bonds.

5. Synthesis and crystallization

0.12 mol of di­chloro­ethane were added drop by drop to a mixture of 0.12 mol of dimedone and 0.25 mol of K2CO3 in 50 mL of DMSO. The reaction mixture was held for 12 h at 353 K then cooled to room temperature, water added and extracted with ethyl ether. The extract was dried with MgSO4, the solvent was distilled off, and the residue was distilled under vacuum. Crystals suitable for X-ray analysis were obtained by evaporation of a di­methyl­formamide solution. Colourless solid (65%); m.p. 416–418 K. Analysis calculated for C18H26O4 (M = 306.40): C 70.56, H 8.55; found: C 70.52, H 8.49%. 1H NMR (300 MHz, DMSO-d6) δ 0.99 (12H, 4CH3), 2.12 and 2.30 (8H, 4CH2), 4.16 (4H, 2CH2) and 5.36 (2H, 2CH). 13C NMR (75 MHz, DMSO-d6) δ 27.72 (4CH3), 32.12 (2Cipso), 41.78 (2CH2), 50.25 (2CH2), 66.37 (2CH2), 101.44 (2CH), 175.18 (2C—O) and 197.89 (2C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and allowed to ride on their carrier atoms, with Uiso= 1.2 or 1.5Ueq(C). The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The solvent formula mass and unit-cell characteristics were not taken into account during refinement. The cavity of volume ca 77 Å3 (ca 4.4% of the unit-cell volume) contains approximately 11 electrons. A suitable solvent with this electron number may be about four dimethylformamide molecules per unit cell.

Table 2
Experimental details

Crystal data
Chemical formula C18H26O4
Mr 306.39
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 16.9184 (13), 6.5230 (5), 17.2645 (11)
β (°) 111.822 (4)
V3) 1768.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.33 × 0.29 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.966, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 10346, 2111, 1559
Rint 0.046
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.04
No. of reflections 2111
No. of parameters 102
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.20
Computer programs: APEX4 and SAINT (Bruker, 2018[Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

3,3'-[Ethane-1,2-diylbis(oxy)]bis(5,5-dimethylcyclohex-2-en-1-one) top
Crystal data top
C18H26O4F(000) = 664
Mr = 306.39Dx = 1.151 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.9184 (13) ÅCell parameters from 2235 reflections
b = 6.5230 (5) Åθ = 2.5–27.7°
c = 17.2645 (11) ŵ = 0.08 mm1
β = 111.822 (4)°T = 150 K
V = 1768.8 (2) Å3Prism, colourless
Z = 40.33 × 0.29 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1559 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.9°, θmin = 2.5°
Tmin = 0.966, Tmax = 0.980h = 2222
10346 measured reflectionsk = 88
2111 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0456P)2 + 1.1303P]
where P = (Fo2 + 2Fc2)/3
2111 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44150 (6)0.32631 (17)0.28986 (6)0.0333 (3)
O20.42054 (9)0.1572 (2)0.54805 (7)0.0545 (4)
C60.30515 (9)0.5396 (2)0.39219 (8)0.0252 (3)
C20.41732 (8)0.3534 (2)0.35542 (8)0.0264 (3)
C30.43558 (8)0.2261 (2)0.42109 (8)0.0276 (3)
H30.4688780.1068360.4242130.033*
C70.36773 (9)0.5477 (2)0.34683 (9)0.0311 (3)
H7A0.3356620.5751020.2868850.037*
H7B0.4078690.6627110.3695410.037*
C50.35360 (9)0.4640 (2)0.48148 (8)0.0296 (3)
H5A0.3927500.5737640.5130850.036*
H5B0.3121850.4395010.5086100.036*
C40.40447 (9)0.2706 (2)0.48729 (8)0.0299 (3)
C10.49293 (9)0.1495 (3)0.29054 (9)0.0316 (4)
H1A0.4633460.0223760.2958320.038*
H1B0.5481050.1570360.3382140.038*
C80.23173 (9)0.3930 (3)0.34703 (10)0.0350 (4)
H8A0.2013360.4415460.2899030.052*
H8B0.1924390.3881040.3767690.052*
H8C0.2544520.2554800.3455180.052*
C90.26825 (12)0.7527 (3)0.39343 (10)0.0429 (4)
H9A0.3143170.8473560.4238770.064*
H9B0.2271970.7458900.4211450.064*
H9C0.2395670.8015620.3360780.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0318 (5)0.0481 (7)0.0280 (5)0.0114 (5)0.0202 (4)0.0110 (5)
O20.0716 (9)0.0690 (9)0.0366 (6)0.0442 (7)0.0362 (6)0.0280 (6)
C60.0289 (7)0.0247 (7)0.0238 (7)0.0061 (6)0.0121 (6)0.0007 (5)
C20.0206 (6)0.0374 (8)0.0251 (7)0.0023 (6)0.0130 (5)0.0031 (6)
C30.0255 (7)0.0352 (8)0.0259 (7)0.0101 (6)0.0141 (6)0.0058 (6)
C70.0341 (8)0.0309 (8)0.0319 (7)0.0035 (6)0.0163 (6)0.0082 (6)
C50.0342 (8)0.0323 (8)0.0244 (7)0.0065 (6)0.0134 (6)0.0016 (6)
C40.0291 (7)0.0393 (8)0.0237 (7)0.0107 (6)0.0124 (6)0.0056 (6)
C10.0259 (7)0.0468 (9)0.0274 (7)0.0067 (6)0.0160 (6)0.0036 (6)
C80.0247 (7)0.0441 (9)0.0355 (8)0.0049 (6)0.0106 (6)0.0037 (7)
C90.0584 (11)0.0332 (9)0.0406 (9)0.0173 (8)0.0223 (8)0.0045 (7)
Geometric parameters (Å, º) top
O1—C21.3507 (16)C5—C41.5096 (19)
O1—C11.4423 (17)C5—H5A0.9900
O2—C41.2284 (17)C5—H5B0.9900
C6—C91.527 (2)C1—C1i1.505 (3)
C6—C81.532 (2)C1—H1A0.9900
C6—C51.5336 (19)C1—H1B0.9900
C6—C71.5340 (19)C8—H8A0.9800
C2—C31.3454 (19)C8—H8B0.9800
C2—C71.496 (2)C8—H8C0.9800
C3—C41.4543 (18)C9—H9A0.9800
C3—H30.9500C9—H9B0.9800
C7—H7A0.9900C9—H9C0.9800
C7—H7B0.9900
C2—O1—C1117.88 (10)C6—C5—H5B108.6
C9—C6—C8108.50 (12)H5A—C5—H5B107.6
C9—C6—C5110.31 (11)O2—C4—C3121.41 (13)
C8—C6—C5109.89 (12)O2—C4—C5119.97 (12)
C9—C6—C7109.84 (12)C3—C4—C5118.59 (12)
C8—C6—C7110.15 (11)O1—C1—C1i107.24 (10)
C5—C6—C7108.15 (11)O1—C1—H1A110.3
C3—C2—O1125.39 (13)C1i—C1—H1A110.3
C3—C2—C7123.44 (12)O1—C1—H1B110.3
O1—C2—C7111.17 (11)C1i—C1—H1B110.3
C2—C3—C4120.14 (13)H1A—C1—H1B108.5
C2—C3—H3119.9C6—C8—H8A109.5
C4—C3—H3119.9C6—C8—H8B109.5
C2—C7—C6112.86 (11)H8A—C8—H8B109.5
C2—C7—H7A109.0C6—C8—H8C109.5
C6—C7—H7A109.0H8A—C8—H8C109.5
C2—C7—H7B109.0H8B—C8—H8C109.5
C6—C7—H7B109.0C6—C9—H9A109.5
H7A—C7—H7B107.8C6—C9—H9B109.5
C4—C5—C6114.46 (11)H9A—C9—H9B109.5
C4—C5—H5A108.6C6—C9—H9C109.5
C6—C5—H5A108.6H9A—C9—H9C109.5
C4—C5—H5B108.6H9B—C9—H9C109.5
C1—O1—C2—C31.6 (2)C9—C6—C5—C4170.57 (13)
C1—O1—C2—C7177.57 (12)C8—C6—C5—C469.86 (16)
O1—C2—C3—C4178.91 (13)C7—C6—C5—C450.42 (16)
C7—C2—C3—C42.0 (2)C2—C3—C4—O2179.70 (15)
C3—C2—C7—C628.0 (2)C2—C3—C4—C51.5 (2)
O1—C2—C7—C6152.85 (12)C6—C5—C4—O2154.38 (15)
C9—C6—C7—C2170.39 (13)C6—C5—C4—C327.4 (2)
C8—C6—C7—C270.16 (15)C2—O1—C1—C1i177.15 (12)
C5—C6—C7—C249.95 (16)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2ii0.952.463.391 (2)168
Symmetry code: (ii) x+1, y, z+1.
 

Acknowledgements

This work was been supported by Baku State University (Azerbaijan), Western Caspian University (Azerbaijan) and Azerbaijan Medical University. The authors′ contributions are as follows. Conceptualization, MA and AB; synthesis, NDS, VMI and NNY; X-ray analysis, NDS and KIH; writing (review and editing of the manuscript) NDS and MA; funding acquisition, NDS, VMI, NNY and KIH; supervision, MA and AB.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAfkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122.  Web of Science CSD CrossRef CAS Google Scholar
First citationGein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven'ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102.  Google Scholar
First citationGein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646–1654.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72–77.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationMohan, K. C. (2003). J. Chem. Crystallogr. 33, 97–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Akkurt, M., Asadov, K. A., Bhattarai, A., Khalilov, A. N. & Mamedov, İ. G. (2024). Acta Cryst. E80, 446–451.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 366–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamabe, S., Tsuchida, N. & Miyajima, K. (2004). J. Phys. Chem. A, 108, 2750–2757.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds