research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-4-oxo-4-{phen­yl[(thio­phen-2-yl)meth­yl]amino}­but-2-enoic acid

crossmark logo

aRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bA. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, eWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, fDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by J. Reibenspies, Texas A & M University, USA (Received 12 March 2024; accepted 30 April 2024; online 10 May 2024)

In the title compound, C15H13NO3S, the mol­ecular conformation is stable with the intra­molecular O—H⋯O hydrogen bond forming a S(7) ring motif. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, forming C(8) chains running along the a-axis direction. Cohesion of the packing is provided by weak van der Waals inter­actions between the chains. A Hirshfeld surface analysis was undertaken to investigate and qu­antify the inter­molecular inter­actions. The thio­phene ring is disordered in a 0.9466 (17):0.0534 (17) ratio over two positions rotated by 180°.

1. Chemical context

The heterocyclic moiety of thio­phene makes it a versatile building block for pharmaceuticals, polymers, and advanced materials (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Chawla et al., 2023[Chawla, S., Sharma, S., Kashid, S., Verma, P. K. & Sapra, A. (2023). Mini Rev. Med. Chem. 23, 1514-1534.]; Chan & Ng, 1998[Chan, H. S. O. & Ng, S. C. (1998). Prog. Polym. Sci. 23, 1167-1231.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]). One of the inter­esting synthetic directions for thio­phene is its introduction into the Diels–Alder reaction. Highly aromatic thio­phene cannot undergo thermal or catalytic Diels–Alder reactions at normal pressure; special conditions are therefore required to fully unlock its synthetic potential in concerted cyclo­addition reactions (Rulev & Zubkov, 2022[Rulev, A. Y. & Zubkov, F. I. (2022). Org. Biomol. Chem. 20, 2320-2355.]; Polyanskii et al., 2019[Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769-779.]). The first Diels–Alder adduct between thio­phene and maleic anhydride, together with some of the simplest dienophiles, was synthesized under 17 kbar pressure and at almost room temperature (Kotsuki et al., 1978[Kotsuki, H., Kitagawa, S., Nishizawa, H. & Tokoroyama, T. (1978). J. Org. Chem. 43, 1471-1472.]; McCluskey et al., 2002[McCluskey, A., Keane, M. A., Walkom, C. C., Bowyer, M. C., Sim, A. T., Young, D. J. & Sakoff, J. A. (2002). Bioorg. Med. Chem. Lett. 12, 391-393.]; Kumamoto et al., 2004[Kumamoto, K., Fukada, I. & Kotsuki, H. (2004). Angew. Chem. Int. Ed. 43, 2015-2017.]). Not only the thio­phene moiety, but also its combination with other functional groups such as –COOH and C=O can be used as a synthetic strategy for the design of new catalysts, sensors or analytical reagents, and building blocks in crystal engineering (Kopylovich et al., 2011[Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011). Cryst. Growth Des. 11, 4247-4252.], 2012a[Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646-1654.],b[Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72-77.]; MacLeod et al., 2012[Mac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.]; Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]). The attached substituents can also participate in weak inter­molecular inter­actions to direct the functional properties of new thio­phene derivatives (Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmoudi et al., 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.], 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]). To further investigate the potential of thio­phene derivatives as dienophiles in Diels–Alder reactions (see Krishna et al., 2022[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797-863.]), the title compound 1 was specifically designed and synthesized. The present work showcases a facile methodology for the synthesis of compound 1 from a thio­phene derivative and maleic anhydride – the title compound was isolated in a 91% yield after a standard treatment of the reaction mixture (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Preparation of the title compound.

2. Structural commentary

The mol­ecular conformation of the title compound (Fig. 2[link]) is stabilized by the intra­molecular O—H⋯O hydrogen bond, which forms an S(7) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]). The thio­phene ring (S1/C6–C9) is disordered in a 0.9466 (17):0.0534 (17) ratio over two positions rotated by 180°. The phenyl ring (C10–C15) makes dihedral angles of 62.45 (8) and 63.1 (5)°, respectively, with the major and minor disorder components (S1/C6–C9 and S1A/C6A–C9A) of the thio­phene ring. The sum of the angles around N1 of 359.9° is typical for secondary amides. The N1—C4—C3—C2, C4—C3—C2—C1, C3—C2—C1—O1 and C3—C2—C1—O2 torsion angles are 172.40 (13), −3.2 (2), 14.4 (2) and −165.63 (15)°, respectively. The bond lengths and angles in the title compound are comparable to those of the similar compounds reported in the Database survey.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.93 (3) 1.59 (3) 2.5153 (15) 172 (2)
C5—H5B⋯O2i 0.99 2.40 3.2201 (19) 140
Symmetry code: (i) [x-1, y, z].
[Figure 2]
Figure 2
Mol­ecular structure of the title compound showing the atom labelling and ellipsoids at the 50% probability level. Only the major disordered component is shown.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, forming C(8) chains running along the a-axis direction (Table 1[link]; Figs. 3[link] and 4[link]). Cohesion of the packing is provided by weak van der Waals inter­actions between the chains.

[Figure 3]
Figure 3
Crystal packing showing the chains along the a-axis direction formed by C—H⋯O and O—H⋯O hydrogen bonds (dashed lines). For clarity, the minor disordered component and H atoms not involved in hydrogen bonding were omitted.
[Figure 4]
Figure 4
Crystal packing along the b axis showing C—H⋯O and O—H⋯O hydrogen bonds (dashed lines).

A Hirshfeld surface analysis was performed to further investigate the inter­molecular inter­actions present in the title compound and the two-dimensional fingerprint plots were generated with CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 5[link] shows the three-dimensional Hirshfeld surface of the compound with dnorm (normalized contact distance) plotted over the range −0.2048 (red) to +1.3169 (blue) a.u.

[Figure 5]
Figure 5
Front (a) and back (b) views of the three-dimensional Hirshfeld surface, with some C—H⋯O and O—H⋯O hydrogen bonds shown as dashed lines.

The fingerprint plots (Fig. 6[link]) show that H⋯H [Fig. 6[link](b); 43.2%], C⋯H/H⋯C [Fig. 6[link](c); 27.7%] and O⋯H/H⋯O [Fig. 6[link](d); 23.7%] inter­actions contribute the most to the surface contacts. The percentage contributions to the Hirshfeld surfaces from other minor inter­atomic contacts are as follows: S⋯H/H⋯S 2.5%, C⋯O/O⋯C 1.0%, O⋯O 0.8%, C⋯C 0.5%, N⋯O/O⋯N 0.3% and S⋯O/O⋯S 0.2%.

[Figure 6]
Figure 6
The two-dimensional fingerprint plots for the title mol­ecule showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update of June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the N-[(thio­phen-2-yl)meth­yl]aniline unit gave two similar structures, viz. 3,4-dimethyl-N-[1-(1-thio­phen-2-yl)ethyl­idene]aniline (CSD refcode VIKXIY: Su et al., 2013[Su, B.-Y., Wang, J.-X., Liu, X. & Li, Q.-D. (2013). Acta Cryst. C69, 1073-1076.]) and N-((E)-{5-[(E)-(pyridin-3-yl­imino)­meth­yl]thio­phen-2-yl}methyl­idene)pyridin-3-amine (QIQLAF: Bolduc et al., 2013[Bolduc, A., Dufresne, S. & Skene, W. G. (2013). Acta Cryst. C69, 1196-1199.]). In VIKXIY, mol­ecules are linked by non-classical C—H⋯N hydrogen bonds into supra­molecular chains. The three-dimensional network of QIQLAF is governed by multiple weak inter­actions, including π-stacking between inter­calated thio­phene rings and azomethine bonds. The mol­ecules are oriented in anti or syn orientations as a result of the hydrogen-bonding inter­actions in the crystal.

5. Synthesis and crystallization

A mixture of N-(thio­phen-2-ylmeth­yl)aniline (1.89 g, 10 mmol) and maleic anhydride (0.98 g, 10 mmol) was refluxed for 4 h in benzene (20 mL) (TLC monitoring). The reaction mixture was then concentrated under reduced pressure and the obtained slightly yellow oil was solidified in hexane. The solid was recrystallized from a mixture of hexa­ne/ethyl acetate (v/v ∼5:4). The title compound was obtained as colourless prisms (2.61 g, 9.09 mmol). Yield 91%, m.p. 374.3–375.8 K. Single crystals were grown from a mixture of hexa­ne/ethyl acetate (∼5:4). 1H NMR (700 MHz, DMSO-d6) (J, Hz): δ 12.75 (s, 1H), 7.41–7.37 (m, 1H), 7.36–7.31 (m, 2H), 7.31–7.26 (m, 1H), 7.18 (d, J = 7.3 Hz, 2H), 6.92–6.87 (m, 2H), 6.38 (d, J = 12.0, 1H), 5.78 (d, J = 12.0, 1H), 5.07 (s, 2H). 13C NMR (175 MHz, CDCl3): δ 165.87, 164.96, 139.69, 136.67, 136.36, 130.31, 129.63, 128.60, 128.50, 127.79, 126.78, 126.70, 48.81. HRMS (ESI–TOF): calculated for C15H13NO3S [M + H]+ 288.0694; found 288.0691. Elemental analysis calculated (%) for C15H13NO3S: C 62.70; H, 4.56; N, 4.87; O, 16.70; S, 11.16; found: C 62.82; H, 4.45; N, 4.94; O, 16.74; S, 11.04.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The thio­phene ring (S1/C6–C9) is disordered in a ratio of 0.9466 (17): 0.0534 (17) over two positions with a rotation of 180°. C-bound H atoms were placed in their geometrically calculated positions and refined using a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) for aromatic and methyl­ene H atoms. The H atom of the OH group was found in a difference-Fourier map and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C15H13NO3S
Mr 287.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.8042 (8), 9.4258 (8), 15.4065 (13)
β (°) 108.455 (3)
V3) 1350.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.40 × 0.34 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.940, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21582, 4012, 3177
Rint 0.043
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.03
No. of reflections 4012
No. of parameters 192
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.34
Computer programs: APEX4 and SAINT (Bruker, 2018[Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

(Z)-4-Oxo-4-{phenyl[(thiophen-2-yl)methyl]amino}but-2-enoic acid top
Crystal data top
C15H13NO3SF(000) = 600
Mr = 287.32Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8042 (8) ÅCell parameters from 4604 reflections
b = 9.4258 (8) Åθ = 2.8–29.0°
c = 15.4065 (13) ŵ = 0.25 mm1
β = 108.455 (3)°T = 100 K
V = 1350.5 (2) Å3Bulk, colourless
Z = 40.40 × 0.34 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3177 reflections with I > 2σ(I)
φ and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.2°, θmin = 3.0°
Tmin = 0.940, Tmax = 1.000h = 1313
21582 measured reflectionsk = 1313
4012 independent reflectionsl = 2121
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.4392P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4012 reflectionsΔρmax = 0.35 e Å3
192 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.27590 (14)0.14305 (14)0.00355 (9)0.0182 (3)
C21.15520 (14)0.20128 (14)0.07416 (8)0.0170 (3)
H21.1808970.2190900.1276610.020*
C31.01839 (14)0.23331 (14)0.08348 (8)0.0158 (2)
H30.9646520.2743450.1403470.019*
C40.93968 (14)0.21300 (13)0.01641 (8)0.0148 (2)
C50.72253 (14)0.24616 (15)0.02527 (9)0.0182 (3)
H5A0.7488020.1530570.0557230.022*
H5B0.6191150.2429970.0106670.022*
C60.74604 (14)0.35914 (14)0.09688 (8)0.0158 (2)0.9466 (17)
C70.6467 (2)0.4469 (3)0.11431 (18)0.0227 (5)0.9466 (17)
H70.5482110.4473620.0781550.027*0.9466 (17)
C80.70285 (18)0.53646 (15)0.19035 (10)0.0260 (3)0.9466 (17)
H80.6470630.6025540.2112550.031*0.9466 (17)
C90.84581 (17)0.51709 (16)0.23009 (9)0.0247 (3)0.9466 (17)
H90.9025610.5685870.2819690.030*0.9466 (17)
S10.91239 (4)0.38895 (4)0.17591 (2)0.01947 (12)0.9466 (17)
C6A0.74604 (14)0.35914 (14)0.09688 (8)0.0158 (2)0.0534 (17)
C7A0.866 (2)0.409 (3)0.1685 (14)0.0227 (5)0.0534 (17)
H7A0.9591210.3720990.1761040.027*0.0534 (17)
C8A0.84581 (17)0.51709 (16)0.23009 (9)0.0247 (3)0.0534 (17)
H8A0.9121010.5606410.2820560.030*0.0534 (17)
C9A0.70285 (18)0.53646 (15)0.19035 (10)0.0260 (3)0.0534 (17)
H9A0.6546410.6049790.2152530.031*0.0534 (17)
S1A0.6147 (12)0.4493 (16)0.1046 (9)0.01947 (12)0.0534 (17)
C100.74377 (13)0.35644 (14)0.11738 (8)0.0145 (2)
C110.76237 (15)0.50178 (15)0.11112 (9)0.0218 (3)
H110.8155810.5441840.0546090.026*
C120.70262 (17)0.58569 (16)0.18818 (11)0.0281 (3)
H120.7147370.6857460.1844350.034*
C130.62523 (15)0.52269 (17)0.27055 (10)0.0264 (3)
H130.5857030.5796410.3234450.032*
C140.60560 (15)0.37755 (17)0.27577 (9)0.0248 (3)
H140.5515200.3353010.3321420.030*
C150.66448 (14)0.29248 (16)0.19901 (9)0.0205 (3)
H150.6506530.1926240.2024460.025*
N10.80705 (11)0.26905 (12)0.03776 (7)0.0152 (2)
O11.24869 (11)0.08523 (11)0.07469 (6)0.0217 (2)
H11.153 (3)0.100 (2)0.0707 (15)0.065 (7)*
O21.39697 (11)0.14995 (13)0.00031 (7)0.0295 (3)
O30.99128 (10)0.14570 (10)0.05663 (6)0.0200 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0177 (6)0.0198 (6)0.0159 (6)0.0010 (5)0.0038 (5)0.0025 (5)
C20.0193 (6)0.0189 (6)0.0136 (6)0.0008 (5)0.0066 (5)0.0015 (5)
C30.0178 (6)0.0185 (6)0.0112 (5)0.0003 (5)0.0047 (5)0.0013 (4)
C40.0176 (6)0.0137 (6)0.0134 (5)0.0028 (5)0.0054 (5)0.0022 (4)
C50.0175 (6)0.0233 (7)0.0168 (6)0.0040 (5)0.0099 (5)0.0021 (5)
C60.0172 (6)0.0188 (6)0.0124 (5)0.0013 (5)0.0062 (5)0.0018 (4)
C70.0191 (11)0.0285 (9)0.0199 (10)0.0011 (9)0.0052 (9)0.0066 (7)
C80.0398 (9)0.0198 (7)0.0266 (7)0.0030 (6)0.0223 (7)0.0014 (5)
C90.0383 (8)0.0224 (7)0.0158 (6)0.0067 (6)0.0120 (6)0.0037 (5)
S10.01743 (19)0.0253 (2)0.01436 (17)0.00051 (14)0.00317 (13)0.00162 (13)
C6A0.0172 (6)0.0188 (6)0.0124 (5)0.0013 (5)0.0062 (5)0.0018 (4)
C7A0.0191 (11)0.0285 (9)0.0199 (10)0.0011 (9)0.0052 (9)0.0066 (7)
C8A0.0383 (8)0.0224 (7)0.0158 (6)0.0067 (6)0.0120 (6)0.0037 (5)
C9A0.0398 (9)0.0198 (7)0.0266 (7)0.0030 (6)0.0223 (7)0.0014 (5)
S1A0.01743 (19)0.0253 (2)0.01436 (17)0.00051 (14)0.00317 (13)0.00162 (13)
C100.0124 (5)0.0188 (6)0.0131 (5)0.0004 (4)0.0051 (4)0.0020 (4)
C110.0256 (7)0.0202 (7)0.0179 (6)0.0035 (5)0.0046 (5)0.0031 (5)
C120.0340 (8)0.0208 (7)0.0287 (8)0.0009 (6)0.0090 (6)0.0044 (6)
C130.0223 (7)0.0383 (9)0.0194 (7)0.0112 (6)0.0077 (5)0.0074 (6)
C140.0176 (6)0.0385 (9)0.0154 (6)0.0071 (6)0.0011 (5)0.0072 (6)
C150.0168 (6)0.0228 (7)0.0192 (6)0.0020 (5)0.0020 (5)0.0077 (5)
N10.0147 (5)0.0185 (5)0.0133 (5)0.0023 (4)0.0059 (4)0.0017 (4)
O10.0193 (5)0.0284 (5)0.0159 (4)0.0020 (4)0.0033 (4)0.0047 (4)
O20.0152 (5)0.0472 (7)0.0249 (5)0.0013 (5)0.0047 (4)0.0033 (5)
O30.0229 (5)0.0231 (5)0.0155 (4)0.0028 (4)0.0080 (4)0.0045 (3)
Geometric parameters (Å, º) top
C1—O21.2089 (16)C6A—C7A1.414 (17)
C1—O11.3246 (16)C6A—S1A1.579 (12)
C1—C21.4960 (18)C7A—C8A1.447 (18)
C2—C31.3375 (18)C7A—H7A0.9500
C2—H20.9500C8A—C9A1.353 (2)
C3—C41.4848 (17)C8A—H8A0.9500
C3—H30.9500C9A—S1A1.563 (12)
C4—O31.2507 (15)C9A—H9A0.9500
C4—N11.3444 (16)C10—C111.3813 (19)
C5—N11.4783 (16)C10—C151.3895 (17)
C5—C61.4978 (18)C10—N11.4444 (16)
C5—C6A1.4978 (18)C11—C121.392 (2)
C5—H5A0.9900C11—H110.9500
C5—H5B0.9900C12—C131.389 (2)
C6—C71.368 (3)C12—H120.9500
C6—S11.7217 (13)C13—C141.380 (2)
C7—C81.407 (3)C13—H130.9500
C7—H70.9500C14—C151.394 (2)
C8—C91.353 (2)C14—H140.9500
C8—H80.9500C15—H150.9500
C9—S11.7108 (15)O1—H10.93 (3)
C9—H90.9500
O2—C1—O1121.40 (12)C5—C6A—S1A120.0 (4)
O2—C1—C2118.76 (12)C6A—C7A—C8A119.6 (16)
O1—C1—C2119.85 (12)C6A—C7A—H7A120.2
C3—C2—C1132.93 (12)C8A—C7A—H7A120.2
C3—C2—H2113.5C9A—C8A—C7A97.8 (8)
C1—C2—H2113.5C9A—C8A—H8A131.1
C2—C3—C4128.36 (12)C7A—C8A—H8A131.1
C2—C3—H3115.8C8A—C9A—S1A121.9 (4)
C4—C3—H3115.8C8A—C9A—H9A119.1
O3—C4—N1120.25 (11)S1A—C9A—H9A119.1
O3—C4—C3122.70 (12)C9A—S1A—C6A95.8 (6)
N1—C4—C3117.04 (11)C11—C10—C15121.14 (12)
N1—C5—C6113.11 (10)C11—C10—N1119.64 (11)
N1—C5—C6A113.11 (10)C15—C10—N1119.22 (12)
N1—C5—H5A109.0C10—C11—C12119.57 (13)
C6—C5—H5A109.0C10—C11—H11120.2
N1—C5—H5B109.0C12—C11—H11120.2
C6—C5—H5B109.0C13—C12—C11119.80 (14)
H5A—C5—H5B107.8C13—C12—H12120.1
C7—C6—C5128.44 (15)C11—C12—H12120.1
C7—C6—S1109.66 (13)C14—C13—C12120.18 (13)
C5—C6—S1121.83 (10)C14—C13—H13119.9
C6—C7—C8114.29 (17)C12—C13—H13119.9
C6—C7—H7122.9C13—C14—C15120.54 (13)
C8—C7—H7122.9C13—C14—H14119.7
C9—C8—C7111.84 (15)C15—C14—H14119.7
C9—C8—H8124.1C10—C15—C14118.76 (13)
C7—C8—H8124.1C10—C15—H15120.6
C8—C9—S1112.04 (11)C14—C15—H15120.6
C8—C9—H9124.0C4—N1—C10123.64 (10)
S1—C9—H9124.0C4—N1—C5118.81 (11)
C9—S1—C692.17 (7)C10—N1—C5117.49 (10)
C7A—C6A—C5135.0 (9)C1—O1—H1110.4 (14)
C7A—C6A—S1A104.9 (9)
O2—C1—C2—C3165.63 (15)C5—C6A—S1A—C9A176.9 (3)
O1—C1—C2—C314.4 (2)C15—C10—C11—C121.0 (2)
C1—C2—C3—C43.2 (2)N1—C10—C11—C12179.31 (12)
C2—C3—C4—O38.5 (2)C10—C11—C12—C130.1 (2)
C2—C3—C4—N1172.40 (13)C11—C12—C13—C141.0 (2)
N1—C5—C6—C7121.71 (19)C12—C13—C14—C150.8 (2)
N1—C5—C6—S161.84 (14)C11—C10—C15—C141.2 (2)
C5—C6—C7—C8176.46 (15)N1—C10—C15—C14179.09 (11)
S1—C6—C7—C80.3 (2)C13—C14—C15—C100.3 (2)
C6—C7—C8—C90.6 (3)O3—C4—N1—C10175.49 (11)
C7—C8—C9—S10.54 (19)C3—C4—N1—C105.36 (17)
C8—C9—S1—C60.30 (12)O3—C4—N1—C51.68 (17)
C7—C6—S1—C90.02 (15)C3—C4—N1—C5177.47 (11)
C5—C6—S1—C9177.02 (11)C11—C10—N1—C490.21 (15)
N1—C5—C6A—C7A61.1 (16)C15—C10—N1—C490.09 (15)
N1—C5—C6A—S1A121.4 (7)C11—C10—N1—C587.00 (15)
C5—C6A—C7A—C8A175.6 (8)C15—C10—N1—C592.71 (14)
S1A—C6A—C7A—C8A2 (2)C6—C5—N1—C489.91 (14)
C6A—C7A—C8A—C9A2 (2)C6A—C5—N1—C489.91 (14)
C7A—C8A—C9A—S1A0.9 (13)C6—C5—N1—C1087.43 (13)
C8A—C9A—S1A—C6A0.2 (10)C6A—C5—N1—C1087.43 (13)
C7A—C6A—S1A—C9A1.3 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.93 (3)1.59 (3)2.5153 (15)172 (2)
C5—H5B···O2i0.992.403.2201 (19)140
C9—H9···O3ii0.952.483.3904 (16)160
C14—H14···O2iii0.952.563.4261 (17)152
C15—H15···Cg2iv0.953.003.504 (6)115
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2; (iv) x, y1/2, z3/2.
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, AGP and EVN; X-ray analysis, ZA; writing (review and editing of the manuscript), funding acquisition, ZA, EVN, MSG, KIH and NDS; supervision, MA and AB.

Funding information

This research was funded by the Russian Science Foundation (Project No. 23–23-00577). This work was also supported by the Azerbaijan Medical University, the Western Caspian University (Azerbaijan) and Baku State University (Azerbaijan).

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBolduc, A., Dufresne, S. & Skene, W. G. (2013). Acta Cryst. C69, 1196–1199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, H. S. O. & Ng, S. C. (1998). Prog. Polym. Sci. 23, 1167–1231.  Web of Science CrossRef CAS Google Scholar
First citationChawla, S., Sharma, S., Kashid, S., Verma, P. K. & Sapra, A. (2023). Mini Rev. Med. Chem. 23, 1514–1534.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem. 36, 1646–1654.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011). Cryst. Growth Des. 11, 4247–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem. 115, 72–77.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKotsuki, H., Kitagawa, S., Nishizawa, H. & Tokoroyama, T. (1978). J. Org. Chem. 43, 1471–1472.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.  CAS Google Scholar
First citationKumamoto, K., Fukada, I. & Kotsuki, H. (2004). Angew. Chem. Int. Ed. 43, 2015–2017.  Web of Science CrossRef CAS Google Scholar
First citationMac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationMcCluskey, A., Keane, M. A., Walkom, C. C., Bowyer, M. C., Sim, A. T., Young, D. J. & Sakoff, J. A. (2002). Bioorg. Med. Chem. Lett. 12, 391–393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRulev, A. Y. & Zubkov, F. I. (2022). Org. Biomol. Chem. 20, 2320–2355.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, B.-Y., Wang, J.-X., Liu, X. & Li, Q.-D. (2013). Acta Cryst. C69, 1073–1076.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds